101
|
George L, Indig FE, Abdelmohsen K, Gorospe M. Intracellular RNA-tracking methods. Open Biol 2018; 8:rsob.180104. [PMID: 30282659 PMCID: PMC6223214 DOI: 10.1098/rsob.180104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
RNA tracking allows researchers to visualize RNA molecules in cells and tissues, providing important spatio-temporal information regarding RNA dynamics and function. Methods such as fluorescent in situ hybridization (FISH) and molecular beacons rely on complementary oligonucleotides to label and view endogenous transcripts. Other methods create artificial chimeric transcripts coupled with bacteriophage-derived coat proteins (e.g. MS2, λN) to tag molecules in live cells. In other approaches, endogenous RNAs are recognized by complementary RNAs complexed with noncatalytic Cas proteins. Each technique has its own set of strengths and limitations that must be considered when planning an experiment. Here, we discuss the mechanisms, advantages, and weaknesses of in situ hybridization, molecular beacons, MS2 tagging and Cas-derived systems, as well as how RNA tracking can be employed to study various aspects of molecular biology.
Collapse
Affiliation(s)
- Logan George
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.,Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fred E Indig
- Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
102
|
McNicoll F, Müller-McNicoll M. A Quantitative Heterokaryon Assay to Measure the Nucleocytoplasmic Shuttling of Proteins. Bio Protoc 2018; 8:e2472. [PMID: 34395784 DOI: 10.21769/bioprotoc.2472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 11/02/2022] Open
Abstract
Many proteins appear exclusively nuclear at steady-state but in fact shuttle continuously back and forth between the nucleus and the cytoplasm. For example, nuclear RNA-binding proteins (RBPs) often accompany mRNAs to the cytoplasm, where they can regulate subcellular localization, translation and/or decay of their cargos before shuttling back to the nucleus. Nucleocytoplasmic shuttling must be tightly regulated, as mislocalization of several RBPs with prion-like domains such as FUS and TDP-43 causes the cytoplasmic accumulation of solid pathological aggregates that have been implicated in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Traditionally, interspecies heterokaryon assays have been used to determine whether a nuclear protein of interest shuttles; those assays are based on the fusion between donor and recipient cells from two different species (e.g., mouse and human), which can be distinguished based on different chromatin staining patterns, and detecting the appearance of the protein in the recipient nucleus. However, identification of heterokaryons requires experience and is prone to error, which makes it difficult to obtain high-quality data for quantitative studies. Moreover, transient overexpression of fluorescently tagged RBPs in donor cells often leads to their aberrant subcellular localization. Here, we present a quantitative assay where stable donor cell lines expressing near-physiological levels of eGFP-tagged RBPs are fused to recipient cells expressing the membrane marker CAAX-mCherry, allowing to readily identify and image a large number of high-confidence heterokaryons. Our assay can be used to measure the shuttling activity of any nuclear protein of interest in different cell types, under different cellular conditions or between mutant proteins.
Collapse
Affiliation(s)
- François McNicoll
- RNA Regulation Group, Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt/Main, Germany
| |
Collapse
|
103
|
Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nat Commun 2018; 9:2283. [PMID: 29891903 PMCID: PMC5995956 DOI: 10.1038/s41467-018-04691-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19–21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50–80 kDa, 175–250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs. Large RNAs and ribonucleoprotein complexes have shown potential as novel therapeutic agents, but their targeted delivery to cells is still challenging. Here the authors present a modular aptamer nanostructure for intracellular delivery of RNAs up to 250 nucleotides to cancer cells.
Collapse
|
104
|
Davis CM, Gruebele M. Labeling for Quantitative Comparison of Imaging Measurements in Vitro and in Cells. Biochemistry 2018; 57:1929-1938. [PMID: 29546761 DOI: 10.1021/acs.biochem.8b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Qualitative imaging of biomolecular localization and distribution inside cells has revolutionized cell biology. Most of these powerful techniques require modifications to the target biomolecule. Over the past 10 years, these techniques have been extended to quantitative measurements, from in-cell protein folding rates to complex dissociation constants to RNA lifetimes. Such measurements can be affected even when a target molecule is just mildly perturbed by its labels. Here, the impact of labeling on protein (and RNA) structure, stability, and function in cells is discussed via practical examples from the recent literature. General guidelines for selecting and validating modification sites are provided to bring the best from cell biology and imaging to quantitative biophysical experiments inside cells.
