101
|
Luo C, Xu Y, Shao Y, Wang Z, Hu J, Yuan J, Liu Y, Duan M, Huang L, Zhou F. EvaGoNet: an integrated network of variational autoencoder and Wasserstein generative adversarial network with gradient penalty for binary classification tasks. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
102
|
Yang L, Du Y, Yang W, Liu J. Machine learning with neuroimaging biomarkers: Application in the diagnosis and prediction of drug addiction. Addict Biol 2023; 28:e13267. [PMID: 36692873 DOI: 10.1111/adb.13267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
Drug abuse is a serious problem worldwide. Owing to intermittent intake of certain substances and the early inconspicuous clinical symptoms, this brings huge challenges for timely diagnosing addiction status and preventing substance use disorders (SUDs). As a non-invasive technique, neuroimaging can capture neurobiological signatures of abnormality in multiple brain regions caused by drug consumption in each clinical stage, like parenchymal morphology alteration as well as aberrant functional activity and connectivity of cerebral areas, making it realizable to diagnosis, prediction and even preemptive therapy of addiction. Machine learning (ML) algorithms primarily used for classification have been extensively applied in analysing medical imaging datasets. Significant neurobiological characteristics employed and revealed by classifiers were used to diagnose addictive states and predict initiation and vulnerability to drug usage, treatment abstinence, relapse and resilience of addicts and the risk of SUD. In this review, we summarize application of ML methods in neuroimaging focusing on addicts' diagnosis of clinical status and risk prediction and elucidate the discriminative neurobiological features from brain electrophysiological, morphological and functional perspectives that contribute most to the classifier, finally highlighting the auxiliary role of ML in addiction treatment.
Collapse
Affiliation(s)
- Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.,Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
103
|
Zhang L, Hou Y, Gu X, Cao B, Wei Q, Ou R, Liu K, Lin J, Yang T, Xiao Y, Zhao B, Shang H. Prediction of early-wheelchair dependence in multiple system atrophy based on machine learning algorithm: A prospective cohort study. Clin Park Relat Disord 2023; 8:100183. [PMID: 36714501 PMCID: PMC9881368 DOI: 10.1016/j.prdoa.2023.100183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Objective The predictive factors for wheelchair dependence in patients with multiple system atrophy (MSA) are unclear. We aimed to explore the predictive factors for early-wheelchair dependence in patients with MSA focusing on clinical features and blood biomarkers. Methods This is a prospective cohort study. This study included patients diagnosed with MSA between January 2014 and December 2019. At the deadline of October 2021, patients met the diagnosis of probable MSA were included in the analysis. Random forest (RF) was used to establish a predictive model for early-wheelchair dependence. Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the model. Results Altogether, 100 patients with MSA including 49 with wheelchair dependence and 51 without wheelchair dependence were enrolled in the RF model. Baseline plasma neurofilament light chain (NFL) levels were higher in patients with wheelchair dependence than in those without (P = 0.037). According to the Gini index, the five major predictive factors were disease duration, age of onset, Unified MSA Rating Scale (UMSARS)-II score, NFL, and UMSARS-I score, followed by C-reactive protein (CRP) levels, neutrophil-to-lymphocyte ratio (NLR), UMSARS-IV score, symptom onset, orthostatic hypotension, sex, urinary incontinence, and diagnosis subtype. The sensitivity, specificity, accuracy, and AUC of the RF model were 70.82 %, 74.55 %, 72.29 %, and 0.72, respectively. Conclusion Besides clinical features, baseline features including NFL, CRP, and NLR were potential predictive biomarkers of early-wheelchair dependence in MSA. These findings provide new insights into the trials regarding early intervention in MSA.
