101
|
Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, Carlsson CM, Johnson SC, Wieben O. Changes in intracranial venous blood flow and pulsatility in Alzheimer's disease: A 4D flow MRI study. J Cereb Blood Flow Metab 2017; 37:2149-2158. [PMID: 27492950 PMCID: PMC5464708 DOI: 10.1177/0271678x16661340] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion may be important indicators of cerebrovascular health in aging and diseases of aging such as Alzheimer's disease. Noninvasive markers that assess these characteristics may be helpful in the study of co-occurrence of these diseases and potential additive and interacting effects. In this study, 4D flow MRI was used to measure intra-cranial flow features with cardiac-gated phase contrast MRI in cranial arteries and veins. Mean blood flow and pulsatility index as well as the transit time of the peak flow from the middle cerebral artery to the superior sagittal sinus were measured in a total of 104 subjects comprising of four groups: (a) subjects with Alzheimer's disease, (b) age-matched controls, (c) subjects with mild cognitive impairment, and (d) a group of late middle-aged with parental history of sporadic Alzheimer's disease. The Alzheimer's disease group exhibited: a significant decrease in mean blood flow in the superior sagittal sinus, transverse sinus, middle cerebral artery, and internal carotid arteries; a significant decrease of the peak and end diastolic blood flow in the middle cerebral artery and superior sagittal sinus; a faster transmission of peak flow from the middle cerebral artery to the superior sagittal sinus and increased pulsatility index along the carotid siphon.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sara E Berman
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
102
|
The role of perivascular innervation and neurally mediated vasoreactivity in the pathophysiology of Alzheimer's disease. Clin Sci (Lond) 2017; 131:1207-1214. [DOI: 10.1042/cs20160769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/17/2022]
Abstract
Neuronal death is a hallmark of Alzheimer's disease (AD) and considerable work has been done to understand how the loss of interconnectivity between neurons contributes to the associated dementia. Often overlooked however, is how the loss of neuronal innervation of blood vessels, termed perivascular innervation, may also contribute to the pathogenesis of AD. There is now considerable evidence supporting a crucial role for the neurovascular unit (NVU) in mediating the clearance of the β-amyloid (Aβ) peptide, one of the main pathological constituents of AD, from the brain. Moreover, efficient removal appears to be dependent on the communication of cells within the NVU to maintain adequate vascular tone and pulsatility. This review summarizes the composition of the NVU, including the sources of perivascular innervation and how the NVU mediates Aβ clearance from the brain. It also explores evidence supporting the hypothesis that loss of neurally mediated vasoreactivity contributes to Aβ pathology in the AD brain.
Collapse
|
103
|
Ahmed AS, Elgharabawy RM, Al-Najjar AH. Ameliorating effect of anti-Alzheimer's drugs on the bidirectional association between type 2 diabetes mellitus and Alzheimer's disease. Exp Biol Med (Maywood) 2017; 242:1335-1344. [PMID: 28534431 DOI: 10.1177/1535370217711440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mild to severe forms of nervous system damage were exhibited by approximately 60-70% of diabetics. It is important to understand the association between type 2 diabetes mellitus and Alzheimer's disease. The aim of the present work is to understand the bidirectional association between type 2 diabetes and Alzheimer's disease pathogenesis, that was monitored by glycaemic status, lipid profile, amyloid beta 40 and 42 (Aβ40 and Aβ42), C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer and magnesium measurements, to assess the association between theses biochemical markers and each other, to estimate the possibility of utilizing the amyloid beta as biochemical marker of T2D in