101
|
Lee HS, Lee MJ, Kim H, Choi SK, Kim JE, Moon HI, Park WH. Curcumin inhibits TNFα-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem 2010; 25:720-9. [DOI: 10.3109/14756360903555274] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hye-Sook Lee
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| | - Min-Ja Lee
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| | - Hyuck Kim
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| | - Sung-Kyu Choi
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| | - Jai-Eun Kim
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| | - Hyung-In Moon
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| | - Won-Hwan Park
- Cardiovascular Medical Research Center and Department of Diagnostics, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Gyeong-Ju 780-714, Republic of Korea
| |
Collapse
|
102
|
Csányi G, Taylor WR, Pagano PJ. NOX and inflammation in the vascular adventitia. Free Radic Biol Med 2009; 47:1254-66. [PMID: 19628034 PMCID: PMC3061339 DOI: 10.1016/j.freeradbiomed.2009.07.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 02/07/2023]
Abstract
Vascular inflammation has traditionally been thought to be initiated at the luminal surface and progress through the media toward the adventitial layer. In recent years, however, evidence has emerged suggesting that the vascular adventitia is activated early in a variety of cardiovascular diseases and that it plays an important role in the initiation and progression of vascular inflammation. Adventitial fibroblasts have been shown to produce substantial amounts of NAD(P)H oxidase-derived reactive oxygen species (ROS) in response to vascular injury. Additionally, inflammatory cytokines, lipids, and various hormones, implicated in fibroblast proliferation and migration, lead to recruitment of inflammatory cells to the adventitial layer and impairment of endothelium-dependent relaxation. Early in the development of vascular disease, there is clear evidence for progression toward a denser vasa vasorum which delivers oxygen and nutrients to an increasingly hypoxic and nutrient-deficient media. This expanded vascularization appears to provide enhanced delivery of inflammatory cells to the adventitia and outer media. Combined adventitial fibroblast and inflammatory cell-derived ROS therefore are expected to synergize their local effect on adventitial parenchymal cells, leading to further cytokine release and a feed-forward propagation of adventitial ROS production. In fact, data from our laboratory and others suggest a broader paracrine positive feedback role for adventitia-derived ROS in medial smooth muscle cell hypertrophy and neointimal hyperplasia. A likely candidate responsible for the adventitia-derived paracrine signaling across the vessel wall is the superoxide anion metabolite hydrogen peroxide, which is highly stable, cell permeant, and capable of activating downstream signaling mechanisms in smooth muscle cells, leading to phenotypic modulation of smooth muscle cells. This review addresses the role of adventitial NAD(P)H oxidase-derived ROS from a nontraditional, perivascular vantage of promoting vascular inflammation and will discuss how ROS derived from adventitial NAD(P)H oxidases may be a catalyst for vascular remodeling and dysfunction.
Collapse
Affiliation(s)
- Gábor Csányi
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - W. Robert Taylor
- Departments of Medicine and Biomedical Engineering, Emory University and the Atlanta VA Medical Center, Atlanta, GA
| | - Patrick J. Pagano
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
103
|
van Lent PLEM, Hofkens W, Blom AB, Grevers L, Sloetjes A, Takahashi N, van Tits LJ, Vogl T, Roth J, de Winther MP, van den Berg WB. Scavenger receptor class A type I/II determines matrix metalloproteinase-mediated cartilage destruction and chondrocyte death in antigen-induced arthritis. ACTA ACUST UNITED AC 2009; 60:2954-65. [DOI: 10.1002/art.24908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
104
|
Abstract
Pulmonary edema occurs when fluid flux into the lung interstitium exceeds its removal, resulting in hypoxemia and even death. Noncardiogenic pulmonary edema (NPE) generally results when microvascular and alveolar permeability to plasma proteins increase, one possible etiology being oxidant injury. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Experimental systems in which either RONS are increased or protective antioxidant mechanisms are decreased result in alterations of epithelial sodium channel activity and support the hypothesis that RONS are important in NPE. Both basic and clinical studies are needed to critically define the RONS-NPE connection and the capacity of antioxidant therapy (either alone or as a supplement to β-agonists) to improve patient outcome.
