101
|
Zhan X, Stamova B, Sharp FR. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Front Aging Neurosci 2018. [PMID: 29520228 PMCID: PMC5827158 DOI: 10.3389/fnagi.2018.00042] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review proposes that lipopolysaccharide (LPS, found in the wall of all Gram-negative bacteria) could play a role in causing sporadic Alzheimer’s disease (AD). This is based in part upon recent studies showing that: Gram-negative E. coli bacteria can form extracellular amyloid; bacterial-encoded 16S rRNA is present in all human brains with over 70% being Gram-negative bacteria; ultrastructural analyses have shown microbes in erythrocytes of AD patients; blood LPS levels in AD patients are 3-fold the levels in control; LPS combined with focal cerebral ischemia and hypoxia produced amyloid-like plaques and myelin injury in adult rat cortex. Moreover, Gram-negative bacterial LPS was found in aging control and AD brains, though LPS levels were much higher in AD brains. In addition, LPS co-localized with amyloid plaques, peri-vascular amyloid, neurons, and oligodendrocytes in AD brains. Based upon the postulate LPS caused oligodendrocyte injury, degraded Myelin Basic Protein (dMBP) levels were found to be much higher in AD compared to control brains. Immunofluorescence showed that the dMBP co-localized with β amyloid (Aβ) and LPS in amyloid plaques in AD brain, and dMBP and other myelin molecules were found in the walls of vesicles in periventricular White Matter (WM). These data led to the hypothesis that LPS acts on leukocyte and microglial TLR4-CD14/TLR2 receptors to produce NFkB mediated increases of cytokines which increase Aβ levels, damage oligodendrocytes and produce myelin injury found in AD brain. Since Aβ1–42 is also an agonist for TLR4 receptors, this could produce a vicious cycle that accounts for the relentless progression of AD. Thus, LPS, the TLR4 receptor complex, and Gram-negative bacteria might be treatment or prevention targets for sporadic AD.
Collapse
Affiliation(s)
- Xinhua Zhan
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Boryana Stamova
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
102
|
Affiliation(s)
- Leszek Szablewski
- Medical University of Warsaw, Department of General Biology and Parasitology, Warsaw, Poland
| |
Collapse
|
103
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
104
|
Pretorius E, Bester J, Kell DB. A Bacterial Component to Alzheimer's-Type Dementia Seen via a Systems Biology Approach that Links Iron Dysregulation and Inflammagen Shedding to Disease. J Alzheimers Dis 2018; 53:1237-56. [PMID: 27340854 PMCID: PMC5325058 DOI: 10.3233/jad-160318] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The progression of Alzheimer's disease (AD) is accompanied by a great many observable changes, both molecular and physiological. These include oxidative stress, neuroinflammation, and (more proximal to cognitive decline) the death of neuronal and other cells. A systems biology approach seeks to organize these observed variables into pathways that discriminate those that are highly involved (i.e., causative) from those that are more usefully recognized as bystander effects. We review the evidence that iron dysregulation is one of the central causative pathway elements here, as this can cause each of the above effects. In addition, we review the evidence that dormant, non-growing bacteria are a crucial feature of AD, that their growth in vivo is normally limited by a lack of free iron, and that it is this iron dysregulation that is an important factor in their resuscitation. Indeed, bacterial cells can be observed by ultrastructural microscopy in the blood of AD patients. A consequence of this is that the growing cells can shed highly inflammatory components such as lipopolysaccharides (LPS). These too are known to be able to induce (apoptotic and pyroptotic) neuronal cell death. There is also evidence that these systems interact with elements of vitamin D metabolism. This integrative systems approach has strong predictive power, indicating (as has indeed been shown) that both natural and pharmaceutical iron chelators might have useful protective roles in arresting cognitive decline, and that a further assessment of the role of microbes in AD development is more than highly warranted.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, Lancs, UK.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancs, UK.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, Lancs, UK
| |
Collapse
|
105
|
Zhao Y, Cong L, Lukiw WJ. Lipopolysaccharide (LPS) Accumulates in Neocortical Neurons of Alzheimer's Disease (AD) Brain and Impairs Transcription in Human Neuronal-Glial Primary Co-cultures. Front Aging Neurosci 2017; 9:407. [PMID: 29311897 PMCID: PMC5732913 DOI: 10.3389/fnagi.2017.00407] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
Several independent laboratories have recently reported the detection of bacterial nucleic acid sequences or bacterial-derived neurotoxins, such as highly inflammatory lipopolysaccharide (LPS), within Alzheimer’s disease (AD) affected brain tissues. Whether these bacterial neurotoxins originate from the gastrointestinal (GI) tract microbiome, a possible brain microbiome or some dormant pathological microbiome is currently not well understood. Previous studies indicate that the co-localization of pro-inflammatory LPS with AD-affected brain cell nuclei suggests that there may be a contribution of this neurotoxin to genotoxic events that support inflammatory neurodegeneration and failure in homeostatic gene expression. In this report we provide evidence that in sporadic AD, LPS progressively accumulates in neuronal parenchyma and appears to preferentially associate with the periphery of neuronal nuclei. Run-on transcription studies utilizing [α-32P]-uridine triphosphate incorporation into newly synthesized total RNA further indicates that human neuronal-glial (HNG) cells in primary co-culture incubated with LPS exhibit significantly reduced output of DNA transcription products. These studies suggest that in AD LPS may impair the efficient readout of neuronal genetic information normally required for the homeostatic operation of brain cell function and may contribute to a progressive disruption in the read-out of genetic information.