Alzheimer's patients, and to evaluate the effect of piracetam and memantine drugs on diabetes mellitus. This study involved 120 subjects divided into 20 healthy control (group I), 20 diabetic patients (group II), 20 Alzheimer's patients (group III), 20 diabetic Alzheimer's patients with symptomatic treatment (group IV), 20 diabetic Alzheimer's patients treated with memantine (group V), and 20 diabetic Alzheimer's patients treated with piracetam (group VI). The demographic characteristics, diabetic index, and lipid profile were monitored. Plasma amyloid beta 40 and amyloid beta 42, C-reactive protein, total creatine kinase, total lactate dehydrogenase, D-dimer, and magnesium were assayed. The levels of amyloid beta 40 and amyloid beta 42 were significantly elevated in diabetic Alzheimer's patients with symptomatic treatment (group IV) compared to group II (by 50.5 and 7.5 fold, respectively) and group III (by 25.4 and 2.8 fold, respectively). In groups II, III, IV, V and VI, significant and positive associations were monitored between insulin and amyloid beta 40, amyloid beta 42, C-reactive protein, total creatine kinase, and D-dimer. Diabetic markers were significantly decreased in diabetic Alzheimer's patients treated with anti-Alzheimer's drugs (especially piracetam) compared to group IV. This study reveals the role of amyloid beta 40, amyloid beta 42, insulin, HbA1c, lipid profile disturbance, C-reactive protein, D-dimer, and magnesium in the bidirectional correlation between T2D and pathogenesis of Alzheimer's disease, that is powered by their correlations, and therefore the possibility of utilizing Aβ as a biochemical marker of T2D in Alzheimer's patients is recommended. Impact statement Several aspects associated with T2D that contribute to AD and vice versa were investigated in this study. Additionally, this work reveals the role of Aβ40, Aβ42, insulin, HbA1c, lipid profile disturbance, CRP, D-dimer, and magnesium in the bidirectional association between T2D and the pathogenesis of AD, that is powered by their correlations, and therefore the possibility of utilizing Aβ as a biochemical marker of T2D in Alzheimer's patients is recommended. Furthermore, the ameloriating effect of anti-Alzheimer's drugs on diabetes mellitus confirms this association. Hereafter, a new approach for treating insulin resistance and diabetes may be developed by new therapeutic potentials such as neutralization of Aβ by anti-Aβ antibodies.
Collapse
Affiliation(s)
- Amira S Ahmed
- 1 Pharmacology and Toxicology Department, Faculty of Pharmacy, Qassim University, KSA 51431, Saudi Arabia.,2 Hormone Department, National Research Centre, Dokki 12311, Egypt
| | - Rehab M Elgharabawy
- 1 Pharmacology and Toxicology Department, Faculty of Pharmacy, Qassim University, KSA 51431, Saudi Arabia.,3 Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Amal H Al-Najjar
- 4 Drug and Poison Information Specialist, Pharmacy Services, Security Forces Hospital, Riyadh, KSA 11481, Saudi Arabia
| |
Collapse
|
104
|
Abstract
Stroke is the second most common cause of death and the leading cause of disability worldwide. Brain injury following stroke results from a complex series of pathophysiological events including excitotoxicity, oxidative and nitrative stress, inflammation, and apoptosis. Moreover, there is a mechanistic link between brain ischemia, innate and adaptive immune cells, intracranial atherosclerosis, and also the gut microbiota in modifying the cerebral responses to ischemic insult. There are very few treatments for stroke injuries, partly owing to an incomplete understanding of the diverse cellular and molecular changes that occur following ischemic stroke and that are responsible for neuronal death. Experimental discoveries have begun to define the cellular and molecular mechanisms involved in stroke injury, leading to the development of numerous agents that target various injury pathways. In the present article, we review the underlying pathophysiology of ischemic stroke and reveal the intertwined pathways that are promising therapeutic targets.