Collapse
|
105
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
106
|
Selection and Characterization of a DNA Aptamer Specifically Targeting Human HECT Ubiquitin Ligase WWP1. Int J Mol Sci 2018. [PMID: 29518962 PMCID: PMC5877624 DOI: 10.3390/ijms19030763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid aptamers hold promise as therapeutic tools for specific, tailored inhibition of protein targets with several advantages when compared to small molecules or antibodies. Nuclear WW domain containing E3 ubiquitin ligase 1 (WWP1) ubiquitin ligase poly-ubiquitinates Runt-related transcription factor 2 (Runx2), a key transcription factor associated with osteoblast differentiation. Since WWP1 and an adapter known as Schnurri-3 are negative regulators of osteoblast function, the disruption of this complex has the potential to increase bone deposition for osteoporosis therapy. Here, we develop new DNA aptamers that bind and inhibit WWP1 then investigate efficacy in an osteoblastic cell culture. DNA aptamers were selected against three different truncations of the HECT domain of WWP1. Aptamers which bind specifically to a C-lobe HECT domain truncation were observed to enrich during the selection procedure. One particular DNA aptamer termed C3A was further evaluated for its ability to bind WWP1 and inhibit its ubiquitination activity. C3A showed a low µM binding affinity to WWP1 and was observed to be a non-competitive inhibitor of WWP1 HECT ubiquitin ligase activity. When SaOS-2 osteoblastic cells were treated with C3A, partial localization to the nucleus was observed. The C3A aptamer was also demonstrated to specifically promote extracellular mineralization in cell culture experiments. The C3A aptamer has potential for further development as a novel osteoporosis therapeutic strategy. Our results demonstrate that aptamer-mediated inhibition of protein ubiquitination can be a novel therapeutic strategy.
Collapse
|
107
|
Autour A, C Y Jeng S, D Cawte A, Abdolahzadeh A, Galli A, Panchapakesan SSS, Rueda D, Ryckelynck M, Unrau PJ. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat Commun 2018; 9:656. [PMID: 29440634 PMCID: PMC5811451 DOI: 10.1038/s41467-018-02993-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/11/2018] [Indexed: 12/26/2022] Open
Abstract
Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.
Collapse
Affiliation(s)
- Alexis Autour
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67000, Strasbourg, France
| | - Sunny C Y Jeng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Adam D Cawte
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Department of Medicine, Molecular Virology, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amir Abdolahzadeh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Angela Galli
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shanker S S Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - David Rueda
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Department of Medicine, Molecular Virology, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67000, Strasbourg, France.
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
108
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
109
|
Bouhedda F, Autour A, Ryckelynck M. Light-Up RNA Aptamers and Their Cognate Fluorogens: From Their Development to Their Applications. Int J Mol Sci 2017; 19:ijms19010044. [PMID: 29295531 PMCID: PMC5795994 DOI: 10.3390/ijms19010044] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
An RNA-based fluorogenic module consists of a light-up RNA aptamer able to specifically interact with a fluorogen to form a fluorescent complex. Over the past decade, significant efforts have been devoted to the development of such modules, which now cover the whole visible spectrum, as well as to their engineering to serve in a wide range of applications. In this review, we summarize the different strategies used to develop each partner (the fluorogen and the light-up RNA aptamer) prior to giving an overview of their applications that range from live-cell RNA imaging to the set-up of high-throughput drug screening pipelines. We then conclude with a critical discussion on the current limitations of these modules and how combining in vitro selection with screening approaches may help develop even better molecules.
Collapse
Affiliation(s)
- Farah Bouhedda
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| | - Alexis Autour
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| | - Michael Ryckelynck
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| |
Collapse
|
110
|
Fernandez-Millan P, Autour A, Ennifar E, Westhof E, Ryckelynck M. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. RNA (NEW YORK, N.Y.) 2017; 23:1788-1795. [PMID: 28939697 PMCID: PMC5689000 DOI: 10.1261/rna.063008.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/05/2017] [Indexed: 05/05/2023]
Abstract
Fluorogenic RNA aptamers are short nucleic acids able to specifically interact with small molecules and strongly enhance their fluorescence upon complex formation. Among the different systems recently introduced, Spinach, an aptamer forming a fluorescent complex with the 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), is one of the most promising. Using random mutagenesis and ultrahigh-throughput screening, we recently developed iSpinach, an improved version of the aptamer, endowed with an increased folding efficiency and thermal stability. iSpinach is a shorter version of Spinach, comprising five mutations for which the exact role has not yet been deciphered. In this work, we cocrystallized a reengineered version of iSpinach in complex with the DFHBI and solved the X-ray structure of the complex at 2 Å resolution. Only a few mutations were required to optimize iSpinach production and crystallization, underlying the good folding capacity of the molecule. The measured fluorescence half-lives in the crystal were 60% higher than in solution. Comparisons with structures previously reported for Spinach sheds some light on the possible function of the different beneficial mutations carried by iSpinach.
