101
|
An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. J Neuroimmune Pharmacol 2020; 16:634-650. [PMID: 33219474 DOI: 10.1007/s11481-020-09970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.
Collapse
|
102
|
GRKs as Key Modulators of Opioid Receptor Function. Cells 2020; 9:cells9112400. [PMID: 33147802 PMCID: PMC7692057 DOI: 10.3390/cells9112400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the link between agonist-induced phosphorylation of the mu-opioid receptor (MOR) and the associated physiological effects is critical for the development of novel analgesic drugs and is particularly important for understanding the mechanisms responsible for opioid-induced tolerance and addiction. The family of G protein receptor kinases (GRKs) play a pivotal role in such processes, mediating phosphorylation of residues at the C-tail of opioid receptors. Numerous strategies, such as phosphosite specific antibodies and mass spectrometry have allowed the detection of phosphorylated residues and the use of mutant knock-in mice have shed light on the role of GRK regulation in opioid receptor physiology. Here we review our current understanding on the role of GRKs in the actions of opioid receptors, with a particular focus on the MOR, the target of most commonly used opioid analgesics such as morphine or fentanyl.
Collapse
|
103
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
104
|
Abejón D, Monzón EM, Deer T, Hagedorn JM, Araujo R, Abad C, Rios A, Zamora A, Vallejo R. How to Restart the Interventional Activity in the COVID-19 Era: The Experience of a Private Pain Unit in Spain. Pain Pract 2020; 20:820-828. [PMID: 32969188 PMCID: PMC7536921 DOI: 10.1111/papr.12951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The situation generated in the health system by the COVID-19 pandemic has provoked a crisis involving the necessity to cancel non-urgent and oncologic activity in the operating room and in day-to-day practice. As the situation continues, the need to reinstate attention for patients with chronic pain grows. The restoration of this activity has to begin with on-site appointments and possible surgical procedures. On-site clinical activity has to guarantee the safety of patients and health workers. OBJECTIVES The objective of this review was to evaluate how to manage activity in pain units, considering the scenario generated by the pandemic and the implications of chronic pain on the immune system and proposed pharmacological and interventional therapies. METHODS Besides the established general recommendations (physical distance, surgical masks, gloves, etc.), we established specific recommendations that will allow patient treatment and relieve the disruption of the immune response. It is important to highlight the use of opioids with the least influence in the immune system. Further, individualized corticoid use, risk assessment, reduced immune suppression, and dose adjustment should take patient needs into account. In this scenario, we highlight the use of radiofrequency and neuromodulation therapies, techniques that do not interfere with the immune response. CONCLUSIONS We describe procedures to implement these recommendations for individual clinical situations, the therapeutic possibilities and safety guidelines for each center, and government recommendations during the COVID-19 pandemic.
Collapse
Affiliation(s)
- David Abejón
- Pain Management Unit, Hospital Universitario Quirónsalud Madrid, Hospital Quirónsalud San José, Madrid, Spain
| | - Eva M Monzón
- Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Tim Deer
- Spine and Nerve Center of the Virginias, Charleston, West Virginia, U.S.A
| | - Jonathan M Hagedorn
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, U.S.A
| | | | - Cristina Abad
- Pain Management Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Alberto Rios
- Pain Management Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Alejandro Zamora
- Pain Management Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Ricardo Vallejo
- National Spine and Pain Centers, Rockville, MD, U.S.A.,Psychology Department, Illinois Wesleyan University, Bloomington, Illinois, U.S.A
| |
Collapse
|
105
|
Immunohistochemical Analysis of Opioid Receptors in Peripheral Tissues. Methods Mol Biol 2020; 2201:71-82. [PMID: 32975790 DOI: 10.1007/978-1-0716-0884-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Immunohistochemical staining is widely used to identify opioid receptors in specific cell types throughout the nervous system. Opioid receptors are not restricted to the central nervous system, but are also present in peripheral sensory neurons, where their activation exerts analgesic effects without inducing centrally mediated side effects. Here, we describe immunohistochemical analysis of μ-opioid receptors in the peripheral sensory neuron cell bodies, along the axons and their peripheral endings in the hind paw skin, as well as in the spinal cord, under naïve and sciatic nerve damage conditions in mice. Importantly, we consider the ongoing debate on the specificity of antibodies.