Collapse
|
105
|
Gottesman RF, Schneider AL, Zhou Y, Coresh J, Green E, Gupta N, Knopman DS, Mintz A, Rahmim A, Sharrett AR, Wagenknecht LE, Wong DF, Mosley TH. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA 2017; 317:1443-1450. [PMID: 28399252 PMCID: PMC5921896 DOI: 10.1001/jama.2017.3090] [Citation(s) in RCA: 463] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Midlife vascular risk factors have been associated with late-life dementia. Whether these risk factors directly contribute to brain amyloid deposition is less well understood. OBJECTIVE To determine if midlife vascular risk factors are associated with late-life brain amyloid deposition, measured using florbetapir positron emission tomography (PET). DESIGN, SETTING, AND PARTICIPANTS The Atherosclerosis Risk in Communities (ARIC)-PET Amyloid Imaging Study, a prospective cohort study among 346 participants without dementia in 3 US communities (Washington County, Maryland; Forsyth County, North Carolina; and Jackson, Mississippi) who have been evaluated for vascular risk factors and markers since 1987-1989 with florbetapir PET scans in 2011-2013. Positron emission tomography image analysis was completed in 2015. EXPOSURES Vascular risk factors at ARIC baseline (age 45-64 years; risk factors included body mass index ≥30, current smoking, hypertension, diabetes, and total cholesterol ≥200 mg/dL) were evaluated in multivariable models including age, sex, race, APOE genotype, and educational level. MAIN OUTCOMES AND MEASURES Standardized uptake value ratios (SUVRs) were calculated from PET scans and a mean global cortical SUVR was calculated. Elevated florbetapir (defined as a SUVR >1.2) was the dependent variable. RESULTS Among 322 participants without dementia and with nonmissing midlife vascular risk factors at baseline (mean age, 52 years; 58% female; 43% black), the SUVR (elevated in 164 [50.9%] participants) was measured more than 20 years later (median follow-up, 23.5 years; interquartile range, 23.0-24.3 years) when participants were between 67 and 88 (mean, 76) years old. Elevated body mass index in midlife was associated with elevated SUVR (odds ratio [OR], 2.06; 95% CI, 1.16-3.65). At baseline, 65 participants had no vascular risk factors, 123 had 1, and 134 had 2 or more; a higher number of midlife risk factors was associated with elevated amyloid SUVR at follow-up (30.8% [n = 20], 50.4% [n = 62], and 61.2% [n = 82], respectively). In adjusted models, compared with 0 midlife vascular risk factors, the OR for elevated SUVR associated with 1 vascular risk factor was 1.88 (95% CI, 0.95-3.72) and for 2 or more vascular risk factors was 2.88 (95% CI, 1.46-5.69). No significant race × risk factor interactions were found. Late-life vascular risk factors were not associated with late-life brain amyloid deposition (for ≥2 late-life vascular risk factors vs 0: OR, 1.66; 95% CI, 0.75-3.69). CONCLUSIONS AND RELEVANCE An increasing number of midlife vascular risk factors was significantly associated with elevated amyloid SUVR; this association was not significant for late-life risk factors. These findings are consistent with a role of vascular disease in the development of Alzheimer disease.
Collapse
Affiliation(s)
- Rebecca F. Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Yun Zhou
- Department of Radiology, Section of High Resolution Brain PET Imaging, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Edward Green
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | | | | | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Arman Rahmim
- Department of Radiology, Section of High Resolution Brain PET Imaging, Johns Hopkins University School of Medicine, Baltimore, MD
| | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Lynne E. Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Dean F. Wong
- Department of Radiology, Section of High Resolution Brain PET Imaging, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Thomas H. Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
106
|
Saito S, Yamamoto Y, Maki T, Hattori Y, Ito H, Mizuno K, Harada-Shiba M, Kalaria RN, Fukushima M, Takahashi R, Ihara M. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy. Acta Neuropathol Commun 2017; 5:26. [PMID: 28376923 PMCID: PMC5379578 DOI: 10.1186/s40478-017-0429-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) induces various forms of cerebral infarcts and hemorrhages from vascular amyloid-β accumulation, resulting in acceleration of cognitive impairment, which is currently untreatable. Soluble amyloid-β protein likely impairs cerebrovascular integrity as well as cognitive function in early stage Alzheimer’s disease. Taxifolin, a flavonol with strong anti-oxidative and anti-glycation activities, has been reported to disassemble amyloid-β in vitro but the in vivo relevance remains unknown. Here, we investigated whether taxifolin has therapeutic potential in attenuating CAA, hypothesizing that inhibiting amyloid-β assembly may facilitate its clearance through several elimination pathways. Vehicle- or taxifolin-treated Tg-SwDI mice (commonly used to model CAA) were used in this investigation. Cognitive and cerebrovascular function, as well as the solubility and oligomerization of brain amyloid-β proteins, were investigated. Spatial reference memory was assessed by water maze test. Cerebral blood flow was measured with laser speckle flowmetry and cerebrovascular reactivity evaluated by monitoring cerebral blood flow changes in response to hypercapnia. Significantly reduced cerebrovascular pan-amyloid-β and amyloid-β1-40 accumulation was found in taxifolin-treated Tg-SwDI mice compared to vehicle-treated counterparts (n = 5). Spatial reference memory was severely impaired in vehicle-treated Tg-SwDI mice but normalized after taxifolin treatment, with scoring similar to wild type mice (n = 10–17). Furthermore, taxifolin completely restored decreased cerebral blood flow and cerebrovascular reactivity in Tg-SwDI mice (n = 4–6). An in vitro thioflavin-T assay showed taxifolin treatment resulted in efficient inhibition of amyloid-β1-40 assembly. In addition, a filter trap assay and ELISA showed Tg-SwDI mouse brain homogenates exhibited significantly reduced levels of amyloid-β oligomers in vivo after taxifolin treatment (n = 4–5), suggesting the effects of taxifolin on CAA are attributable to the inhibition of amyloid-β oligomer formation. In conclusion, taxifolin prevents amyloid-β oligomer assembly and fully sustains cognitive and cerebrovascular function in a CAA model mice. Taxifolin thus appears a promising therapeutic approach for CAA.