Collapse
Affiliation(s)
- Yuhai Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Departments of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lin Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Walter J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
106
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|
107
|
Som Chaudhury S, Das Mukhopadhyay C. Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. Int J Neurosci 2017; 128:449-463. [PMID: 29076790 DOI: 10.1080/00207454.2017.1398153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
| |
Collapse
|
108
|
Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, Fu X, Zhou R, Xu YF, Huang L, Zhu H, Han Y, Qin C. Altered Gut Microbiota in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2017; 60:1241-1257. [DOI: 10.3233/jad-170020] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ling Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Ying Wang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xia Xiayu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Changhua Shi
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Wei Chen
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Nan Song
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xinjing Fu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Rui Zhou
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yan-Feng Xu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Lan Huang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Hua Zhu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yunlin Han
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| |
Collapse
|
109
|
Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66:31-44. [PMID: 28526435 DOI: 10.1016/j.bbi.2017.05.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Cognitive Science Program, University of Arizona, Tucson, AZ, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
110
|
Thiamine Acquisition Strategies Impact Metabolism and Competition in the Gut Microbe Bacteroides thetaiotaomicron. mSystems 2017; 2:mSystems00116-17. [PMID: 28951891 PMCID: PMC5613172 DOI: 10.1128/msystems.00116-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Thiamine (vitamin B1) is an essential cofactor for all organisms. Humans primarily acquire thiamine through their diet, and thiamine deficiencies have adverse neurological effects. However, the role gut microbes play in modulating thiamine availability is poorly understood, and little is known about how thiamine impacts the stability of microbial gut communities. To investigate thiamine's role in the gut, we utilized the model gut microbe Bacteroides thetaiotaomicron. Transcriptome sequencing (RNA-seq) revealed a global downregulation of thiamine and amino acid biosynthesis, glycolysis, and purine metabolism when thiamine was present. Using genetic mutants with thiamine biosynthesis and transport locus mutations, we determined both systems were critical for growth in thiamine-deficient medium. The defect in the double transport mutant suggests an uncharacterized feedback mechanism between thiamine transport and biosynthesis in B. thetaiotaomicron. Mutant phenotypes were recapitulated during pairwise competitions, reinforcing the importance of encoding versatile thiamine acquisition mechanisms when thiamine concentrations are variable. In addition, liquid chromatography-mass spectrometry (LC-MS) analyses corroborate that exogenous thiamine levels affect the internal thiamine pool of B. thetaiotaomicron. Furthermore, we computationally examined the ability of other gut microbes to acquire thiamine and identified lineage-specific differences in thiamine acquisition strategies. Among the Bacteroidetes, the capacities for both thiamine transport and biosynthesis are common. Together, these data show that thiamine acquisition mechanisms used by B. thetaiotaomicron not only are critical for its physiology and fitness but also provide the opportunity to model how other gut microbes may respond to the shifting availability of thiamine in the gut. IMPORTANCE Variation in the ability of gut microbes to transport, synthesize, and compete for vitamin B1 (thiamine) is expected to impact the structure and stability of the microbiota, and ultimately this variation may have both direct and indirect effects on human health. Our study identifies the diverse strategies employed by gut Bacteroidetes to acquire thiamine. We demonstrate how the presence or absence of thiamine biosynthesis or transport dramatically affects the abundance of B. thetaiotaomicron in a competitive environment. This study adds further evidence that altering the presence or concentrations of water-soluble vitamins such as thiamine may be an effective method for manipulating gut community composition. In turn, targeted thiamine delivery could be used therapeutically to alter dysbiotic communities linked to disease. Author Video: An author video summary of this article is available.