Collapse
|
106
|
Moustafa SR, Al-Rawi KF, Stoyanov D, Al-Dujaili AH, Supasitthumrong T, Al-Hakeim HK, Maes M. The Endogenous Opioid System in Schizophrenia and Treatment Resistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleukin-6. Diagnostics (Basel) 2020; 10:633. [PMID: 32858974 PMCID: PMC7554941 DOI: 10.3390/diagnostics10090633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS) plays a key role in schizophrenia (SCZ) and treatment resistant SCZ. There are only a few data on immune and endogenous opioid system (EOS) interactions in SCZ and treatment resistant SCZ. METHODS we examined serum β-endorphin, endomorphin-2 (EM2), mu-opioid (MOR) and kappa-opioid (KOR) receptors, and interleukin (IL)-6 and IL-10 in 60 non responders to treatment (NRTT), 55 partial RTT (PRTT) and 43 normal controls. RESULTS serum EM2, KOR, MOR, IL-6 and IL-10 were significantly increased in SCZ as compared with controls. β-endorphin, EM2, MOR and IL-6 were significantly higher in NRTT than in PRTT. There were significant correlations between IL-6, on the one hand, and β-endorphin, EM2, KOR, and MOR, on the other, while IL-10 was significantly correlated with MOR only. A large part of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation and formal thought disorders was explained by the combined effects of EM2 and MOR with or without IL-6 while increased KOR was significantly associated with all symptom dimensions. Increased MOR, KOR, EM2 and IL-6 were also associated with neurocognitive impairments including in episodic, semantic and working memory and executive functions. CONCLUSION the EOS contributes to SCZ symptomatology, neurocognitive impairments and a non-response to treatment. In SCZ, EOS peptides/receptors may exert CIRS functions, whereas increased KOR levels may contribute to the pathophysiology of SCZ and EM2 and KOR to a non-response to treatment.
Collapse
Affiliation(s)
- Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil 44001, Iraq;
| | | | - Drozdstoi Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
| | | | | | | | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10110, Thailand;
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
107
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
108
|
Zhang L, Zhang JT, Hang L, Liu T. Mu Opioid Receptor Heterodimers Emerge as Novel Therapeutic Targets: Recent Progress and Future Perspective. Front Pharmacol 2020; 11:1078. [PMID: 32760281 PMCID: PMC7373791 DOI: 10.3389/fphar.2020.01078] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Opioids are the most effective analgesics used in the clinical management of cancer pain or non-cancer pain. However, chronic opioids therapy can cause many side effects including respiratory depression, nausea, sedation, itch, constipation, analgesic tolerance, hyperalgesia, high addictive potential, and abuse liability. Opioids exert their effects through binding to the opioid receptors belonging to the G-protein coupled receptors (GPCRs) family, including mu opioid receptor (MOR), delta opioid receptor (DOR), and kappa opioid receptor (KOR). Among them, MOR is essential for opioid-induced analgesia and also responsible for adverse effects of opioids. Importantly, MOR can form heterodimers with other opioid receptors and non-opioid receptors in vitro and in vivo, and has distinct pharmacological properties, different binding affinities for ligands, downstream signaling, and receptor trafficking. This mini review summarized recent progress on the function of Mu opioid receptor heterodimers, and we proposed that targeting mu opioid receptor heterodimers may represent an opportunity to develop new therapeutics, especially for chronic pain treatment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Jiang-Tao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lihua Hang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Tong Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,College of Life Sciences, Yanan University, Yanan, China
| |
Collapse
|
109
|
Liu Q, Fan W, He H, Huang F. The role of peripheral opioid receptors in orofacial pain. Oral Dis 2020; 27:1106-1114. [PMID: 32437594 DOI: 10.1111/odi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Opioid receptors are widely distributed in the central and peripheral nervous systems and non-neuronal tissues. Numerous researchers have noted the pivotal role of peripheral opioid receptors (PORs) in analgesia. Accumulating evidence has shown the existence of PORs in the trigeminal nerve system, indicating that PORs may be involved in the modulation of orofacial pain. In this review, we summarise the recent evidence for the role of PORs in orofacial pain and discuss the possible cellular mechanisms.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
110
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|