Collapse
|
107
|
Graham SH, Liu H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res Rev 2017; 34:30-38. [PMID: 27702698 DOI: 10.1016/j.arr.2016.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
The ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), an important component of the UPP in the neuron, is covalently modified and its activity inhibited by reactive lipids produced after ischemia. As a result, degradation of toxic proteins is impaired which may exacerbate neuronal function and cell death in stroke and neurodegenerative diseases. Preserving or restoring UCHL1 activity may be an effective therapeutic strategy in stroke and neurodegenerative diseases.
Collapse
|
108
|
Graham SH. Introduction to special issue: Neurovascular aging-A driving force for neurological dysfunction in stroke and neurodegenerative diseases. Ageing Res Rev 2017; 34:1-2. [PMID: 27793608 DOI: 10.1016/j.arr.2016.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Department of Neurology, University of Pittsburgh, USA.
| |
Collapse
|
109
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|
110
|
APOE ε4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis. Neurobiol Aging 2017; 53:67-75. [PMID: 28235680 DOI: 10.1016/j.neurobiolaging.2017.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/24/2022]
Abstract
To assess the relationship between carriage of APOE ε4 allele and evolution of white matter hyperintensities (WMHs) volume, we longitudinally studied 339 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort with diagnoses ranging from normal controls to probable Alzheimer's disease (AD). A purpose-built longitudinal automatic method was used to segment WMH using constraints derived from an atlas-based model selection applied to a time-averaged image. Linear mixed models were used to evaluate the differences in rate of change across diagnosis and genetic groups. After adjustment for covariates (age, sex, and total intracranial volume), homozygous APOE ε4ε4 subjects had a significantly higher rate of WMH accumulation (22.5% per year 95% CI [14.4, 31.2] for a standardized population having typical values of covariates) compared with the heterozygous (ε4ε3) subjects (10.0% per year [6.7, 13.4]) and homozygous ε3ε3 (6.6% per year [4.1, 9.3]) subjects. Rates of accumulation increased with diagnostic severity; controls accumulated 5.8% per year 95% CI: [2.2, 9.6] for the standardized population, early mild cognitive impairment 6.6% per year [3.9, 9.4], late mild cognitive impairment 12.5% per year [8.2, 17.0] and AD subjects 14.7% per year [6.0, 24.0]. Following adjustment for APOE status, these differences became nonstatistically significant suggesting that APOE ε4 genotype is the major driver of accumulation of WMH volume rather than diagnosis of AD.