Collapse
|
111
|
Zhao Y, Cong L, Jaber V, Lukiw WJ. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer's Disease Brain. Front Immunol 2017; 8:1064. [PMID: 28928740 PMCID: PMC5591429 DOI: 10.3389/fimmu.2017.01064] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Abundant clinical, epidemiological, imaging, genetic, molecular, and pathophysiological data together indicate that there occur an unusual inflammatory reaction and a disruption of the innate-immune signaling system in Alzheimer’s disease (AD) brain. Despite many years of intense study, the origin and molecular mechanics of these AD-relevant pathogenic signals are still not well understood. Here, we provide evidence that an intensely pro-inflammatory bacterial lipopolysaccharide (LPS), part of a complex mixture of pro-inflammatory neurotoxins arising from abundant Gram-negative bacilli of the human gastrointestinal (GI) tract, are abundant in AD-affected brain neocortex and hippocampus. For the first time, we provide evidence that LPS immunohistochemical signals appear to aggregate in clumps in the parenchyma in control brains, and in AD, about 75% of anti-LPS signals were clustered around the periphery of DAPI-stained nuclei. As LPS is an abundant secretory product of Gram-negative bacilli resident in the human GI-tract, these observations suggest (i) that a major source of pro-inflammatory signals in AD brain may originate from internally derived noxious exudates of the GI-tract microbiome; (ii) that due to aging, vascular deficits or degenerative disease these neurotoxic molecules may “leak” into the systemic circulation, cerebral vasculature, and on into the brain; and (iii) that this internal source of microbiome-derived neurotoxins may play a particularly strong role in shaping the human immune system and contributing to neural degeneration, particularly in the aging CNS. This “Perspectives” paper will further highlight some very recent developments that implicate GI-tract microbiome-derived LPS as an important contributor to inflammatory-neurodegeneration in the AD brain.
Collapse
Affiliation(s)
- Yuhai Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lin Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Heping District, Shenyang, China
| | - Vivian Jaber
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Walter J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
112
|
Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol 2017; 7:318. [PMID: 28744452 PMCID: PMC5504724 DOI: 10.3389/fcimb.2017.00318] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Although the potential contribution of the human gastrointestinal (GI) tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli), secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS). For the first time here we report the presence of bacterial lipopolysaccharide (LPS) in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD) brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| |
Collapse
|
113
|
Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017; 8:53829-53838. [PMID: 28881854 PMCID: PMC5581153 DOI: 10.18632/oncotarget.17754] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.
Collapse
Affiliation(s)
- Xiqun Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, P.R. China
| | - Renzhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang, P.R. China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
114
|
The Central Nervous System and the Gut Microbiome. Cell 2017; 167:915-932. [PMID: 27814521 DOI: 10.1016/j.cell.2016.10.027] [Citation(s) in RCA: 967] [Impact Index Per Article: 120.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 12/11/2022]
Abstract
Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.
Collapse
|
115
|
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell 2017; 8:90-102. [PMID: 27866330 PMCID: PMC5291774 DOI: 10.1007/s13238-016-0338-6] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
116
|
Ravari A, Mirzaei T, Kennedy D, Kazemi Arababadi M. Chronoinflammaging in Alzheimer; A systematic review on the roles of toll like receptor 2. Life Sci 2017; 171:16-20. [PMID: 28087373 DOI: 10.1016/j.lfs.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/24/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022]
Abstract
Aging is associated with a range of chronic low-grade inflammation (Chronoinflammaging) which may play a significant role in some chronic inflammatory based diseases, such as Alzheimer disease (AD). However, the events which lead to the induction of chronoinflammaging in AD are yet to be clarified. It has been proposed that the recognition of endogenous ligands by pathogen recognition receptors (PRRs) may be involved in the induction of chronoinflammaging. Toll like receptors (TLRs) are a family of PRRs which recognize endogenous damage associated molecular patterns (DAMPs) and subsequently induce inflammation. Therefore, TLRs are worthy of investigation to elucidate their roles in chronoinflammaging associated AD. This review article explores the main roles played by TLR2 in the pathogenesis of chronoinflammaging in patients suffering from AD.
