101
|
Kuratli J, Leonard CA, Nufer L, Marti H, Schoborg R, Borel N. Maraviroc, celastrol and azelastine alter Chlamydia trachomatis development in HeLa cells. J Med Microbiol 2020; 69:1351-1366. [PMID: 33180014 DOI: 10.1099/jmm.0.001267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction . Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past.Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells.Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro.Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa).Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal.Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Robert Schoborg
- Departement of Biomedical Sciences, Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
102
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
103
|
Terai H, Hamamoto J, Emoto K, Masuda T, Manabe T, Kuronuma S, Kobayashi K, Masuzawa K, Ikemura S, Nakayama S, Kawada I, Suzuki Y, Takeuchi O, Suzuki Y, Ohtsuki S, Yasuda H, Soejima K, Fukunaga K. SHOC2 Is a Critical Modulator of Sensitivity to EGFR-TKIs in Non-Small Cell Lung Cancer Cells. Mol Cancer Res 2020; 19:317-328. [PMID: 33106373 DOI: 10.1158/1541-7786.mcr-20-0664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
EGFR mutation-positive patients with non-small cell lung cancer (NSCLC) respond well to treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI); however, treatment with EGFR-TKIs is not curative, owing to the presence of residual cancer cells with intrinsic or acquired resistance to this class of drugs. Additional treatment targets that may enhance the efficacy of EGFR-TKIs remain elusive. Using a CRISPR/Cas9-based screen, we identified the leucine-rich repeat scaffold protein SHOC2 as a key modulator of sensitivity to EGFR-TKI treatment. On the basis of in vitro assays, we demonstrated that SHOC2 expression levels strongly correlate with the sensitivity to EGFR-TKIs and that SHOC2 affects the sensitivity to EGFR-TKIs in NSCLC cells via SHOC2/MRAS/PP1c and SHOC2/SCRIB signaling. The potential SHOC2 inhibitor celastrol phenocopied SHOC2 depletion. In addition, we confirmed that SHOC2 expression levels were important for the sensitivity to EGFR-TKIs in vivo. Furthermore, IHC showed the accumulation of cancer cells that express high levels of SHOC2 in lung cancer tissues obtained from patients with NSCLC who experienced acquired resistance to EGFR-TKIs. These data indicate that SHOC2 may be a therapeutic target for patients with NSCLC or a biomarker to predict sensitivity to EGFR-TKI therapy in EGFR mutation-positive patients with NSCLC. Our findings may help improve treatment strategies for patients with NSCLC harboring EGFR mutations. IMPLICATIONS: This study showed that SHOC2 works as a modulator of sensitivity to EGFR-TKIs and the expression levels of SHOC2 can be used as a biomarker for sensitivity to EGFR-TKIs.
Collapse
Affiliation(s)
- Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan. .,Division of Bioregulatory Medicine, Department of Pharmacology, Kitasato University, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Division of Bioregulatory Medicine, Department of Pharmacology, Kitasato University, Tokyo, Japan
| | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Kuronuma
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Keigo Kobayashi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Sohei Nakayama
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Yukio Suzuki
- Division of Bioregulatory Medicine, Department of Pharmacology, Kitasato University, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
104
|
Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases. J Biosci Bioeng 2020; 131:176-182. [PMID: 33268318 DOI: 10.1016/j.jbiosc.2020.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Accepted: 09/26/2020] [Indexed: 12/30/2022]
Abstract
Celastrol is a quinone-methide triterpenoid isolated from the root extracts of Tripterygium wilfordii (Thunder god vine). Although celastrol possesses multiple bioactivities, the potent toxicity and rare solubility in water hinder its clinical application. Biotransformation of celastrol using either whole cells or purified enzymes to form less toxic and more soluble derivatives has been proven difficult due to its potent antibiotic and enzyme-conjugation property. The present study evaluated biotransformation of celastrol by four glycosyltransferases from Bacillus species and found one glycosyltransferase (BsGT110) from Bacillus subtilis with significant activity toward celastrol. The biotransformation metabolite was purified and identified as celastrol-29-O-β-glucoside by mass and nuclear magnetic resonance spectroscopy. Celastrol-29-O-β-glucoside showed over 53-fold higher water solubility than celastrol, while maintained 50% of the free radical scavenging activity of celastrol. When using zebrafish as the in vivo animal model, celastrol-29-O-β-glucoside exhibited 50-fold less toxicity than celastrol. To our knowledge, the present study is not only the first report describing the biotransformation of celastrol, but also the first one detailing a new compound, celastrol-29-O-β-glucoside, that is generated in the biotransformation process. Moreover, celastrol-29-O-β-glucoside may serve as a potential candidate in the future medicine application due to its higher water solubility and lower toxicity.
Collapse
|
105
|
Ly TD, Kleine A, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Identification of Putative Non-Substrate-Based XT-I Inhibitors by Natural Product Library Screening. Biomolecules 2020; 10:E1467. [PMID: 33096778 PMCID: PMC7589200 DOI: 10.3390/biom10101467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023] Open
Abstract
Fibroproliferative diseases are characterized by excessive accumulation of extracellular matrix (ECM) components leading to organ dysfunction. This process is characterized by an increase in myofibroblast content and enzyme activity of xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan (PG) biosynthesis. Therefore, the inhibition of XT-I could be a promising treatment for fibrosis. We used a natural product-inspired compound library to identify non-substrate-based inhibitors of human XT-I by UPLC-MS/MS. We combined this cell-free approach with virtual and molecular biological analyses to confirm and prioritize the inhibitory potential of the compounds identified. The characterization for compound potency in TGF-β1-driven XYLT1 transcription regulation in primary dermal human fibroblasts (key cells in ECM remodeling) was addressed by gene expression analysis. Consequently, we identified amphotericin B and celastrol as new non-substrate-based XT-I protein inhibitors. Their XT-I inhibitory effects were mediated by an uncompetitive or a competitive inhibition mode, respectively. Both compounds reduced the cellular XYLT1 expression level and XT-I activity. We showed that these cellular inhibitor-mediated changes involve the TGF-β and microRNA-21 signaling pathway. The results of our study provide a strong rationale for the further optimization and future usage of the XT-I inhibitors identified as promising therapeutic agents of fibroproliferative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany; (T.-D.L.); (A.K.); (B.F.); (V.S.); (D.H.); (J.K.); (C.K.)
| |
Collapse
|
106
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
107
|
A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R 6H 4. Drug Deliv Transl Res 2020; 11:1969-1982. [PMID: 33006741 DOI: 10.1007/s13346-020-00859-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Balancing the antitumor activity and systemic toxicity of tripterine still faces a big challenge due to the narrow therapeutic window. To address this issue, we report a microemulsion system based on tripterine, brucea oil, and glycyrrhizin, and dual modified with both transferrin and cell-penetrating peptide SA-R6H4 (Tf/SA-R6H4-TBG-MEs) for combinational and tumor-targeted cancer therapy. Such a microemulsion exhibited a spherical shape with a size of ~50 nm and a mildly-negative charge. The half-maximal inhibitory concentration (IC50) of Tf/SA-R6H4-TBG-MEs against ovarian cancer SKOV3 cells was 0.27 ± 0.43 μg tripterine/mL, which was 5.85 times lower than that of free tripterine. The cellular uptake of tripterine after treatment with Tf/SA-R6H4-TBG-MEs was 1.56 times higher than that of TBG-MEs (non-modified microemulsion). In pharmacokinetics studies, the area under the curve of Tf/SA-R6H4-TBG-MEs increased by 1.97 times compared with that of the physical mixture group. The tumoral accumulation of tripterine was significantly improved in Tf/SA-R6H4-TBG-MEs group than TBG-MEs-treated group. In antitumor efficacy in vivo, Tf/SA-R6H4-TBG-MEs exhibited the strongest inhibition of tumor growth and the longest survival period among all the groups, which is associated with the rational combination, microemulsion system, and dual modification with tumor-targeted ligands. Importantly, Tf/SA-R6H4-TBG-MEs significantly reduced the toxicity of tripterine against the liver and kidney. Our design provides a new approach for efficient and safe ovarian cancer therapy based on a multicomponent combination.