Collapse
|
111
|
Saito S, Kojima S, Oishi N, Kakuta R, Maki T, Yasuno F, Nagatsuka K, Yamamoto H, Fukuyama H, Fukushima M, Ihara M. A multicenter, randomized, placebo-controlled trial for cilostazol in patients with mild cognitive impairment: The COMCID study protocol. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:250-257. [PMID: 29067312 PMCID: PMC5651350 DOI: 10.1016/j.trci.2016.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Introduction There are currently no effective treatments preventing conversion from mild cognitive impairment (MCI) to Alzheimer's disease. Cilostazol is a selective type-3 phosphodiesterase inhibitor that ameliorates accumulation of amyloid-β and has prevented cognitive decline in rodent models. Furthermore, cilostazol is known to suppress platelet aggregation, protect vascular endothelia, dilate vessels, and increase cerebral blood flow. Beneficial effects have also been shown in observational cohort studies, demonstrating the need for a prospective clinical trial. Methods The Cilostazol for prevention of COnversion from MCI to Dementia (COMCID) study is a double-blind, randomized phase II study of patients with MCI. Participants will receive cilostazol or placebo for 96 weeks. The primary objective is to evaluate whether cilostazol slows down cognitive decline measured by the Mini-Mental State Examination. Secondary objectives are assessing time to conversion from MCI to dementia and assessing incremental changes in several psychological assessment scales. Discussion The COMCID trial will identify the therapeutic potential of cilostazol. This trial, which is based on a drug repositioning strategy, may aid the development of a neurovascular treatment for neurocognitive disorders.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinsuke Kojima
- Department of MediScience, Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Naoya Oishi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Ryosuke Kakuta
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Kazuyuki Nagatsuka
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Haruko Yamamoto
- Center for Advancing Clinical and Translational Sciences, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Masanori Fukushima
- Department of MediScience, Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Masafumi Ihara
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
112
|
Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, Gulati M, Kamel H, Knopman DS, Launer LJ, Saczynski JS, Seshadri S, Zeki Al Hazzouri A. Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e67-e94. [PMID: 27977393 DOI: 10.1161/hyp.0000000000000053] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Age-related dementia, most commonly caused by Alzheimer disease or cerebrovascular factors (vascular dementia), is a major public health threat. Chronic arterial hypertension is a well-established risk factor for both types of dementia, but the link between hypertension and its treatment and cognition remains poorly understood. In this scientific statement, a multidisciplinary team of experts examines the impact of hypertension on cognition to assess the state of the knowledge, to identify gaps, and to provide future directions. METHODS Authors with relevant expertise were selected to contribute to this statement in accordance with the American Heart Association conflict-of-interest management policy. Panel members were assigned topics relevant to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS Hypertension disrupts the structure and function of cerebral blood vessels, leads to ischemic damage of white matter regions critical for cognitive function, and may promote Alzheimer pathology. There is strong evidence of a deleterious influence of midlife hypertension on late-life cognitive function, but the cognitive impact of late-life hypertension is less clear. Observational studies demonstrated a cumulative effect of hypertension on cerebrovascular damage, but evidence from clinical trials that antihypertensive treatment improves cognition is not conclusive. CONCLUSIONS After carefully reviewing the literature, the group concluded that there were insufficient data to make evidence-based recommendations. However, judicious treatment of hypertension, taking into account goals of care and individual characteristics (eg, age and comorbidities), seems justified to safeguard vascular health and, as a consequence, brain health.
Collapse
|
113
|
Rivera-Rivera LA, Turski P, Johnson KM, Hoffman C, Berman SE, Kilgas P, Rowley HA, Carlsson CM, Johnson SC, Wieben O. 4D flow MRI for intracranial hemodynamics assessment in Alzheimer's disease. J Cereb Blood Flow Metab 2016; 36:1718-1730. [PMID: 26661239 PMCID: PMC5076787 DOI: 10.1177/0271678x15617171] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion play important roles in the transport of waste metabolites out of the brain. Impaired vasomotion results in reduced driving force for the perivascular/glymphatic clearance of beta-amyloid. Noninvasive cerebrovascular characteristic features that potentially assess these transport mechanisms are mean blood flow (MBF) and pulsatility index (PI). In this study, 4D flow MRI was used to measure intra-cranial flow features, particularly MBF, PI, resistive index (RI) and cross-sectional area in patients with Alzheimer's disease (AD), mild cognitive impairment and in age matched and younger cognitively healthy controls. Three-hundred fourteen subjects participated in this study. Volumetric, time-resolved phase contrast (PC) MRI data were used to quantify hemodynamic parameters from 11 vessel segments. Anatomical variants of the Circle of Willis were also cataloged. The AD population reported a statistically significant decrease in MBF and cross-sectional area, and also an increase in PI and RI compared to age matched cognitively healthy control subjects. The 4D flow MRI technique used in this study provides quantitative measurements of intracranial vessel geometry and the velocity of flow. Cerebrovascular characteristics features of vascular health such as pulsatility index can be extracted from the 4D flow MRI data.