Collapse
Affiliation(s)
- Ali Ravari
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Medical Surgical Nursing, Faculty of Nursing and Midwifery, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tayebeh Mirzaei
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Medical Surgical Nursing, Faculty of Nursing and Midwifery, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University Nathan, Queensland, Australia
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
117
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
118
|
Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer's Disease. Curr Neuropharmacol 2017; 15:996-1009. [PMID: 28294067 PMCID: PMC5652018 DOI: 10.2174/1570159x15666170313122937] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation is a part of the first line of defense of the body against invasive pathogens, and plays a crucial role in tissue regeneration and repair. A proper inflammatory response ensures the suitable resolution of inflammation and elimination of harmful stimuli, but when the inflammatory reactions are inappropriate it can lead to damage of the surrounding normal cells. The relationship between infections and Alzheimer's Disease (AD) etiology, especially lateonset AD (LOAD) has been continuously debated over the past three decades. METHODS This review discusses whether infections could be a causative factor that promotes the progression of AD and summarizes recent investigations associating infectious agents and chronic inflammation with AD. Preventive and therapeutic approaches to AD in the context of an infectious etiology of the disease are also discussed. RESULTS Emerging evidence supports the hypothesis of the role of neurotropic viruses from the Herpesviridae family, especially Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), and Human herpesvirus 2 (HHV-2), in AD neuropathology. Recent investigations also indicate the association between Hepatitis C virus (HCV) infection and dementia. Among bacteria special attention is focused on spirochetes family and on periodontal pathogens such as Porphyromonas gingivalis or Treponema denticola that could cause chronic periodontitis and possibly contribute to the clinical onset of AD. CONCLUSION Chronic viral, bacterial and fungal infections might be causative factors for the inflammatory pathway in AD.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
119
|
Lukiw WJ. The microbiome, microbial-generated proinflammatory neurotoxins, and Alzheimer's disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:393-396. [PMID: 28446989 PMCID: PMC5403149 DOI: 10.1016/j.jshs.2016.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/07/2023]
|
120
|
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
121
|
O'Malley D. Neuroimmune Cross Talk in the Gut. Neuroendocrine and neuroimmune pathways contribute to the pathophysiology of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2016; 311:G934-G941. [PMID: 27742703 PMCID: PMC5130550 DOI: 10.1152/ajpgi.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain, bloating, and disturbed bowel habit, symptoms that impact the quality of life of sufferers. The pathophysiological changes underlying this multifactorial condition are complex and include increased sensitivity to luminal and mucosal factors, resulting in altered colonic transit and visceral pain. Moreover, dysfunctional communication in the bidirectional signaling axis between the brain and the gut, which involves efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones, and local paracrine and neurocrine factors, including immune and perhaps even microbial signaling molecules, has a role to play in this disorder. This minireview will examine recent advances in our understanding of the pathophysiology of IBS and assess how cross talk between hormones, immune, and microbe-derived factors and their neuromodulatory effects on peripheral nerves may underlie IBS symptomatology.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
122
|
Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2016; 6:35284-303. [PMID: 26462180 PMCID: PMC4742105 DOI: 10.18632/oncotarget.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Prashilla Soma
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
123
|
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74:624-634. [PMID: 27634977 DOI: 10.1093/nutrit/nuw023] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
It has been hypothesized that alterations in the composition of the gut microbiota might be associated with the onset of certain human pathologies, such as Alzheimer disease, a neurodegenerative syndrome associated with cerebral accumulation of amyloid-β fibrils. It has been shown that bacteria populating the gut microbiota can release significant amounts of amyloids and lipopolysaccharides, which might play a role in the modulation of signaling pathways and the production of proinflammatory cytokines related to the pathogenesis of Alzheimer disease. Additionally, nutrients have been shown to affect the composition of the gut microbiota as well as the formation and aggregation of cerebral amyloid-β. This suggests that modulating the gut microbiome and amyloidogenesis through specific nutritional interventions might prove to be an effective strategy to prevent or reduce the risk of Alzheimer disease. This review examines the possible role of the gut in the dissemination of amyloids, the role of the gut microbiota in the regulation of the gut-brain axis, the potential amyloidogenic properties of gut bacteria, and the possible impact of nutrients on modulation of microbiota composition and amyloid formation in relation to the pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- Francesca Pistollato
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Sandra Sumalla Cano
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Iñaki Elio
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Manuel Masias Vergara
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy.