Collapse
Key Words
- AUC, area under the receiver operating characteristic curve
- CRP, C-reactive protein
- Cohort study
- MSA, multiple system atrophy
- MSA-C, multiple system atrophy with predominate cerebellar ataxia
- MSA-P, multiple system atrophy with predominate parkinsonism
- Multiple system atrophy
- NFL, neurofilament light chain
- NLR, neutrophil-to-lymphocyte ratio
- OH, orthostatic hypotension
- RF, random forest
- SCA, spinocerebellar ataxia
- TNF, tumor necrosis factor
- UMSARS, unified multiple system atrophy rating scale
- Wheelchair dependence
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huifang Shang
- Corresponding author at: Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
104
|
Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development. Int J Mol Sci 2023; 24:ijms24031911. [PMID: 36768231 PMCID: PMC9915541 DOI: 10.3390/ijms24031911] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) allows the in vivo imaging of pathological white matter alterations, either with unbiased voxel-wise or hypothesis-guided tract-based analysis. Alterations of diffusion metrics are indicative of the cerebral status of patients with amyotrophic lateral sclerosis (ALS) at the individual level. Using machine learning (ML) models to analyze complex and high-dimensional neuroimaging data sets, new opportunities for DTI-based biomarkers in ALS arise. This review aims to summarize how different ML models based on DTI parameters can be used for supervised diagnostic classifications and to provide individualized patient stratification with unsupervised approaches in ALS. To capture the whole spectrum of neuropathological signatures, DTI might be combined with additional modalities, such as structural T1w 3-D MRI in ML models. To further improve the power of ML in ALS and enable the application of deep learning models, standardized DTI protocols and multi-center collaborations are needed to validate multimodal DTI biomarkers. The application of ML models to multiparametric MRI/multimodal DTI-based data sets will enable a detailed assessment of neuropathological signatures in patients with ALS and the development of novel neuroimaging biomarkers that could be used in the clinical workup.
Collapse
|
105
|
Repple J, Gruber M, Mauritz M, de Lange SC, Winter NR, Opel N, Goltermann J, Meinert S, Grotegerd D, Leehr EJ, Enneking V, Borgers T, Klug M, Lemke H, Waltemate L, Thiel K, Winter A, Breuer F, Grumbach P, Hofmann H, Stein F, Brosch K, Ringwald KG, Pfarr J, Thomas-Odenthal F, Meller T, Jansen A, Nenadic I, Redlich R, Bauer J, Kircher T, Hahn T, van den Heuvel M, Dannlowski U. Shared and Specific Patterns of Structural Brain Connectivity Across Affective and Psychotic Disorders. Biol Psychiatry 2023; 93:178-186. [PMID: 36114041 DOI: 10.1016/j.biopsych.2022.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Altered brain structural connectivity has been implicated in the pathophysiology of psychiatric disorders including schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). However, it is unknown which part of these connectivity abnormalities are disorder specific and which are shared across the spectrum of psychotic and affective disorders. We investigated common and distinct brain connectivity alterations in a large sample (N = 1743) of patients with SZ, BD, or MDD and healthy control (HC) subjects. METHODS This study examined diffusion-weighted imaging-based structural connectome topology in 720 patients with MDD, 112 patients with BD, 69 patients with SZ, and 842 HC subjects (mean age of all subjects: 35.7 years). Graph theory-based network analysis was used to investigate connectome organization. Machine learning algorithms were trained to classify groups based on their structural connectivity matrices. RESULTS Groups differed significantly in the network metrics global efficiency, clustering, present edges, and global connectivity strength with a converging pattern of alterations between diagnoses (e.g., efficiency: HC > MDD > BD > SZ, false discovery rate-corrected p = .028). Subnetwork analysis revealed a common core of edges that were affected across all 3 disorders, but also revealed differences between disorders. Machine learning algorithms could not discriminate between disorders but could discriminate each diagnosis from HC. Furthermore, dysconnectivity patterns were found most pronounced in patients with an early disease onset irrespective of diagnosis. CONCLUSIONS We found shared and specific signatures of structural white matter dysconnectivity in SZ, BD, and MDD, leading to commonly reduced network efficiency. These results showed a compromised brain communication across a spectrum of major psychiatric disorders.