Collapse
|
108
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
109
|
Dodd GT, Xirouchaki CE, Eramo M, Mitchell CA, Andrews ZB, Henry BA, Cowley MA, Tiganis T. Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin Sensitivity and Promotes Weight Loss in Obesity. Cell Rep 2020; 28:2905-2922.e5. [PMID: 31509751 DOI: 10.1016/j.celrep.2019.08.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The importance of hypothalamic leptin and insulin resistance in the development and maintenance of obesity remains unclear. The tyrosine phosphatases protein tyrosine phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP) attenuate leptin and insulin signaling and are elevated in the hypothalami of obese mice. We report that elevated PTP1B and TCPTP antagonize hypothalamic leptin and insulin signaling and contribute to the maintenance of obesity. Deletion of PTP1B and TCPTP in the hypothalami of obese mice enhances CNS leptin and insulin sensitivity, represses feeding, and increases browning, to decrease adiposity and improve glucose metabolism. The daily intranasal administration of a PTP1B inhibitor, plus the glucocorticoid antagonist RU486 that decreases TCPTP expression, represses feeding, increases browning, promotes weight loss, and improves glucose metabolism in obese mice. Our findings causally link heightened hypothalamic PTP1B and TCPTP with leptin and insulin resistance and the maintenance of obesity and define a viable pharmacological approach by which to promote weight loss in obesity.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Chrysovalantou E Xirouchaki
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Eramo
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Zane B Andrews
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Monash Metabolic Phenotyping Facility, Monash University, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| |
Collapse
|
110
|
Abu Bakar MH, Shariff KA, Tan JS, Lee LK. Celastrol attenuates inflammatory responses in adipose tissues and improves skeletal muscle mitochondrial functions in high fat diet-induced obese rats via upregulation of AMPK/SIRT1 signaling pathways. Eur J Pharmacol 2020; 883:173371. [DOI: 10.1016/j.ejphar.2020.173371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
|
111
|
Anti-Inflammatory Activity of Diterpenoids from Celastrus orbiculatus in Lipopolysaccharide-Stimulated RAW264.7 Cells. J Immunol Res 2020; 2020:7207354. [PMID: 32802895 PMCID: PMC7414338 DOI: 10.1155/2020/7207354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Celastrus orbiculatus Thunb has been known as an ethnopharmacological medicinal plant for antitumor, anti-inflammatory, and analgesic effects. Although various pharmacological studies of C. orbiculatus extract has been reported, an anti-inflammatory mechanism study of their phytochemical constituents has not been fully elucidated. In this study, compounds 1-17, including undescribed podocarpane-type trinorditerpenoid (3), were purified from C. orbiculatus and their chemical structure were determined by high-resolution electrospray ionization mass (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopic data. To investigate the anti-inflammatory activity of compounds 1-17, nitric oxide (NO) secretion was evaluated in LPS-treated murine macrophages, RAW264.7 cells. Among compounds 1-17, deoxynimbidiol (1) and new trinorditerpenoid (3) showed the most potent inhibitory effects (IC50: 4.9 and 12.6 μM, respectively) on lipopolysaccharide- (LPS-) stimulated NO releases as well as proinflammatory mediators, such as inducible nitric oxide (iNOS), cyclooxygenase- (COX-) 2, interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α. Its inhibitory activity of proinflammatory mediators is contributed by suppressing the activation of nuclear transcription factor- (NF-) κB and mitogen-activated protein kinase (MAPK) signaling cascades including p65, inhibition of NF-κB (IκB), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. Therefore, these results demonstrated that diterpenoids 1 and 3 obtained from C. orbiculatus may be considered a potential candidate for the treatment of inflammatory diseases.
Collapse
|
112
|
Xinqiang S, Erqin D, Yu Z, Hongtao D, Lei W, Ningning Y. Potential mechanisms of action of celastrol against rheumatoid arthritis: Transcriptomic and proteomic analysis. PLoS One 2020; 15:e0233814. [PMID: 32726313 PMCID: PMC7390347 DOI: 10.1371/journal.pone.0233814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
The clinical efficacy for treating of celastrol rheumatoid arthritis (RA) has been well-documented, but its mechanism of action remains unclear. Here we explored through what proteins and processes celastrol may act in activated fibroblast-like synoviocytes (FLS) from RA patients. Differential expression of genes and proteins after celastrol treatment of FLS was examined using RNA sequencing, label-free relatively quantitative proteomics and molecular docking. In this paper, expression of 26,565 genes and 3,372 proteins was analyzed. Celastrol was associated with significant changes in genes that respond to oxidative stress and oxygen levels, as well as genes that stabilize or synthesize components of the extracellular matrix. These results identify several potential mechanisms through which celastrol may inhibit inflammation in RA.
Collapse
MESH Headings
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- Cells, Cultured
- Chromatography, Liquid
- Gene Expression Regulation/drug effects
- Gene Ontology
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Pentacyclic Triterpenes
- Proteomics/methods
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Spectrometry, Mass, Electrospray Ionization
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Tandem Mass Spectrometry
- Transcriptome/drug effects
- Triterpenes/pharmacology
- Triterpenes/therapeutic use
Collapse
Affiliation(s)
- Song Xinqiang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
- * E-mail: (SX); (YN)
| | - Dai Erqin
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Zhang Yu
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Du Hongtao
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Wang Lei
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
| | - Yang Ningning
- Department of Biological Sciences, Xinyang Normal University, Xinyang, China
- * E-mail: (SX); (YN)
| |
Collapse
|
113
|
Zhan S, Paik A, Onyeabor F, Ding B, Prabhu S, Wang J. Oral Bioavailability Evaluation of Celastrol-Encapsulated Silk Fibroin Nanoparticles Using an Optimized LC-MS/MS Method. Molecules 2020; 25:molecules25153422. [PMID: 32731529 PMCID: PMC7435660 DOI: 10.3390/molecules25153422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Celastrol (CL), a compound isolated from Tripterygium wilfordii, possesses various bioactivities such as antitumor, anti-inflammatory and anti-obesity effects. In previous studies, we developed CL-encapsulated silk fibroin nanoparticles (CL-SFNP) with satisfactory formulation properties and in vitro cancer cytotoxicity effect. For further in vivo oral bioavailability evaluation, in this study, a simple and reliable LC-MS/MS method was optimized and validated to determine CL concentration in rat plasma. The separation of CL was performed on a C18 column (150 by 2 mm, 5 µm) following sample preparation using liquid–liquid extraction with the optimized extraction solvent of tert-butyl methylether. The assay exhibited a good linearity in the concentration range of 0.5–500 ng/mL with the lower limit of quantification (LLOQ) of 0.5 ng/mL. The method was validated to meet the requirements for bioassay with accuracy of 91.1–110.0%, precision (RSD%) less than 9.1%, extraction recovery of 63.5–74.7% and matrix effect of 87.3–101.2%. The developed method was successfully applied to the oral bioavailability evaluation of CL-SFNP. The pharmacokinetic results indicated the AUC0-∞ values of CL were both significantly (p < 0.05) higher than those for pure CL after intravenous (IV) or oral (PO) administration of equivalent CL in rats. The oral absolute bioavailability (F, %) of CL significantly (p < 0.05) increased from 3.14% for pure CL to 7.56% for CL-SFNP after dosage normalization. This study provides valuable information for future CL product development.
Collapse
Affiliation(s)
- Shuyu Zhan
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China;
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (F.O.); (S.P.)
- Correspondence: (S.Z.); (J.W.)
| | - Amy Paik
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (F.O.); (S.P.)
| | - Felicia Onyeabor
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (F.O.); (S.P.)
| | - Baoyue Ding
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China;
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (F.O.); (S.P.)
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (F.O.); (S.P.)
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (A.P.); (F.O.); (S.P.)
- Correspondence: (S.Z.); (J.W.)
| |
Collapse
|
114
|
Funes SC, Rios M, Fernández-Fierro A, Covián C, Bueno SM, Riedel CA, Mackern-Oberti JP, Kalergis AM. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front Immunol 2020; 11:1467. [PMID: 32849503 PMCID: PMC7396584 DOI: 10.3389/fimmu.2020.01467] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is the primary antioxidant enzyme involved in heme group degradation. A variety of stimuli triggers the expression of the inducible HO-1 isoform, which is modulated by its substrate and cellular stressors. A major anti-inflammatory role has been assigned to the HO-1 activity. Therefore, in recent years HO-1 induction has been employed as an approach to treating several disorders displaying some immune alterations components, such as exacerbated inflammation or self-reactivity. Many natural compounds have shown to be effective inductors of HO-1 without cytotoxic effects; among them, most are chemicals present in plants used as food, flavoring, and medicine. Here we discuss some naturally derived compounds involved in HO-1 induction, their impact in the immune response modulation, and the beneficial effect in diverse autoimmune disorders. We conclude that the use of some compounds from natural sources able to induce HO-1 is an attractive lifestyle toward promoting human health. This review opens a new outlook on the investigation of naturally derived HO-1 inducers, mainly concerning autoimmunity.