Collapse
Affiliation(s)
- Karen E Iles
- Department of Anesthesiology, University of Alabama at Birmingham, 901 19th Street South, 304 BMR II, Birmingham, AL 35294-2172, USA, Tel.: +1 205 975 2761, , and Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
105
|
Neuropeptide substance P attenuates hyperoxia-induced oxidative stress injury in type II alveolar epithelial cells via suppressing the activation of JNK pathway. Lung 2009; 187:421-6. [PMID: 19789913 DOI: 10.1007/s00408-009-9177-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
Abstract
Hyperoxia-induced oxidative stress plays a key role in many pulmonary diseases. In an earlier study we found the protective effect of the neuropeptide substance P (SP) on type II alveolar epithelial cells (AECIIs) after hyperoxia exposure. Then, we investigated c-Jun N-terminal kinase (C-JNK) signal transduction pathways in AECIIs before and after hyperoxia exposure. Primary AECIIs were isolated and purified from premature rats. Subsequently, the cells were treated with air (21% oxygen), hyperoxia (95% oxygen), SP+ air, and SP+ hyperoxia. SP was added in advance to reach a final concentration 1 x 10(-6) mol/l. The cells were then exposed to air and hyperoxia for 12, 24, and 48 h. XTT cell proliferation assay and fluorescence-activated cell sorting (FACS) were employed to detect cell growth and apoptosis. Phosphorylated JNK (p-JNK) levels were measured using Western blot assay. The morphological alteration of AECIIs was observed using a transmission electron microscope (TEM). Compared with the simple hyperoxia treatment, the cell growth and apoptosis percentage was significantly increased and decreased after adding additional SP. Meanwhile, the reduced levels of p-JNKs could be found after adding SP. Furthermore, the morphological damage of AECIIs was greatly improved. These data suggest that SP can promote AECII proliferation and inhibit apoptosis by suppressing JNK signal pathways after hyperoxia exposure, which attenuates hyperoxia-induced oxidative stress damage in AECIIs. It might be a potential therapy for acute pulmonary injury under hyperoxia-induced oxidative stress.
Collapse
|
106
|
Conjugated linoleic acid prevents cell growth and cytokine production induced by TPA in human keratinocytes NCTC 2544. Cancer Lett 2009; 287:62-6. [PMID: 19540663 DOI: 10.1016/j.canlet.2009.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/22/2022]
Abstract
Conjugated linoleic acid (CLA) is reported to have anti-cancer activity, based on animal and in vitro studies. Since it has been suggested that CLA anti-carcinogenic effect stems from its anti-inflammatory properties, this study investigated whether CLA can prevent cell proliferation induced by TPA in human keratinocytes NCTC 2544 contemporary to inhibition of inflammation. Results obtained showed that CLA prevents increased cell proliferation and production of pro-inflammatory molecules determined by TPA, being this effect due to modulation of PPARs and NFkB activity. The involvement of PPARalpha in CLA effect was demonstrated by adding to the cells an antagonist of PPARalpha.
Collapse
|
107
|
Song Z, Harris KA, Thach BT. Laryngeal constriction during hypoxic gasping and its role in improving autoresuscitation in two mouse strains. J Appl Physiol (1985) 2009; 106:1223-6. [PMID: 19164773 DOI: 10.1152/japplphysiol.91192.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Laryngeal closure following hypoxic gasps has been documented, but its efficacy in improving autoresuscitation capacity is unknown. We studied SWR/J mice who normally cannot autoresuscitate and the C57/BLJ strain who can. We evaluated the effects of elevated end-inspiratory lung volume immediately following a gasp. We compared upper airway-intact mice with tracheostomized mice in which the vocal cords are bypassed. We used the techniques of repeated autoresuscitate trials to test autoresuscitation capability. Both SWR/J and C57/BLJ mice could maintain elevated lung volume immediately after a gasp (breath holding). Such breath holding increased autoresuscitation ability in C57/BLJ mice but did not in SWR/J mice. In SWR/J mice, the duration of the breath holds was less than that in the C57/BLJ mice. These findings indicate that gasp-associated breath holding improves autoresuscitation capability during repeated autoresuscitation trials. Also, they show that SWR/J mice have a deficiency in central nervous system mechanisms regulating glottic closure during hypoxic gasping.
Collapse
Affiliation(s)
- Z Song
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
108
|
Patel SA, Heinrich AC, Reddy BY, Rameshwar P. Inflammatory mediators: Parallels between cancer biology and stem cell therapy. J Inflamm Res 2009; 2:13-19. [PMID: 20428325 PMCID: PMC2860331 DOI: 10.2147/jir.s4520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inflammation encompasses diverse molecular pathways, and it is intertwined with a wide array of biological processes. Recently, there has been an upsurge of interest in the interactions between mediators of inflammation and other cells such as stem cells and cancer cells. Since tissue injuries are associated with the release of inflammatory mediators, it would be difficult to address this subject without considering the implications of their systemic effects. In this review, we discuss the effects of inflammatory reactions on stem cells and extrapolate on information pertaining to cancer biology. The discussion focuses on integrins and cytokines, and identifies the transcription factor, nuclear factor-kappa B (NFkappaB) as central to the inflammatory response. Since stem cell therapy has been proposed for type II diabetes mellitus, metabolic syndrome, pulmonary edema, these disorders are used as examples to discuss the roles of inflammatory mediators. We propose prospects for future research on targeting the NFkappaB signaling pathway. Finally, we explore the bridge between inflammation and stem cells, including neural stem cells and adult stem cells from the bone marrow. The implications of mesenchymal stem cells in regenerative medicine as pertaining to inflammation are vast based on their anti-inflammatory and immunosuppressive effects. Such features of stem cells offer great potential for therapy in graft-versus-host disease, conditions with a significant inflammatory component, and tissue regeneration.
Collapse
Affiliation(s)
- Shyam A Patel
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Andrew C Heinrich
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Bobby Y Reddy
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| |
Collapse
|