Collapse
Affiliation(s)
- Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Marco Mauritz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Siemon C de Lange
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nils Ralf Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Pascal Grumbach
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannes Hofmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Julia Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute of Psychology, University of Halle, Halle (Saale), Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
106
|
Garg N, Choudhry MS, Bodade RM. A review on Alzheimer's disease classification from normal controls and mild cognitive impairment using structural MR images. J Neurosci Methods 2023; 384:109745. [PMID: 36395961 DOI: 10.1016/j.jneumeth.2022.109745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder that degrades the memory and cognitive ability in elderly people. The main reason for memory loss and reduction in cognitive ability is the structural changes in the brain that occur due to neuronal loss. These structural changes are most conspicuous in the hippocampus, cortex, and grey matter and can be assessed by using neuroimaging techniques viz. Positron Emission Tomography (PET), structural Magnetic Resonance Imaging (MRI) and functional MRI (fMRI), etc. Out of these neuroimaging techniques, structural MRI has evolved as the best technique as it indicates the best soft tissue contrast and high spatial resolution which is important for AD detection. Currently, the focus of researchers is on predicting the conversion of Mild Cognitive Impairment (MCI) into AD. MCI represents the transition state between expected cognitive changes with normal aging and Alzheimer's disease. Not every MCI patient progresses into Alzheimer's disease. MCI can develop into stable MCI (sMCI, patients are called non-converters) or into progressive MCI (pMCI, patients are diagnosed as MCI converters). This paper discusses the prognosis of MCI to AD conversion and presents a review of structural MRI-based studies for AD detection. AD detection framework includes feature extraction, feature selection, and classification process. This paper reviews the studies for AD detection based on different feature extraction methods and machine learning algorithms for classification. The performance of various feature extraction methods has been compared and it has been observed that the wavelet transform-based feature extraction method would give promising results for AD classification. The present study indicates that researchers are successful in classifying AD from Normal Controls (NrmC) but, it still requires a lot of work to be done for MCI/ NrmC and MCI/AD, which would help in detecting AD at its early stage.
Collapse
Affiliation(s)
- Neha Garg
- Delhi Technological University, Department of Electronics and Communication, Delhi 110042, India.
| | - Mahipal Singh Choudhry
- Delhi Technological University, Department of Electronics and Communication, Delhi 110042, India.
| | - Rajesh M Bodade
- Military College of Telecommunication Engineering (MCTE), Mhow, Indore 453441, Madhya Pradesh, India.
| |
Collapse
|
107
|
Dastres E, Bijani F, Naderi R, Zamani A, Edalat M. Evaluating the habitat suitability modeling of Aceria alhagi and Alhagi maurorum in their native range using machine learning techniques.. [DOI: 10.21203/rs.3.rs-2441475/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Spatial locational modeling techniques are increasingly used in species distribution modeling. However, the implemented techniques differ in their modeling performance. In this study, we tested the predictive accuracy of three algorithms, namely "random forest (RF)," "support vector machine (SVM)," and "boosted regression trees (BRT)" to prepare habitat suitability mapping of an invasive species, Alhagi maurorum, and its potential biological control agent, Aceria alhagi. Location of this study was in Fars Province, southwest of Iran. The spatial distributions of the species were forecasted using GPS devices and GIS software. The probability values of occurrence were then checked using three algorithms. The predictive accuracy of the machine learning (ML) techniques was assessed by computing the “area under the curve (AUC)” of the “receiver-operating characteristic” plot. When the Aceria alhagi was modeled, the AUC values of RF, BRT and SVM were 0.89, 0.81, and 0.79, respectively. However, in habitat suitability models (HSMs) of Alhagi maurorum the AUC values of RF, BRT and SVM were 0.89, 0.80, and 0.73, respectively. The RF model provided significantly more accurate predictions than other algorithms. The importance of factors on the growth and development of Alhagi maurorum and Aceria alhagi was also determined using the partial least squares (PLS) algorithm, and the most crucial factors were the road and slope. Habitat suitability modeling based on algorithms may significantly increase the accuracy of species distribution forecasts, and thus it shows considerable promise for different conservation biological and biogeographical applications.