Collapse
Affiliation(s)
- Samanta C Funes
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Covián
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Millenium Institute on Immunolgy and Immunotherapy, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU CCT Mendoza- CONICET, Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
115
|
Zhou Y, Zhou L, Zhou K, Zhang J, Shang F, Zhang X. Celastrol Protects RPE Cells from Oxidative Stress-Induced Cell Death via Activation of Nrf2 Signaling Pathway. Curr Mol Med 2020; 19:172-182. [PMID: 31032752 DOI: 10.2174/1566524019666190424131704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/05/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Oxidative stress to retinal pigment epithelial (RPE) cells and inflammation are closely related to the pathogenesis of age-related macular degeneration (AMD). Celastrol is a natural compound isolated from the root of Tripterygium wilfordii. Celastrol has been shown to have potent anti-inflammatory and anti-tumor effects in multiple disease models. The objective of this study was to test the anti-oxidative effects of celastrol in RPE cells and to investigate the underlying mechanisms. METHODS ARPE-19 cells were treated with hydrogen peroxide (H2O2) and menadione alone or in combination with celastrol. Cell viability and apoptosis were examined by CCK-8 and TUNEL assay, respectively. The expression of Nrf2 and its target genes, such as GCLM and HO-1 was determined by Western blotting. The knockdown of Nrf2 was done by transfecting ARPE-19 cells with lentivirus encoding shRNA against Nrf2. The knockdown efficiency was determined by real-time quantitative PCR and Western blotting. RESULTS Treatment of ARPE-19 cells with celastrol significantly attenuated the toxic effects of both H2O2 and menadione. Treatment with celastrol enhanced the expression of transcription factor Nrf2 and its targets, GCLM and HO-1. Knockdown of Nrf2 expression by shRNA partially abolished the protective effects of celastrol. Chemical inhibition of glutathione synthesis by L-buthionine-S,R-sulfoximine (BSO) completely abolished the protective effects of celastrol against H2O2 and menadione-induced damage. However, chemical inhibition of HO-1 activity by ZnPPIX did not reduce the protective effects of celastrol. CONCLUSION This study provides evidence that treatment of RPE cells with celastrol shows potent protective effects against oxidative insults via activation of Nrf2 signaling pathway and upregulation of GCLM expression. This finding suggests that celastrol might be used as a potential therapeutic agent for oxidative stress-related eyes diseases, such as AMD.
Collapse
Affiliation(s)
- Yeqi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kewen Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jingyue Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Fu Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
116
|
Huang T, Wang Y, Shen Y, Ao H, Guo Y, Han M, Wang X. Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Sci Rep 2020; 10:8851. [PMID: 32483248 PMCID: PMC7264310 DOI: 10.1038/s41598-020-65773-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the main components of Tripterygium wilfordii Hook F, celastrol (CSL) has significant antitumor activity, but its clinical application has been limited by its poor solubility, low oral bioavailability and systemic toxicity. In this study, celastrol nanosuspensions (CSL-NSps) were prepared using an antisolvent precipitation method with poloxamer 188 (P-188) as a stabilizer at a high CSL/P-188 feeding ratio of 8:1. The resultant CSL was spherical in shape with an average particle size of 147.9 nm, a polydispersity index (PDI) of 0.12 and zeta potential of -19.2 mV. The encapsulation efficiency and drug loading content were 98.18% and 86.83%, respectively, and the X-ray diffraction (XRD) pattern showed that CSL existed in an amorphous state in the nanosuspensions. CSL-NSps were quite stable in various physiological media and plasma and were both suitable for oral and intravenous administration. Nanosuspensions greatly enhanced the in vitro dissolution, and the cumulative drug release reached approximately 69.20% within 48 h. In vivo, CSL-NSps (3 mg/kg, i.g.) displayed a significantly enhanced tumor inhibition rate (TIR) in comparison with that of CSL suspension when administered orally (TIR, 50.39%, vs. 41.16%, p < 0.05), similar to that of PTX injection (8 mg/kg, i.v. TIR, 50.88%). CSL-NSps showed even better therapeutic efficacy than PTX injection (TIR, 64.18%, p < 0.01) when intravenously injected. This has demonstrated that, with the help of nanosuspensions, CSL is likely to be an effective and promising antitumor agent in clinic practice for the treatment of breast cancer.
Collapse
Affiliation(s)
- Tiantian Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.,School of pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Yiping Shen
- Center of Pharmaceutical Engineering Technology Research, College of Pharmacy, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China. .,School of pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
117
|
Chan Y, Ng SW, Chellappan DK, Madheswaran T, Zeeshan F, Kumar P, Pillay V, Gupta G, Wadhwa R, Mehta M, Wark P, Hsu A, Hansbro NG, Hansbro PM, Dua K, Panneerselvam J. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Farrukh Zeeshan
- Department of Pharmaceutical Technology, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Ridhima Wadhwa
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, Australia
| | - Meenu Mehta
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, Australia
| | - Peter Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Australia
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Australia
| | - Nicole G Hansbro
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown, Australia
- School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Australia
| | - Philip Michael Hansbro
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Australia
- School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Australia
| | - Kamal Dua
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Australia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University (IMU), Kuala Lumpur, Malaysia
| |
Collapse
|
118
|
Celastrol attenuates collagen-induced arthritis via inhibiting oxidative stress in rats. Int Immunopharmacol 2020; 84:106527. [PMID: 32402948 DOI: 10.1016/j.intimp.2020.106527] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
The present work aimed to investigate the anti-rheumatism effect and the mechanism of celastrol in collagen-induced arthritis (CIA) rats. The CIA model was established in male Wistar rats by intradermal injection of bovine collagen-II in complete Freund's adjuvant (CFA) at the base of tail. The rats received oral administration of celastrol for 28 days. A variety of indicators, including paw swelling and arthritis scores, were measured for anti-rheumatism effect. Celastrol treatment attenuated paw swelling and arthritis scores in CIA rats. Celastrol improved the spleen and thymus indexes in CIA rats. The increased levels of inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and interferon (IFN)-γ, were abolished by celastrol treatment. In addition, the weakened superoxide dismutase (SOD) activity, the increased levels of malondialdehyde (MDA), and superoxide anions, and enhanced NADPH oxidase (Nox) activity were all reversed by celastrol treatment. Nox4 overexpression reversed the attenuating effects of celastrol on paw swelling and arthritis scores in CIA rats. The celastrol-induced improvement in spleen and thymus indexes in CIA rats was inhibited by Nox4 overexpression. Nox4 overexpression reversed the abolishing effects of celastrol on the increases of TNF-α, IL-1β, IL-6, and IFN-γ levels in the serum of CIA rats. These results demonstrated that celastrol improved rheumatism in arthritis via inhibiting oxidative stress.
Collapse
|
119
|
Trivedi R, Jurivich DA. A molecular perspective on age-dependent changes to the heat shock axis. Exp Gerontol 2020; 137:110969. [PMID: 32407864 DOI: 10.1016/j.exger.2020.110969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
Aging is a complex process associated with progressive damage that leads to cellular dysfunction often accompanied by frailty and age-related diseases. Coping with all types of physiologic stress declines with age. While representing a primordial, cross-species response in poikilo- and homeotherms, the age-dependent perturbation of the stress response is more complex than previously thought. This short review examines how age influences the stress axis at multiple levels that involve both activating and attenuating pathways.