Collapse
Affiliation(s)
- Pablo Fernandez-Millan
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Alexis Autour
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Eric Ennifar
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Eric Westhof
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| |
Collapse
|
111
|
Kiliszek A, Blaszczyk L, Kierzek R, Rypniewski W. Stabilization of RNA hairpins using non-nucleotide linkers and circularization. Nucleic Acids Res 2017; 45:e92. [PMID: 28334744 PMCID: PMC5449636 DOI: 10.1093/nar/gkx122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
An RNA hairpin is an essential structural element of RNA. Hairpins play crucial roles in gene expression and intermolecular recognition but are also involved in the pathogenesis of some congenital diseases. Structural studies of the hairpin motifs are impeded by their thermodynamic instability, as they tend to unfold to form duplexes, especially at high concentrations required for crystallography or nuclear magnetic resonance spectroscopy. We have elaborated techniques to stabilize the RNA hairpins by linking the free ends of the RNA strand at the base of the hairpin stem. One method involves stilbene diether or hexaethylene glycol linkers and circularization by T4 RNA ligase. Another method uses click chemistry to stitch the RNA ends with a triazole linker. Both techniques are efficient and easy to perform. They should be useful in making stable, biologically relevant RNA constructs for structural studies.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Leszek Blaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
112
|
Bakshi SF, Guz N, Zakharchenko A, Deng H, Tumanov AV, Woodworth CD, Minko S, Kolpashchikov DM, Katz E. Magnetic Field-Activated Sensing of mRNA in Living Cells. J Am Chem Soc 2017; 139:12117-12120. [PMID: 28817270 PMCID: PMC5654739 DOI: 10.1021/jacs.7b06022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Detection of specific mRNA in living cells has attracted significant attention in the past decade. Probes that can be easily delivered into cells and activated at the desired time can contribute to understanding translation, trafficking and degradation of mRNA. Here we report a new strategy termed magnetic field-activated binary deoxyribozyme (MaBiDZ) sensor that enables both efficient delivery and temporal control of mRNA sensing by magnetic field. MaBiDZ uses two species of magnetic beads conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The DZ sensor is activated only in the presence of a specific target mRNA and when a magnetic field is applied. Here we demonstrate that MaBiDZ sensor can be internalized in live MCF-7 breast cancer cells and activated by a magnetic field to fluorescently report the presence of specific mRNA, which are cancer biomarkers.
Collapse
Affiliation(s)
- Saira F Bakshi
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Andrey Zakharchenko
- Nanostructured Materials Lab, University of Georgia , Athens, Georgia 30602, United States
| | - Han Deng
- Department of Biology, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Craig D Woodworth
- Department of Biology, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia , Athens, Georgia 30602, United States
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida , 4000 Central Florida Boulevard, Orlando, Florida 32816-2366, United States.,Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University , Lomonosova St. 9, 191002 St. Petersburg, Russian Federation
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| |
Collapse
|
113
|
Functional nucleic acids as in vivo metabolite and ion biosensors. Biosens Bioelectron 2017; 94:94-106. [DOI: 10.1016/j.bios.2017.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
|
114
|
Trachman RJ, Truong L, Ferré-D'Amaré AR. Structural Principles of Fluorescent RNA Aptamers. Trends Pharmacol Sci 2017; 38:928-939. [PMID: 28728963 DOI: 10.1016/j.tips.2017.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 11/26/2022]
Abstract
Several aptamer RNAs have been selected in vitro that bind to otherwise weakly fluorescent small molecules and enhance their fluorescence several thousand-fold. By genetically tagging cellular RNAs of interest with these aptamers and soaking cells in their cell-permeable cognate small-molecule fluorophores, it is possible to use them to study RNA localization and trafficking. These aptamers have also been fused to metabolite-binding RNAs to generate fluorescent biosensors. The 3D structures of three unrelated fluorogenic RNAs have been determined, and reveal a shared reliance on base quadruples (tetrads) to constrain the photo-excited chromophore. The structural diversity of fluorogenic RNAs and the chemical diversity of potential fluorophores to be activated are likely to yield a variety of future fluorogenic RNA tags that are optimized for different applications in RNA imaging and in the design of fluorescent RNA biosensors.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| | - Lynda Truong
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
115
|
Cooper S, Bakal C. Accelerating Live Single-Cell Signalling Studies. Trends Biotechnol 2017; 35:422-433. [PMID: 28161141 DOI: 10.1016/j.tibtech.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/24/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
The dynamics of signalling networks that couple environmental conditions with cellular behaviour can now be characterised in exquisite detail using live single-cell imaging experiments. Recent improvements in our abilities to introduce fluorescent sensors into cells, coupled with advances in pipelines for quantifying and extracting single-cell data, mean that high-throughput systematic analyses of signalling dynamics are becoming possible. In this review, we consider current technologies that are driving progress in the scale and range of such studies. Moreover, we discuss novel approaches that are allowing us to explore how pathways respond to changes in inputs and even predict the fate of a cell based upon its signalling history and state.