Collapse
Affiliation(s)
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sara E Berman
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Phillip Kilgas
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
114
|
Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R. Expression Pattern of Scavenger Receptors and Amyloid-β Phagocytosis of Astrocytes and Microglia in Culture are Modified by Acidosis: Implications for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:857-73. [DOI: 10.3233/jad-160083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jaime Eugenín
- Laboratory of Neural Systems, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrea Vecchiola
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paola Murgas
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Arroyo
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rommy von Bernhardi
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
115
|
Nehls M. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4:3. [PMID: 27429752 PMCID: PMC4947325 DOI: 10.1186/s40303-016-0018-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.
Collapse
Affiliation(s)
- Michael Nehls
- Independent Researcher, Allmendweg 1, 79279 Vörstetten, Germany
| |
Collapse
|
116
|
Petkova R, Chelenkova P, Tournev I, Chakarov S. The minus of a plus is a minus. Mass death of selected neuron populations in sporadic late-onset neurodegenerative disease may be due to a combination of subtly decreased capacity to repair oxidative DNA damage and increased propensity for damage-related apoptosis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rumena Petkova
- Scientific Technological Service (STS) Ltd., Sofia, Bulgaria
| | - Pavlina Chelenkova
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Ivaylo Tournev
- Clinic of Neurology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
117
|
Kapasi A, Schneider JA. Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and dementia in older persons. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:878-86. [PMID: 26769363 PMCID: PMC11062590 DOI: 10.1016/j.bbadis.2015.12.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
Abstract
There is growing evidence suggesting that vascular pathologies and dysfunction play a critical role in cognitive impairment, clinical Alzheimer's disease, and dementia. Vascular pathologies such as macroinfarcts, microinfarcts, microbleeds, small and large vessel cerebrovascular disease, and white matter disease are common especially in the brains of older persons where they contribute to cognitive impairment and lower the dementia threshold. Vascular dysfunction resulting in decreased cerebral blood flow, and abnormalities in the blood brain barrier may also contribute to the Alzheimer's disease (AD) pathophysiologic process and AD dementia. This review provides a clinical-pathological perspective on the role of vessel disease, vascular brain injury, alterations of the neurovascular unit, and mixed pathologies in the Alzheimer's disease pathophysiologic process and Alzheimer's dementia. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| |
Collapse
|
118
|
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:887-900. [PMID: 26705676 PMCID: PMC4821735 DOI: 10.1016/j.bbadis.2015.12.016] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Vascular insults can initiate a cascade of molecular events leading to neurodegeneration, cognitive impairment, and dementia. Here, we review the cellular and molecular mechanisms in cerebral blood vessels and the pathophysiological events leading to cerebral blood flow dysregulation and disruption of the neurovascular unit and the blood-brain barrier, which all may contribute to the onset and progression of dementia and Alzheimer's disease (AD). Particularly, we examine the link between neurovascular dysfunction and neurodegeneration including the effects of AD genetic risk factors on cerebrovascular functions and clearance of Alzheimer's amyloid-β peptide toxin, and the impact of vascular risk factors, environment, and lifestyle on cerebral blood vessels, which in turn may affect synaptic, neuronal, and cognitive functions. Finally, we examine potential experimental treatments for dementia and AD based on the neurovascular model, and discuss some critical questions to be addressed by future studies. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Amy R Nelson
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Melanie D Sweeney
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
119
|
Abstract
PURPOSE OF REVIEW Epidemiological investigations have proposed strict control of vascular risk factors as a strategy to overcome dementia, because of the close interaction between cerebrovascular disease (CVD) and Alzheimer's disease. In light of recent advances in basic, translational, and clinical research in the area, this review focuses on the significance of CVD in Alzheimer's disease pathogenesis. RECENT FINDINGS Alzheimer's disease and CVD share several risk factors, and the coexistence of both pathologies is frequently noted. CVD and subsequent cerebral blood flow reduction would increase amyloid β (Aβ) production by modulating β and γ-secretase. Furthermore, CVD impairs Aβ clearance, which is mainly driven by vascular mediated systems, including active transport across the blood-brain barrier, and perivascular lymphatic/paravascular glymphatic drainage systems. Thus, CVD may disturb homeostasis between Aβ production and clearance, thereby aggravating Alzheimer's disease. Recent translational researches in this field aim to facilitate Aβ clearance. Several candidate drugs are being tested in clinical trials. SUMMARY Compared with Aβ pathology, little is known about the relationship between tau pathology and CVD, although some studies have shown that CVD has an influence on tau pathology. The close interrelationship between Alzheimer's disease and CVD suggests the necessity of the maintenance of cerebrovascular integrity, which may herald a new generation of dementia treatment strategies.