Collapse
Affiliation(s)
- Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| | - Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| |
Collapse
|
120
|
Song X, Zhang Y, Dai E. Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review). Mol Med Rep 2020; 21:2303-2310. [PMID: 32323812 DOI: 10.3892/mmr.2020.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 11/05/2022] Open
Abstract
Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF‑κB, endoplasmic reticulum Ca2+‑ATPase, myeloid differentiation factor 2, toll‑like receptor 4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF‑κB, the receptor activator of NF‑κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase‑2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi‑target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| |
Collapse
|
121
|
Vilas A, Yuste-Checa P, Gallego D, Desviat LR, Ugarte M, Pérez-Cerda C, Gámez A, Pérez B. Proteostasis regulators as potential rescuers of PMM2 activity. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165777. [PMID: 32222543 DOI: 10.1016/j.bbadis.2020.165777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Phosphomannomutase 2 deficiency (PMM2-CDG) is the most common N-glycosylation disorder. To date there is no treatment. Following the identification of a number of destabilizing pathogenic variants, our group suggested PMM2-CDG to be a conformational disease. The aim of the present study was to evaluate the possible use of proteostasis network regulators to increase the stability, and subsequently the enzymatic activity, of misfolded PMM2 mutant proteins. Patient-derived fibroblasts transduced with their own PMM2 folding or oligomerization variants were treated with different concentrations of the proteostasis regulators celastrol or MG132. Celastrol treatment led to a significant increase in mutant PMM2 protein concentration and activity, while MG132 had a small effect on protein concentration only. The increase in enzymatic activity with celastrol correlated with an increase in the transcriptional and proteome levels of the heat shock proteins Hsp90 and Hsp70. The use of specific Hsp70 or Hsp90 inhibitors showed the positive effect of celastrol on PMM2 stability and activity to occur through Hsp90-driven modulation of the proteostasis network. The synergistic effect of celastrol and a previously described pharmacological chaperone was also examined, and a mutation-dependent synergistic effect on PMM2 activity was noted. These results provide proof-of-concept regarding the potential treatment of PMM2-CDG by proteostasis regulators, either alone or in combination with pharmacological chaperones.
Collapse
Affiliation(s)
- A Vilas
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - P Yuste-Checa
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - D Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - L R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - M Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - C Pérez-Cerda
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - A Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain.
| |
Collapse
|
122
|
Liu DD, Zhang BL, Yang JB, Zhou K. Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway. J Pharm Pharmacol 2020; 72:826-835. [PMID: 32201950 DOI: 10.1111/jphp.13250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Osteoarthritis (OA) is a common degenerative joint disease with the pathological features of the reduced cartilage cellularity. Celastrol, a compound from Tripterygium wilfordii, exerted therapeutic effects on arthritis, but the potential mechanism remains unclear.
Methods
Tunicamycin was used to establish a model of OA in vitro, and ACLT surgery model in rats was applied to verify the mechanism. Chondrocytes were isolated from the knee articular cartilage of rabbit. MTT and flow cytometry assay were used to detect cell viability and apoptosis rate. Haematoxylin–eosin staining was used to assess for the histopathological changes. The activity and expression of apoptosis-related factors and ERs (endoplasmic reticulum stress)-related factors were detected by ELISA, WB, PCR and IHC, respectively.
Key findings
Celastrol exhibited significant enhancement on cell viability and reduced the rate of apoptosis in Tm-exposed chondrocytes. Celastrol reduced enzyme activity and protein expression of caspase-3, caspase-6 and caspase-9, decreased Bip, Atf6, Chop and Xbp-1 expression both at protein and mRNA levels. Celastrol showed a more significant effect on cell apoptosis rate and mRNA expression in the combination with 4-PBA.
Conclusions
This study reveals that celastrol may prevent OA by inhibiting the ERs-mediated apoptosis. All these might supply beneficial hints for celastrol on OA treatment.
Collapse
Affiliation(s)
- Da Dong Liu
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Ben Li Zhang
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Ji Bin Yang
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Kunpeng Zhou
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| |
Collapse
|
123
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
124
|
Li J, Jia Y, Zhang P, Yang H, Cong X, An L, Xiao C. Celastrol Self-Stabilized Nanoparticles for Effective Treatment of Melanoma. Int J Nanomedicine 2020; 15:1205-1214. [PMID: 32110017 PMCID: PMC7037082 DOI: 10.2147/ijn.s232603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background Celastrol (CEL), a triterpene extracted from the Chinese herb tripterygium wilfordii, has been reported to have profound anticancer activities. However, poor water solubility and high side toxicities have severely restricted the clinical applications of CEL. Purpose We proposed a facile “in situ drug conjugation-induced self-assembly” strategy to prepare CEL-loaded nanoparticles (CEL-NPs) that exhibited enhanced antitumor activity against melanoma. Methods First, the CEL was chemically conjugated onto a methoxyl poly(ethylene glycol)-b-poly(L-lysine) (mPEG-PLL) backbone, resulting in the conversion of the double hydrophilic mPEG-PLL polymer into an amphiphilic polymer prodrug, mPEG-PLL/CEL. The obtained mPEG-PLL/CEL could self-assemble into stable micelles in aqueous solution due to the hydrophobic association of CEL moieties in the side chains and the possible electrostatic interaction between the carboxyl group in CEL and the residue amine group in the PLL segment. Thus, the obtained mPEG-PLL/CEL nanoparticles were named CEL self-stabilized nanoparticles (CEL-NPs), which were then characterized by dynamic light scattering and transmission electron microscopy. Furthermore, the antitumor effects of the CEL-NPs were investigated by an MTT assay in vitro and in a B16F10 tumor-bearing mice model. Results The CEL-NPs exhibited sustained drug release behavior and were effectively endocytosed by B16F10 cells. Furthermore, the in vivo antitumor evaluation demonstrated that the CEL-NPs had remarkably higher tumor growth inhibition rates and lower systemic side effects than free CEL. Conclusion In summary, our present work not only demonstrates the generation of stable CEL-loaded nanoparticles for the efficient treatment of melanoma but also describes a general way to prepare drug self-stabilized nanomedicine for anticancer therapy.
Collapse
Affiliation(s)
- Jinran Li
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Yuxi Jia
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Huailin Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Lin An
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, People's Republic of China
| |
Collapse
|
125
|
Barrett CM, McCracken R, Elmer J, Haynes KA. Components from the Human c-myb Transcriptional Regulation System Reactivate Epigenetically Repressed Transgenes. Int J Mol Sci 2020; 21:E530. [PMID: 31947658 PMCID: PMC7014047 DOI: 10.3390/ijms21020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
A persistent challenge for mammalian cell engineering is the undesirable epigenetic silencing of transgenes. Foreign DNA can be incorporated into closed chromatin before and after it has been integrated into a host cell's genome. To identify elements that mitigate epigenetic silencing, we tested components from the c-myb and NF-kB transcriptional regulation systems in transiently transfected DNA and at chromosomally integrated transgenes in PC-3 and HEK 293 cells. DNA binding sites for MYB (c-myb) placed upstream of a minimal promoter enhanced expression from transiently transfected plasmid DNA. We targeted p65 and MYB fusion proteins to a chromosomal transgene, UAS-Tk-luciferase, that was silenced by ectopic Polycomb chromatin complexes. Transient expression of Gal4-MYB induced an activated state that resisted complete re-silencing. We used custom guide RNAs and dCas9-MYB to target MYB to different positions relative to the promoter and observed that transgene activation within ectopic Polycomb chromatin required proximity of dCas9-MYB to the transcriptional start site. Our report demonstrates the use of MYB in the context of the CRISPR-activation system, showing that DNA elements and fusion proteins derived from c-myb can mitigate epigenetic silencing to improve transgene expression in engineered cell lines.
Collapse
Affiliation(s)
- Cassandra M. Barrett
- School of Biological and Health Systems Engineering, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA;
| | - Reilly McCracken
- Department of Chemical Engineering, Villanova University, 217 White Hall, 800 East Lancaster Avenue, Villanova, PA 19085, USA; (R.M.); (J.E.)
| | - Jacob Elmer
- Department of Chemical Engineering, Villanova University, 217 White Hall, 800 East Lancaster Avenue, Villanova, PA 19085, USA; (R.M.); (J.E.)
| | - Karmella A. Haynes
- School of Biological and Health Systems Engineering, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
126
|
The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer 2020; 1873:188338. [PMID: 31904399 DOI: 10.1016/j.bbcan.2020.188338] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
Standard anti-cancer therapies promote tumor growth suppression mainly via induction of apoptosis. However, in most cases cancer cells acquire the ability to escape apoptotic cell death, thus becoming resistant to current treatments. In this setting, the interest in alternative cell death modes has recently increased. Paraptosis is a new form of programmed cell death displaying endoplasmic reticulum (ER) and/or mitochondria dilation, generally due to proteostasis disruption or redox and ion homeostasis alteration. Recent studies have highlighted that several natural compounds can trigger paraptosis in different tumor cell lines. Here, we review the molecular mechanisms underlying paraptotic cell death, as well as the natural products inducing this kind of cell death program. A better understanding of paraptosis should facilitate the development of new therapeutic strategies for cancer prevention and treatment.