Collapse
|
108
|
Song W, Liu Y, Qiu L, Qing J, Li A, Zhao Y, Li Y, Li R, Zhou X. Machine learning-based warning model for chronic kidney disease in individuals over 40 years old in underprivileged areas, Shanxi Province. Front Med (Lausanne) 2023; 9:930541. [PMID: 36698845 PMCID: PMC9868668 DOI: 10.3389/fmed.2022.930541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Chronic kidney disease (CKD) is a progressive disease with high incidence but early imperceptible symptoms. Since China's rural areas are subject to inadequate medical check-ups and single disease screening programme, it could easily translate into end-stage renal failure. This study aimed to construct an early warning model for CKD tailored to impoverished areas by employing machine learning (ML) algorithms with easily accessible parameters from ten rural areas in Shanxi Province, thereby, promoting a forward shift of treatment time and improving patients' quality of life. Methods From April to November 2019, CKD opportunistic screening was carried out in 10 rural areas in Shanxi Province. First, general information, physical examination data, blood and urine specimens were collected from 13,550 subjects. Afterward, feature selection of explanatory variables was performed using LASSO regression, and target datasets were balanced using the SMOTE (synthetic minority over-sampling technique) algorithm, i.e., albuminuria-to-creatinine ratio (ACR) and α1-microglobulin-to-creatinine ratio (MCR). Next, Bagging, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were employed for classification of ACR outcomes and MCR outcomes, respectively. Results 12,330 rural residents were included in this study, with 20 explanatory variables. The cases with increased ACR and increased MCR represented 1,587 (12.8%) and 1,456 (11.8%), respectively. After conducting LASSO, 14 and 15 explanatory variables remained in these two datasets, respectively. Bagging, RF, and XGBoost performed well in classification, with the AUC reaching 0.74, 0.87, 0.87, 0.89 for ACR outcomes and 0.75, 0.88, 0.89, 0.90 for MCR outcomes. The five variables contributing most to the classification of ACR outcomes and MCR outcomes constituted SBP, TG, TC, and Hcy, DBP and age, TG, SBP, Hcy and FPG, respectively. Overall, the machine learning algorithms could emerge as a warning model for CKD. Conclusion ML algorithms in conjunction with rural accessible indexes boast good performance in classification, which allows for an early warning model for CKD. This model could help achieve large-scale population screening for CKD in poverty-stricken areas and should be promoted to improve the quality of life and reduce the mortality rate.
Collapse
Affiliation(s)
- Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanfeng Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Lixia Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Aizhong Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yan Zhao
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,*Correspondence: Rongshan Li,
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Xiaoshuang Zhou,
| |
Collapse
|
109
|
Zhu Z, Rahman Z, Aamir M, Shah SZA, Hamid S, Bilawal A, Li S, Ishfaq M. Insight into TLR4 receptor inhibitory activity via QSAR for the treatment of Mycoplasma pneumonia disease. RSC Adv 2023; 13:2057-2069. [PMID: 36712602 PMCID: PMC9833105 DOI: 10.1039/d2ra06178c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is one of the most common pathogenic organisms causing upper and lower respiratory tract infections, lung injury, and even death in young children. Toll-like receptors (TLRs) play an important role in innate immunity by allowing the host to recognize pathogens invading the body. Previous studies demonstrated that TLR4 is a potential therapeutic target for the treatment of MP pneumonia. Therefore, the present study aimed to screen biologically active ingredients that target the TLR4 receptor pathway. We first used molecular docking to screen out the active compounds inhibiting the TLR4 pathway, and then used regression and classification machine learning algorithms to establish a quantitative structure-activity relationship (QSAR) model to predict the biological activity of the screened compounds. A total of 78 molecules were used in QSAR modelling, which were retrieved from the ChEMBL database. The QSAR models had acceptable correlation coefficients of R 2 on the training and testing dataset in the range of 0.96 to 0.91 and 0.93 to 0.76, respectively. The multiclass classification models showed accuracy on training and testing data within ranges of 1.0 to 0.70, 0.96 to 0.63, and log loss ranges from 0.27 to 8.63, respectively. In addition, molecular descriptors and fingerprints have been studied as structural elements involved in increased and decreased inhibitory activities. These results provide a quantitative analysis of QSAR and classification models applicable for high-throughput screening, as well as insights into the mechanisms of inhibition of TLR4 antagonists.