Collapse
Affiliation(s)
- Sam Cooper
- The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK; Department of Computational Systems Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
116
|
Thorn K. Genetically encoded fluorescent tags. Mol Biol Cell 2017; 28:848-857. [PMID: 28360214 PMCID: PMC5385933 DOI: 10.1091/mbc.e16-07-0504] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed.
Collapse
Affiliation(s)
- Kurt Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
117
|
Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and In Vivo Applications of Riboswitches. Annu Rev Biochem 2017; 86:515-539. [PMID: 28375743 DOI: 10.1146/annurev-biochem-060815-014628] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Yichi Su
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Rebekah Z Kitto
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, California 94720; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
118
|
Guzmán-Zapata D, Domínguez-Anaya Y, Macedo-Osorio KS, Tovar-Aguilar A, Castrejón-Flores JL, Durán-Figueroa NV, Badillo-Corona JA. mRNA imaging in the chloroplast of Chlamydomonas reinhardtii using the light-up aptamer Spinach. J Biotechnol 2017; 251:186-188. [PMID: 28359866 DOI: 10.1016/j.jbiotec.2017.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/22/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023]
Abstract
Light-up aptamers are practical tools to image RNA localization in vivo. A now classical light-up aptamer system is the combination of the 3,5-difluoro-4-hydroxybenzylidene (DFHBI) fluorogen and the RNA aptamer Spinach, which has been successfully used in bacterial and mammalian cells. However, light-up aptamers have not been used in algae. Here, we show that a simple vector, carrying Spinach, transcriptionally fused to the aphA-6 gene, can be effectively used to generate a functional light-up aptamer in the chloroplast of Chlamydomonas reinhardtii. After incubation with DFHBI, lines expressing the aphA-6/Spinach mRNA were observed with laser confocal microscopy to evaluate the functionality of the light-up aptamer in the chloroplast of C. reinhardtii. Clear and strong fluorescence was localized to the chloroplast, in the form of discrete spots. There was no background fluorescence in the strain lacking Spinach. Light-up aptamers could be further engineered to image RNA or to develop genetically encoded biosensors in algae.
Collapse
Affiliation(s)
- Daniel Guzmán-Zapata
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico
| | - Yael Domínguez-Anaya
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico
| | - Karla S Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico
| | - Andrea Tovar-Aguilar
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico
| | - José L Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico
| | - Noé V Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico.
| | - Jesús A Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, 07340 México City, Mexico.
| |
Collapse
|
119
|
Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1629-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
120
|
Etzel M, Mörl M. Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry 2017; 56:1181-1198. [PMID: 28206750 DOI: 10.1021/acs.biochem.6b01218] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In synthetic biology, metabolic engineering, and gene therapy, there is a strong demand for orthogonal or externally controlled regulation of gene expression. Here, RNA-based regulatory devices represent a promising emerging alternative to proteins, allowing a fast and direct control of gene expression, as no synthesis of regulatory proteins is required. Besides programmable ribozyme elements controlling mRNA stability, regulatory RNA structures in untranslated regions are highly interesting for engineering approaches. Riboswitches are especially well suited, as they show a modular composition of sensor and response elements, allowing a free combination of different modules in a plug-and-play-like mode. The sensor or aptamer domain specifically interacts with a trigger molecule as a ligand, modulating the activity of the adjacent response domain that controls the expression of the genes located downstream, in most cases at the level of transcription or translation. In this review, we discuss the recent advances and strategies for designing such synthetic riboswitches based on natural or artificial components and readout systems, from trial-and-error approaches to rational design strategies. As the past several years have shown dramatic development in this fascinating field of research, we can give only a limited overview of the basic riboswitch design principles that is far from complete, and we apologize for not being able to consider every successful and interesting approach described in the literature.
Collapse
Affiliation(s)
- Maja Etzel
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|