Collapse
|
127
|
Yeang C, Tsimikas S. Ancient Remedy for a Modern Disease: Will Celastrol Become a Treatment for Aortic Valve Stenosis? JACC Basic Transl Sci 2020; 5:50-52. [PMID: 32043488 PMCID: PMC7000881 DOI: 10.1016/j.jacbts.2019.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Sotirios Tsimikas
- Vascular Medicine Program, Sulpizio Cardiovascular Center, Division of Cardiovascular Diseases, University of California-San Diego, La Jolla, California
| |
Collapse
|
128
|
Celastrol Inhibits Dopaminergic Neuronal Death of Parkinson's Disease through Activating Mitophagy. Antioxidants (Basel) 2019; 9:antiox9010037. [PMID: 31906147 PMCID: PMC7022523 DOI: 10.3390/antiox9010037] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease, which is associated with mitochondrial dysfunction and abnormal protein accumulation. No treatment can stop or slow PD. Autophagy inhibits neuronal death by removing damaged mitochondria and abnormal protein aggregations. Celastrol is a triterpene with antioxidant and anti-inflammatory effects. Up until now, no reports have shown that celastrol improves PD motor symptoms. In this study, we used PD cell and mouse models to evaluate the therapeutic efficacy and mechanism of celastrol. In the substantia nigra, we found lower levels of autophagic activity in patients with sporadic PD as compared to healthy controls. In neurons, celastrol enhances autophagy, autophagosome biogenesis (Beclin 1↑, Ambra1↑, Vps34↑, Atg7↑, Atg12↑, and LC3-II↑), and mitophagy (PINK1↑, DJ-1↑, and LRRK2↓), and these might be associated with MPAK signaling pathways. In the PD cell model, celastrol reduces MPP+-induced dopaminergic neuronal death, mitochondrial membrane depolarization, and ATP reduction. In the PD mouse model, celastrol suppresses motor symptoms and neurodegeneration in the substantia nigra and striatum and enhances mitophagy (PINK1↑ and DJ-1↑) in the striatum. Using MPP+ to induce mitochondrial damage in neurons, we found celastrol controls mitochondrial quality by sequestering impaired mitochondria into autophagosomes for degradation. This is the first report to show that celastrol exerts neuroprotection in PD by activating mitophagy to degrade impaired mitochondria and further inhibit dopaminergic neuronal apoptosis. Celastrol may help to prevent and treat PD.
Collapse
|
129
|
Liu H, Wang L, Pan Y, Wang X, Ding Y, Zhou C, Shah AM, Zhao G, Zhang M. Celastrol Alleviates Aortic Valve Calcification Via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells. JACC Basic Transl Sci 2019; 5:35-49. [PMID: 32043019 PMCID: PMC7000868 DOI: 10.1016/j.jacbts.2019.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
The reactive oxygen species–generating enzyme Nox2 is up-regulated in the leaflets of both rabbit and human with CAVD. Nox2 is markedly induced in cultured porcine AVICs after osteogenic stimulation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification. Celastrol, a natural compound capable of inhibiting Nox2 activity, significantly decreased AVIC calcification in vitro, and mitigated the severity of aortic valve fibrosis, calcification, and stenosis in a rabbit model of CAVD in vivo. The protective effects of celastrol may, in part, involve the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway.
This study sought to investigate whether reactive oxygen species (ROS)–generating reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) contributes to calcific aortic valve disease (CAVD) or whether celastrol, a natural Nox2 inhibitor, may provide potential therapeutic target for CAVD. CAVD is an active and cellular-driven fibrocalcific process characterized by differentiation of aortic valvular interstitial cells (AVICs) toward an osteogenic-like phenotype. ROS levels increase in calcified aortic valves, while the sources of ROS and their roles in the pathogenesis of CAVD are elusive. The roles of Nox2 and the effects of celastrol were studied using cultured porcine AVICs in vitro and a rabbit CAVD model in vivo. Nox2 proteins were significantly upregulated in human aortic valves with CAVD. In vitro, Nox2 was markedly induced upon stimulation of AVICs with osteogenic medium, along with the increases in ROS production and calcium nodule formation. Celastrol significantly decreased calcium deposition of AVICs by 35%, with a reduction of ROS generation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification by 39%, the inhibitory effect being similar to celastrol treatment. Mechanistically, either celastrol treatment or knockdown of Nox2 significantly inhibited glycogen synthase kinase 3 beta/β-catenin signaling, leading to attenuation of fibrogenic and osteogenic responses of AVICs. In a rabbit CAVD model, administration of celastrol significantly reduced aortic valve ROS production, fibrosis, calcification, and severity of aortic stenosis, with less left ventricular dilatation and better preserved contractile function. Upregulation of Nox2 is critically involved in CAVD. Celastrol is effective to alleviate CAVD, likely through the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway in AVICs.
Collapse
Key Words
- AV, aortic valve
- AVIC, aortic valvular interstitial cell
- CAVD, calcific aortic valve disease
- GSK3B, glycogen synthase kinase 3 beta
- HC, high cholesterol
- LV, left ventricular
- Nox2
- Nox2, reduced nicotinamide adenine dinucleotide phosphate oxidase 2
- OGM, osteogenic medium
- OPN, osteopontin
- ROS, reactive oxygen species
- Runx2, runt-related transcription factor 2
- fibrosis
- reactive oxygen species
- stenosis
- tripterine
- valve interstitial cells
- vitD2, vitamin D2
Collapse
Affiliation(s)
- Huibing Liu
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Libo Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yating Pan
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Xuehui Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yuan Ding
- Department of Ultrasonography, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Chaoyuan Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Guoan Zhao
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Min Zhang
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
130
|
Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated Codelivery of Quercetin and Alantolactone Promotes an Antitumor Response through Synergistic Immunogenic Cell Death for Microsatellite-Stable Colorectal Cancer. ACS NANO 2019; 13:12511-12524. [PMID: 31664821 DOI: 10.1021/acsnano.9b02875] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microsatellite-stable colorectal cancer (CRC) is known to be resistant to immunotherapy. The combination of quercetin (Q) and alantolactone (A) was found to induce synergistic immunogenic cell death (ICD) at a molar ratio of 1:4 (Q:A). To achieve ratiometric loading and delivery, the micellar delivery of Q and A (QA-M) was developed with high entrapment efficiency and drug loading at an optimal ratio. QA-M achieved prolonged blood circulation and increased tumor accumulation for both drugs. More importantly, QA-M retained the desired drug ratio (molar ratio of Q to A = 1:4) in tumors at 2 and 4 h after intravenous injection for synergistic immunotherapy. Tumor growth was significantly inhibited in murine orthotopic CRC by the treatment of QA-M compared to PBS and the combination of free drugs (p < 0.005). The combination of nanotherapy stimulated the host immune response to induce long-term tumor destruction and induced memory tumor surveillance with a 1.3-fold increase in survival median time compared to PBS (p < 0.0001) and a combination of free drugs (p < 0.0005). The synergistic therapeutic effect induced by codelivery of Q and A is capable of reactivating antitumor immunity by inducing ICD, causing cell toxicity and modulating the immune-suppressive tumor microenvironment. Such a combination of Q and A with synergistic effects entrapped in a simple and safe nanodelivery system may provide the potential for scale-up manufacturing and clinical applications as immunotherapeutic agents for CRC.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
- Key Laboratory of Modern Preparation of TCM, Ministry of Education , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi Province 330004 , China
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi Province 330004 , China
| | - Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin Province 130022 , China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
131
|
Xinqiang S, Yu Z, Ningning Y, Erqin D, Lei W, Hongtao D. Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology. Life Sci 2019; 240:117063. [PMID: 31734262 DOI: 10.1016/j.lfs.2019.117063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Network pharmacology uses bioinformatics to broaden our understanding of drug actions and thereby advance drug discovery. Here we apply network pharmacology to generate testable hypotheses about the multi-target mechanism of celastrol against systemic lupus erythematosus (SLE). METHODS We reconstructed drug-target pathways and networks to predict the likely protein targets of celastrol and the main interactions between those targets and the drug. Then we validated our predictions of candidate targets by performing docking studies with celastrol. RESULTS The results suggest that celastrol acts against SLE by regulating the function of several signaling proteins, such as interleukin 10, tumor necrosis factor, and matrix metalloprotein 9, which regulate signaling pathways involving mitogen-activated protein kinase and tumor necrosis factor as well as apoptosis pathways. Celastrol is predicted to affect networks involved mainly in cytokine activity, cytokine receptor binding, receptor ligand activity, receptor regulator activity, and cofactor binding. Molecular docking analysis showed that hydrogen bonding and π-π stacking were the main forms of interaction. CONCLUSIONS This network pharmacology strategy may be useful for discovery of multi-target drugs against complex diseases, specifically, it provides protein targets associated with SLE that may be further tested for therapeutic potential by celastrol.