Collapse
Affiliation(s)
- Zemin Zhu
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| | - Ziaur Rahman
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| | - Muhammad Aamir
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur-PakistanPakistan
| | - Sattar Hamid
- The University of Agriculture PeshawarKhyber Pakhtunkhwa25130Pakistan
| | - Akhunzada Bilawal
- College of Food Science, Northeast Agricultural UniversityHarbinChina
| | - Sihong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F UniversityHangzhou 311300China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| |
Collapse
|
110
|
Aqeel S, Haider Z, Khan W. Towards digital diagnosis of malaria: How far have we reached? J Microbiol Methods 2023; 204:106630. [PMID: 36503827 DOI: 10.1016/j.mimet.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The need for precise and early diagnosis of malaria and its distinction from other febrile illnesses is no doubt a prerequisite, primarily when standard rapid diagnostic tests (RDTs) cannot be totally relied upon. At the time of disease outbreaks, the pressure on hospital staff remains high and the chances of human error increase. Therefore, in the era of digitalisation of medicine as well as diagnostic approaches, various technologies such as artificial intelligence (AI) and machine learning (ML) should be deployed to further aid the diagnosis, especially in endemic and epidemic situations. Computational techniques are now more at the forefront than ever, and the interest in developing such efficient technologies is continuously increasing. A comprehensive understanding of these digital technologies is needed to maintain the scientific rigour in these attempts. This would enhance the implementation of these novel technologies for malaria diagnosis. This review highlights the progression, strengths, and limitations of various computing techniques so far employed to diagnose malaria.
Collapse
Affiliation(s)
- Sana Aqeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | - Zafaryab Haider
- Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Wajihullah Khan
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
111
|
Akram MA, Wei Q, Ascoli GA. Machine learning classification reveals robust morphometric biomarker of glial and neuronal arbors. J Neurosci Res 2023; 101:112-129. [PMID: 36196621 PMCID: PMC9828050 DOI: 10.1002/jnr.25131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Neurons and glia are the two main cell classes in the nervous systems of most animals. Although functionally distinct, neurons and glia are both characterized by multiple branching arbors stemming from the cell bodies. Glial processes are generally known to form smaller trees than neuronal dendrites. However, the full extent of morphological differences between neurons and glia in multiple species and brain regions has not yet been characterized, nor is it known whether these cells can be reliably distinguished based on geometric features alone. Here, we show that multiple supervised learning algorithms deployed on a large database of morphological reconstructions can systematically classify neuronal and glial arbors with nearly perfect accuracy and precision. Moreover, we report multiple morphometric properties, both size related and size independent, that differ substantially between these cell types. In particular, we newly identify an individual morphometric measurement, Average Branch Euclidean Length that can robustly separate neurons from glia across multiple animal models, a broad diversity of experimental conditions, and anatomical areas, with the notable exception of the cerebellum. We discuss the practical utility and physiological interpretation of this discovery.