Collapse
|
120
|
Abstract
Electron microscopy has enlarged the visual horizons of the morphological alterations in Alzheimer's disease (AD). Study of the mitochondria and Golgi apparatus in early cases of AD revealed the principal role that these important organelles play in the drama of pathogenic dialog of AD, substantially affecting energy production and supply, and protein trafficking in neurons and glia. In addition, study of the morphological alterations of the dendritic arbor, dendritic spines and neuronal synapses, which are associated with mitochondrial damage, may reasonably interpret the clinical phenomena of the irreversible decline of the mental faculties and an individual's personality changes. Electron microscopy also reveals the involvement of microvascular alterations in the etiopathogenic background of AD.
Collapse
|
121
|
Martorana A, Di Lorenzo F, Belli L, Sancesario G, Toniolo S, Sallustio F, Sancesario GM, Koch G. Cerebrospinal Fluid Aβ42 Levels: When Physiological Become Pathological State. CNS Neurosci Ther 2015; 21:921-5. [PMID: 26555572 DOI: 10.1111/cns.12476] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Impaired amyloid beta (Aβ) metabolism is currently considered central to understand the pathophysiology of Alzheimer's disease (AD). Measurements of cerebrospinal fluid Aβ levels remain the most useful marker for diagnostic purposes and to individuate people at risk for AD. Despite recent advances criticized the direct role in neurodegeneration of cortical neurons, Aβ is considered responsible for synaptopathy and impairment of neurotransmission and therefore remains the major trigger of AD and future pharmacological treatment remain Aβ oriented. However, experimental and clinical findings showed that Aβ peptides could have a wider range of action responsible for cell dysfunction and for appearance of clinico-pathological entities different from AD. Such findings may induce misunderstanding of the real role played by Aβ in AD and therefore strengthen criticism on its centrality and need for CSF measurements. Aim of this review is to discuss the role of CSF Aβ levels in light of experimental, clinical pathologic, and electrophysiological results in AD and other pathological entities to put in a correct frame the value of Aβ changes.
Collapse
Affiliation(s)
- Alessandro Martorana
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Lorenzo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy.,Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lorena Belli
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Sancesario
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sofia Toniolo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Fabrizio Sallustio
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
122
|
The Dietary Components Carnosic Acid and Carnosol as Neuroprotective Agents: a Mechanistic View. Mol Neurobiol 2015; 53:6155-6168. [DOI: 10.1007/s12035-015-9519-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
|
123
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
124
|
Zhao L, Zhao Y, Wan Q, Zhang H. Urinary kallidinogenase for the treatment of cerebral arterial stenosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5595-600. [PMID: 26508834 PMCID: PMC4610775 DOI: 10.2147/dddt.s93150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aim Urinary kallidinogenase (UK) has shown promise in improving cerebral perfusion. This study aimed to examine how UK affects cognitive status and serum levels of amyloid betas (Aβs) 1-40 and 1-42 in patients with cerebral arterial stenosis. Methods Ninety patients with cerebral arterial stenosis were enrolled, of whom 45 patients received UK + conventional treatment (UK group), and 45 patients received conventional treatment alone as control group. Cognitive status and Aβ1-40 and Aβ1-42 serum levels were determined before treatment and at 4 weeks and 8 weeks after treatment. Results At 4 weeks after treatment, cognitive status in patients treated with UK clearly improved accompanied by Aβ1-40 serum levels decreasing while there was no change of Aβ1-42. Cognitive status in patients receiving UK continued to improve, Aβ1-40 serum levels declined further as well as Aβ1-42 serum levels began to decrease dramatically at 8 weeks after treatment. Conclusion UK could improve cognitive status and decrease both Aβ1-40 and Aβ1-42 serum levels to prevent ischemic cerebral injury, which represents a good option for patients with cerebral arterial stenosis.
Collapse
Affiliation(s)
- Liandong Zhao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China ; Department of Neurology, The Second People's Hospital of Huai'an and The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, Jiangsu, People's Republic of China
| | - Ying Zhao
- Department of Neurology, The Second People's Hospital of Huai'an and The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, Jiangsu, People's Republic of China
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|