Collapse
Affiliation(s)
- Song Xinqiang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China; Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, China, 464000.
| | - Zhang Yu
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yang Ningning
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Dai Erqin
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Wang Lei
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Du Hongtao
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
132
|
Cardiac toxicity of Triptergium wilfordii Hook F . may correlate with its inhibition to hERG channel. Heliyon 2019; 5:e02527. [PMID: 31667381 PMCID: PMC6812191 DOI: 10.1016/j.heliyon.2019.e02527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/25/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Tripterygium wilfordii Hook F. (TWHF) is a Chinese traditional medicine with cardiac toxicities. However, the mechanism of acute cardiac toxicity is not very clear. By using patch clamp techniques, we found that 0.05 mg/ml and 0.1 mg/ml of the aqueous crude extract of TWHF inhibit 21.4 ± 1.6% and 86.7 ± 5.7% (n = 5) of hERG current Amplitudes (IhERG) respectively. We further found that Celastrol, one of main components of TWHF, inhibits hERG with an IC50 of 0.83 μM. Additional mutagenesis studies show that mutations of T623A, S624A and F656A significantly alter the inhibition and S624A has the strongest effect, supported by our docking model. Our data suggest that inhibition of hERG channel activity by Celastrol contributed to TWHF cardiotoxicity.
Collapse
|
133
|
Onyeabor F, Paik A, Kovvasu S, Ding B, Lin J, Wahid MA, Prabhu S, Betageri G, Wang J. Optimization of Preparation and Preclinical Pharmacokinetics of Celastrol-Encapsulated Silk Fibroin Nanoparticles in the Rat. Molecules 2019; 24:E3271. [PMID: 31500392 PMCID: PMC6767603 DOI: 10.3390/molecules24183271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023] Open
Abstract
Celastrol (CL), a bioactive compound isolated from Tripterygium wilfordii, has demonstrated bioactivities against a variety of diseases including cancer and obesity. However, its poor water solubility and rapid in vivo clearance limit its clinical applications. To overcome these limitations, nanotechnology has been employed to improve its pharmacokinetic properties. Nanoparticles made of biological materials offer minimal adverse effects while maintaining the efficacy of encapsulated therapeutics. Silk fibroin (SF) solution was prepared successfully by extraction from the cocoons of silkworms, and a final concentration of 2 mg/mL SF solution was used for the preparation of CL-loaded SF nanoparticles (CL-SFNP) by the desolvation method. A stirring speed of 750 rpm and storage time of 20 h at -20 °C resulted in optimized product yield. A high-performance liquid chromatography (HPLC) method was developed and validated for the analysis of CL in rat plasma in terms of selectivity, linearity, intra-/inter-day precision and accuracy, and recovery. No interference was observed in rat plasma. Linearity in the concentration range of 0.05-5 µg/mL was observed with R2 of 0.999. Precision and accuracy values were below the limit of acceptance criteria, i.e., 15% for quality control (QC) samples and 20% for lower limit of quantification (LLOQ) samples. Rats were given intravenous (IV) administration of 1 mg/kg of pure CL in PEG 300 solution or CL-SFNP. The pharmacokinetic profile was improved with CL-SFNP compared to pure CL. Pure CL resulted in a maximum concentration (Cmax) value of 0.17 µg mL-1 at 5 min following administration, whereas that for CL-SFNP was 0.87 µg mL-1 and the extrapolated initial concentrations (C0) were 0.25 and 1.09 µg mL-1, respectively, for pure CL and CL-SFNP. A 2.4-fold increase in total area under the curve (AUC0-inf) (µg h mL-1) was observed with CL-SFNP when compared with pure CL. CL-SFNP demonstrated longer mean residence time (MRT; 0.67 h) than pure CL (0.26 h). In conclusion, the preparation of CL-SFNP was optimized and the formulation demonstrated improved pharmacokinetic properties compared to CL in solution following IV administration.
Collapse
Affiliation(s)
- Felicia Onyeabor
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Amy Paik
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Surya Kovvasu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Jelissa Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Md Arif Wahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Guru Betageri
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
134
|
Moquin A, Sturn J, Zhang I, Ji J, von Celsing R, Vali H, Maysinger D, Kakkar A. Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:4515-4526. [DOI: 10.1021/acsabm.9b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jessica Sturn
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Richard von Celsing
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
135
|
Chen Z, Zhang D, Yan S, Hu C, Huang Z, Li Z, Peng S, Li X, Zhu Y, Yu H, Lian B, Kang Q, Li M, Zeng Z, Zhang XK, Su Y. SAR study of celastrol analogs targeting Nur77-mediated inflammatory pathway. Eur J Med Chem 2019; 177:171-187. [DOI: 10.1016/j.ejmech.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
|
136
|
Vulczak A, Catalão CHR, Freitas LAPD, Rocha MJA. HSP-Target of Therapeutic Agents in Sepsis Treatment. Int J Mol Sci 2019; 20:ijms20174255. [PMID: 31480313 PMCID: PMC6747181 DOI: 10.3390/ijms20174255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a syndrome characterized by a dysregulated inflammatory response, cellular stress, and organ injury. Sepsis is the main cause of death in intensive care units worldwide, creating need for research and new therapeutic strategies. Heat shock protein (HSP) analyses have recently been developed in the context of sepsis. HSPs have a cytoprotection role in stress conditions, signal to immune cells, and activate the inflammatory response. Hence, HSP analyses have become an important focus in sepsis research, including the investigation of HSPs targeted by therapeutic agents used in sepsis treatment. Many therapeutic agents have been tested, and their HSP modulation showed promising results. Nonetheless, the heterogeneity in experimental designs and the diversity in therapeutic agents used make it difficult to understand their efficacy in sepsis treatment. Therefore, future investigations should include the analysis of parameters related to the early and late immune response in sepsis, HSP localization (intra or extracellular), and time to the onset of treatment after sepsis. They also should consider the differences in experimental sepsis models. In this review, we present the main results of studies on therapeutic agents in targeting HSPs in sepsis treatment. We also discuss limitations and possibilities for future investigations regarding HSP modulators.
Collapse
Affiliation(s)
- Anderson Vulczak
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Maria José Alves Rocha
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14040-904, Brazil.
| |
Collapse
|
137
|
Prooxidative Activity of Celastrol Induces Apoptosis, DNA Damage, and Cell Cycle Arrest in Drug-Resistant Human Colon Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6793957. [PMID: 31485297 PMCID: PMC6710751 DOI: 10.1155/2019/6793957] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/12/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
Cancer resistance to chemotherapy is closely related to tumor heterogeneity, i.e., the existence of distinct subpopulations of cancer cells in a tumor mass. An important role is assigned to cancer stem cells (CSCs), a small subset of cancer cells with high tumorigenic potential and capacity of self-renewal and differentiation. These properties of CSCs are sustained by the ability of those cells to maintain a low intracellular reactive oxygen species (ROS) levels, via upregulation of ROS scavenging systems. However, the accumulation of ROS over a critical threshold disturbs CSCs—redox homeostasis causing severe cytotoxic consequences. In the present study, we investigated the capacity of celastrol, a natural pentacyclic triterpenoid, to induce the formation of ROS and, consequently, cell death of the colon cancer cells with acquired resistant to cytotoxic drugs (LOVO/DX cell line). LOVO/DX cells express several important stem-like cell features, including a higher frequency of side population (SP) cells, higher expression of multidrug resistant proteins, overexpression of CSC-specific cell surface marker (CD44), increased expression of DNA repair gene (PARP1), and low intracellular ROS level. We found that celastrol, at higher concentrations (above 1 μM), significantly increased ROS amount in LOVO/DX cells at both cytoplasmic and mitochondrial levels. This prooxidant activity was associated with the induction of DNA double-strand breaks (DSBs) and apoptotic/necrotic cell death, as well as with inhibition of cell proliferation by S phase cell cycle arrest. Coincubation with NAC, a ROS scavenger, completely reversed the above effects. In summary, our results provide evidence that celastrol exhibits effective cytotoxic effects via ROS-dependent mechanisms on drug-resistant colon cancer cells. These findings strongly suggest the potential of celastrol to effectively kill cancer stem-like cells, and thus, it is a promising agent to treat severe, resistant to conventional therapy, colon cancers.