| | - Maurizio Battino
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
124
|
Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer's Disease. Front Microbiol 2016; 7:1544. [PMID: 27725817 PMCID: PMC5035737 DOI: 10.3389/fmicb.2016.01544] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022] Open
Abstract
The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer's disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This 'Perspectives communication' will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain.
Collapse
Affiliation(s)
- Walter J Lukiw
- Bollinger Professor of Alzheimer's disease (AD), Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
125
|
Wang J, Ye F, Cheng X, Zhang X, Liu F, Liu G, Ni M, Qiao S, Zhou W, Zhang Y. The Effects of LW-AFC on Intestinal Microbiome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2016; 53:907-19. [DOI: 10.3233/jad-160138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jianhui Wang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Fuqiang Ye
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaorui Cheng
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Xiaorui Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Gang Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanyi Qiao
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
126
|
Abstract
Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area.
Collapse
Affiliation(s)
- P Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - N R Roan
- Department of Urology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - U Römling
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institutet, Stockholm, Sweden
| | - C L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - J Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany.,Ulm Peptide Pharmaceuticals, Ulm University, Ulm, Germany
| |
Collapse
|
127
|
Nehls M. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4:3. [PMID: 27429752 PMCID: PMC4947325 DOI: 10.1186/s40303-016-0018-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.
Collapse
Affiliation(s)
- Michael Nehls
- Independent Researcher, Allmendweg 1, 79279 Vörstetten, Germany
| |
Collapse
|
128
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
129
|
Scheperjans F. Can microbiota research change our understanding of neurodegenerative diseases? Neurodegener Dis Manag 2016; 6:81-5. [PMID: 27033377 DOI: 10.2217/nmt-2015-0012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Filip Scheperjans
- Department of Neurology, Helsinki University Hospital & Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
130
|
MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer's Disease (AD)-Novel and Unique Pathological Features. Int J Mol Sci 2015; 16:30105-16. [PMID: 26694372 PMCID: PMC4691165 DOI: 10.3390/ijms161226223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Of the approximately ~2.65 × 103 mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.
Collapse
|
131
|
Iglesias V, de Groot NS, Ventura S. Computational analysis of candidate prion-like proteins in bacteria and their role. Front Microbiol 2015; 6:1123. [PMID: 26528269 PMCID: PMC4606120 DOI: 10.3389/fmicb.2015.01123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/28/2015] [Indexed: 12/02/2022] Open
Abstract
Prion proteins were initially associated with diseases such as Creutzfeldt Jakob and transmissible spongiform encephalopathies. However, deeper research revealed them as versatile tools, exploited by the cells to execute fascinating functions, acting as epigenetic elements or building membrane free compartments in eukaryotes. One of the most intriguing properties of prion proteins is their ability to propagate a conformational assembly, even across species. In this context, it has been observed that bacterial amyloids can trigger the formation of protein aggregates by interacting with host proteins. As our life is closely linked to bacteria, either through a parasitic or symbiotic relationship, prion-like proteins produced by bacterial cells might play a role in this association. Bioinformatics is helping us to understand the factors that determine conformational conversion and infectivity in prion-like proteins. We have used PrionScan to detect prion domains in 839 different bacteria proteomes, detecting 2200 putative prions in these organisms. We studied this set of proteins in order to try to understand their functional role and structural properties. Our results suggest that these bacterial polypeptides are associated to peripheral rearrangement, macromolecular assembly, cell adaptability, and invasion. Overall, these data could reveal new threats and therapeutic targets associated to infectious diseases.
Collapse
Affiliation(s)
- Valentin Iglesias
- Departament de Bioquìmica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Natalia S de Groot
- Departament de Bioquìmica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquìmica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|