Collapse
|
138
|
Miettinen K, Iñigo S, Kreft L, Pollier J, De Bo C, Botzki A, Coppens F, Bak S, Goossens A. The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis. Nucleic Acids Res 2019; 46:D586-D594. [PMID: 29045755 PMCID: PMC5753214 DOI: 10.1093/nar/gkx925] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
Triterpenes constitute a large and important class of plant natural products with diverse structures and functions. Their biological roles range from membrane structural components over plant hormones to specialized plant defence compounds. Furthermore, triterpenes have great potential for a variety of commercial applications such as vaccine adjuvants, anti-cancer drugs, food supplements and agronomic agents. Their biosynthesis is carried out through complicated, branched pathways by multiple enzyme types that include oxidosqualene cyclases, cytochrome P450s, and UDP-glycosyltransferases. Given that the number of characterized triterpene biosynthesis enzymes has been growing fast recently, the need for a database specifically focusing on triterpene enzymology became eminent. Here, we present the TriForC database (http://bioinformatics.psb.ugent.be/triforc/), encompassing a comprehensive catalogue of triterpene biosynthesis enzymes. This highly interlinked database serves as a user-friendly access point to versatile data sets of enzyme and compound features, enabling the scanning of a complete catalogue of experimentally validated triterpene enzymes, their substrates and products, as well as the pathways they constitute in various plant species. The database can be accessed by direct browsing or through convenient search tools including keyword, BLAST, plant species and substructure options. This database will facilitate gene mining and creating genetic toolboxes for triterpene synthetic biology.
Collapse
Affiliation(s)
- Karel Miettinen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sabrina Iñigo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Jacob Pollier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | | | - Frederik Coppens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Søren Bak
- Plant Biochemistry Laboratory and Villum Research Center 'Plant Plasticity', Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
139
|
Wong VKW, Qiu C, Xu S, Law BYK, Zeng W, Wang H, Michelangeli F, Dias IRDSR, Qu YQ, Chan TW, Han Y, Zhang N, Mok SWF, Chen X, Yu L, Pan H, Hamdoun S, Efferth T, Yu WJ, Zhang W, Li Z, Xie Y, Luo R, Jiang Q, Liu L. Ca 2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol 2019; 176:2922-2944. [PMID: 31124139 PMCID: PMC6637043 DOI: 10.1111/bph.14718] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Celastrol exhibits anti-arthritic effects in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca2+ mobilization in treatment of RA remains undefined. Here, we describe a regulatory role for celastrol-induced Ca2+ signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. EXPERIMENTAL APPROACH We used computational docking, Ca2+ dynamics and functional assays to study the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA). In rheumatoid arthritis synovial fibroblasts (RASFs)/rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), mechanisms of Ca2+ -mediated autophagy were analysed by histological, immunohistochemical and flow cytometric techniques. Anti-arthritic effects of celastrol, autophagy induction, and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes, using siRNA methods to study calmodulin, calpains, and calcineurin. KEY RESULTS Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via Ca2+ /calmodulin-dependent kinase kinase-β-AMP-activated protein kinase-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes down-regulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca2+ in celastrol-regulated gene expression. CONCLUSION AND IMPLICATIONS Celastrol triggered Ca2+ signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca2+ signalling.
Collapse
Affiliation(s)
- Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Su‐Wei Xu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Basic MedicineZhuhai Health SchoolZhuhaiChina
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hui Wang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | | | | | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Tsz Wai Chan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Ni Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xi Chen
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lu Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryUniversity of MainzMainzGermany
| | - Wen Jing Yu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yuesheng Xie
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Riqiang Luo
- Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Quan Jiang
- Department of Rheumatology, Guang‐An‐Men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
140
|
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol 2019; 10:715. [PMID: 31417401 PMCID: PMC6682706 DOI: 10.3389/fphar.2019.00715] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-β (TGF-β)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit β-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/β-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Therapeutic and Pharmacology Department, Health and Human Science Research, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pedro Majano
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Toméro
- Department and Nephrology, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Rafael Selgas
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Manuel López-Cabrera
- Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| | - Abelardo Aguilera
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Guadalupe González Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| |
Collapse
|
141
|
Sun Z, Li Y, Qian Y, Wu M, Huang S, Zhang A, Zhang Y, Jia Z. Celastrol attenuates ox-LDL-induced mesangial cell proliferation via suppressing NLRP3 inflammasome activation. Cell Death Discov 2019; 5:114. [PMID: 31285857 PMCID: PMC6611885 DOI: 10.1038/s41420-019-0196-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Mesangial cell (MC) proliferation is one of the important pathological features of obesity-associated nephropathy with unknown etiology. Excessive MC proliferation can cause glomerulosclerosis and renal function loss. Thus, targeting MC proliferation may be a potential strategy for the treatment of obesity-associated kidney disease. The present study was undertaken to investigate the role of celastrol in MC proliferation induced by ox-LDL, as well as the potential mechanisms. Following ox-LDL treatment, MC proliferation was induced and the NLRP3 inflammasome was activated, as evidenced by increased NLRP3 levels, caspase 1 activity, and IL-18 and IL-1β release. Significantly, NLRP3 siRNAs inhibited MC proliferation and delayed cell cycle progression, as indicated by the cell cycle assay and the expression of cyclin A2 and cyclin D1. Given the anti-inflammatory effect of celastrol, we pretreated MCs with celastrol before ox-LDL treatment. As expected, celastrol pretreatment strikingly inhibited NLRP3 inflammasome activation and MC proliferation triggered by ox-LDL. In summary, celastrol potently blocked ox-LDL-induced MC proliferation, possibly by inhibiting NLRP3 inflammasome activation. These findings also suggest that celastrol may be a potential drug for treating proliferative glomerular diseases related to obesity and lipid disorders.
Collapse
Affiliation(s)
- Zhenzhen Sun
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yuanyuan Li
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yun Qian
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Mengying Wu
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Songming Huang
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Aihua Zhang
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yue Zhang
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Zhanjun Jia
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| |
Collapse
|
142
|
Targeting Quorum Sensing: High-Throughput Screening to Identify Novel LsrK Inhibitors. Int J Mol Sci 2019; 20:ijms20123112. [PMID: 31242708 PMCID: PMC6627609 DOI: 10.3390/ijms20123112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Since quorum sensing (QS) is linked to the establishment of bacterial infection, its inactivation represents one of the newest strategies to fight bacterial pathogens. LsrK is a kinase playing a key role in the processing of autoinducer-2 (AI-2), a quorum-sensing mediator in gut enteric bacteria. Inhibition of LsrK might thus impair the quorum-sensing cascade and consequently reduce bacterial pathogenicity. Aiming for the development of a target-based assay for the discovery of LsrK inhibitors, we evaluated different assay set-ups based on ATP detection and optimized an automation-compatible method for the high-throughput screening of chemical libraries. The assay was then used to perform the screening of a 2000-compound library, which provided 12 active compounds with an IC50 ≤ 10 µM confirming the effectiveness and sensitivity of our assay. Follow-up studies on the positive hits led to the identification of two compounds, harpagoside and rosolic acid, active in a cell-based AI-2 QS interference assay, which are at the moment the most promising candidates for the development of a new class of antivirulence agents based on LsrK inhibition.
Collapse
|
143
|
Rodrigues T, de Almeida BP, Barbosa-Morais NL, Bernardes GJL. Dissecting celastrol with machine learning to unveil dark pharmacology. Chem Commun (Camb) 2019; 55:6369-6372. [PMID: 31089616 DOI: 10.1039/c9cc03116b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By coalescing bespoke machine learning and bioinformatics analyses with cell-based assays, we unveil the pharmacology of celastrol. Celastrol is a direct modulator of the progesterone and cannabinoid receptors, and its effects correlate with the antiproliferative activity. We demonstrate how in silico methods may drive systems biology studies for natural products.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| | | | | | | |
Collapse
|
144
|
Kumar A, Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Memo M, Mastinu A. Cannabimimetic plants: are they new cannabinoidergic modulators? PLANTA 2019; 249:1681-1694. [PMID: 30877436 DOI: 10.1007/s00425-019-03138-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/12/2019] [Indexed: 05/21/2023]
Abstract
Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.
Collapse
Affiliation(s)
- Amit Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Blickagången 16, Huddinge, Sweden
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Alessandra Gianoncelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy.
| |
Collapse
|
145
|
Chellappa K, Perron IJ, Naidoo N, Baur JA. The leptin sensitizer celastrol reduces age-associated obesity and modulates behavioral rhythms. Aging Cell 2019; 18:e12874. [PMID: 30821426 PMCID: PMC6516176 DOI: 10.1111/acel.12874] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/05/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023] Open
Abstract
The prevalence of obesity increases with age in humans and in rodents. Age‐related obesity is characterized by leptin resistance and associated with heightened risk of metabolic disorders. However, the effect of leptin resistance per se has been difficult to disentangle from other effects of aging. Here we demonstrate that celastrol, a natural phytochemical that was previously shown to act as a leptin sensitizer, induces weight loss in aged animals, but not in young controls. Celastrol reduces food intake and lowers fasting glucose without affecting energy expenditure. Unexpectedly, administration of celastrol just before the dark period disrupted circadian rhythms of sleep and activity. This regimen was also associated with loss of lean mass an outcome that would not be desirable in elderly patients. Adjusting the timing of celastrol administration by 12 hr, to the beginning of the light period, avoided interference with circadian rhythms while retaining the reductions in body weight and adiposity. Thus, targeting leptin signaling is an effective strategy to ameliorate age‐associated weight gain, and can profoundly impact circadian rhythms.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Isaac J. Perron
- Center for Sleep and Circadian Neurobiology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
146
|
Hsieh MJ, Wang CW, Lin JT, Chuang YC, Hsi YT, Lo YS, Lin CC, Chen MK. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152805. [PMID: 31022663 DOI: 10.1016/j.phymed.2018.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Developing resistance to chemotherapeutic drugs has become a major problem in the management of nasopharyngeal carcinoma (NPC). To overcome this issue, use of natural plant products as chemosensitizers is gaining importance at a fast pace. HYPOTHESIS/PURPOSE The present study was designed to evaluate the cytotoxic effect and mode of action of a natural pentacyclic triterpenoid, celastrol, on cisplatin-resistant NPC cells. RESULTS Study results revealed that celastrol treatment significantly reduced the viability of NPC cells in dose and time dependent manners, as compared to untreated control cells. The cytotoxic effect of celastrol was mediated by cell cycle arrest at G2/M phase and induction of intrinsic and extrinsic apoptotic pathways. With further analysis, we observed that celastrol-induced activation of caspases was accompanied by increased phosphorylation of MAPK pathway proteins, p38, ERK1/2. CONCLUSION Taken together, our observation provides a novel insight on use of a natural plant product, celastrol, in the management of chemoresistant NPC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Holistic Wellness, Mingdao University, Changhua 52345, Taiwan.
| | - Che-Wei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ting Hsi
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| |
Collapse
|
147
|
Malkov A, Ivanov AI, Latyshkova A, Bregestovski P, Zilberter M, Zilberter Y. Activation of nicotinamide adenine dinucleotide phosphate oxidase is the primary trigger of epileptic seizures in rodent models. Ann Neurol 2019; 85:907-920. [PMID: 30937971 DOI: 10.1002/ana.25474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/05/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Despite decades of epilepsy research, 30% of focal epilepsies remain resistant to antiseizure drugs, with effective drug development impeded by lack of understanding on how seizures are initiated. Here, we report the mechanism of seizure onset relevant to most seizures that are characteristic of focal epilepsies. METHODS Electric and metabolic network parameters were measured using several seizure models in mouse hippocampal slices and acutely induced seizures in rats in vivo to determine metabolic events occurring at seizure onset. RESULTS We show that seizure onset is associated with a rapid release of H2 O2 resulting from N-methyl-D-aspartate (NMDA) receptor-mediated activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX). NOX blockade prevented the fast H2 O2 release as well as the direct current shift and seizurelike event induction in slices. Similarly, intracerebroventricular injection of NOX antagonists prevented acutely induced seizures in rats. INTERPRETATION Our results show that seizures are initiated by NMDA receptor-mediated NOX-induced oxidative stress and can be arrested by NOX inhibition. We introduce a novel use for blood-brain barrier-permeable NOX inhibitor with a significant potential to become the first seizure-specific medication. Thus, targeting NOX may provide a breakthrough treatment for focal epilepsies. ANN NEUROL 2019;85:907-920.
Collapse
Affiliation(s)
- Anton Malkov
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anton I Ivanov
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France
| | - Alexandra Latyshkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Piotr Bregestovski
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France.,Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA
| | - Yuri Zilberter
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France
| |
Collapse
|
148
|
von Rüden EL, Wolf F, Gualtieri F, Keck M, Hunt CR, Pandita TK, Potschka H. Genetic and Pharmacological Targeting of Heat Shock Protein 70 in the Mouse Amygdala-Kindling Model. ACS Chem Neurosci 2019; 10:1434-1444. [PMID: 30396268 DOI: 10.1021/acschemneuro.8b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammatory responses involving Toll-like receptor signaling represent a key factor contributing to epileptogenesis. Thus, it is of particular interest to explore the relevance of toll-like receptor ligands and modulators, such as heat shock protein 70 (HSP70). Motivated by recent findings demonstrating an upregulation of HSP70 in a model of epileptogenesis, we analyzed the consequences of genetic and pharmacological targeting of HSP70 expression in a mouse kindling paradigm. Lack of inducible HSP70 resulted in increased prekindling seizure thresholds. However, at threshold stimulation the deficiency-promoted seizure spread, as indicated by an increased seizure severity. Subsequent kindling stimulations elicited more severe seizures in knockout mice, whereas endogenous termination of seizure activity remained unaffected with duration of behavioral and electrographic seizure activity comparable to that of wild-type mice. Interestingly, HSP70 deficiency resulted in enhanced microglia activation in the CA1 region. Next, we assessed a pharmacological targeting approach aiming to promote HSP70 expression. Celastrol treatment had no impact on kindling progression but reduced postkindling seizure thresholds and enhanced microglia activation in CA1 and CA3. In conclusion, the findings from HSP70-knockout mice support a protective role of HSP70 with an effect on microglia activation and spread of seizure activity. Unexpectedly, celastrol administration resulted in detrimental consequences. These findings should be considered as a warning about the general safety of celastrol as a drug candidate. The impact of pathophysiological mechanisms on the quality of celastrol effects requires comprehensive future studies exploring influencing factors. Moreover, alternate strategies to increase HSP70 expression should be further developed and validated.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Fabio Wolf
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, 6550 Fannin Street SM8-024, Houston, Texas 77030, United States
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, 6550 Fannin Street SM8-024, Houston, Texas 77030, United States
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| |
Collapse
|
149
|
Venkatesha SH, Moudgil KD. Celastrol suppresses experimental autoimmune encephalomyelitis via MAPK/SGK1-regulated mediators of autoimmune pathology. Inflamm Res 2019; 68:285-296. [PMID: 30820608 DOI: 10.1007/s00011-019-01219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND DESIGN Multiple sclerosis (MS) is a debilitating autoimmune disease involving immune dysregulation of the pathogenic T helper 17 (Th17) versus protective T regulatory (Treg) cell subsets, besides other cellular aberrations. Studies on the mechanisms underlying these changes have unraveled the involvement of mitogen-activated protein kinase (MAPK) pathway in the disease process. We describe here a gene expression- and bioinformatics-based study showing that celastrol, a natural triterpenoid, acting via MAPK pathway regulates the downstream genes encoding serum/glucocorticoid regulated kinase 1 (SGK1), which plays a vital role in Th17/Treg differentiation, and brain-derived neurotrophic factor (BDNF), which is a neurotrophic factor, thereby offering protection against experimental autoimmune encephalomyelitis (EAE) in mice. METHODS We first tested the gene expression profile of splenocytes of EAE mice in response to the disease-related antigen, myelin oligodendrocyte glycoprotein (MOG), and then examined the effect of celastrol on that profile. RESULTS Interestingly, celastrol reversed the expression of many MOG-induced genes involved in inflammation and immune pathology. The MAPK pathway involving p38MAPK and ERK was identified as one of the mediators of celastrol action. It involved suppression of SGK1 but upregulation of BDNF, which then contributed to protection against EAE. CONCLUSION Our results not only provide novel insights into disease pathogenesis, but also offer promising therapeutic targets for MS.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Baltimore VA Medical Center, Baltimore, MD, 21201, USA. .,Division of Rheumatology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite-380, Baltimore, MD, 21201, USA.
| |
Collapse
|
150
|
|