Collapse
Affiliation(s)
- Masood A. Akram
- Center for Neural Informatics, Structures & PlasticityKrasnow Institute for Advanced StudyCollege of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
- Department of BioengineeringVolgenau School of EngineeringGeorge Mason UniversityFairfaxVirginiaUSA
| | - Qi Wei
- Department of BioengineeringVolgenau School of EngineeringGeorge Mason UniversityFairfaxVirginiaUSA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures & PlasticityKrasnow Institute for Advanced StudyCollege of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
- Department of BioengineeringVolgenau School of EngineeringGeorge Mason UniversityFairfaxVirginiaUSA
| |
Collapse
|
112
|
Montazeri M, Montazeri M, Bahaadinbeigy K, Montazeri M, Afraz A. Application of machine learning methods in predicting schizophrenia and bipolar disorders: A systematic review. Health Sci Rep 2023; 6:e962. [PMID: 36589632 PMCID: PMC9795991 DOI: 10.1002/hsr2.962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Aim Schizophrenia and bipolar disorder (BD) are critical and high-risk inherited mental disorders with debilitating symptoms. Worldwide, 3% of the population suffers from these disorders. The mortality rate of these patients is higher compared to other people. Current procedures cannot effectively diagnose these disorders because it takes an average of 10 years from the onset of the first symptoms to the definitive diagnosis of the disease. Machine learning (ML) techniques are used to meet this need. This study aimed to summarize information on the use of ML techniques for predicting schizophrenia and BD to help early and timely diagnosis of the disease. Methods A systematic literature search included articles published until January 19, 2020 in 3 databases. Two reviewers independently assessed original papers to determine eligibility for inclusion in this review. PRISMA guidelines were followed to conduct the study, and the Prediction Model Risk of Bias Assessment Tool (PROBAST) to assess included papers. Results In this review, 1243 papers were retrieved through database searches, of which 15 papers were included based on full-text assessment. ML techniques were used to predict schizophrenia and BDs. The main algorithms applied were support vector machine (SVM) (10 studies), random forests (RF) (5 studies), and gradient boosting (GB) (3 studies). Input and output characteristics were very diverse and have been kept to enable future research. RFs algorithms demonstrated significantly higher accuracy and sensitivity than SVM and GB. GB demonstrated significantly higher specificity than SVM and RF. We found no significant difference between RF and SVM in terms of specificity. Conclusion ML can precisely predict results and assist in making clinical decisions-concerning schizophrenia and BD. RF often performed better than other algorithms in supervised learning tasks. This study identified gaps in the literature and opportunities for future psychological ML research.
Collapse
Affiliation(s)
- Mahdieh Montazeri
- Department of Health Information Sciences, Faculty of Management and Medical Information SciencesKerman University of Medical SciencesKermanIran
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Mitra Montazeri
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Kambiz Bahaadinbeigy
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Mohadeseh Montazeri
- Department of Computer, Faculty of FatimahKerman Branch Technical and Vocational UniversityKermanIran
| | - Ali Afraz
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| |
Collapse
|
113
|
Dong T, Sinha S, Zhai B, Fudulu DP, Chan J, Narayan P, Judge A, Caputo M, Dimagli A, Benedetto U, Angelini GD. Cardiac surgery risk prediction using ensemble machine learning to incorporate legacy risk scores: A benchmarking study. Digit Health 2023; 9:20552076231187605. [PMID: 37492033 PMCID: PMC10363892 DOI: 10.1177/20552076231187605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Objective The introduction of new clinical risk scores (e.g. European System for Cardiac Operative Risk Evaluation (EuroSCORE) II) superseding original scores (e.g. EuroSCORE I) with different variable sets typically result in disparate datasets due to high levels of missingness for new score variables prior to time of adoption. Little is known about the use of ensemble learning to incorporate disparate data from legacy scores. We tested the hypothesised that Homogenenous and Heterogeneous Machine Learning (ML) ensembles will have better performance than ensembles of Dynamic Model Averaging (DMA) for combining knowledge from EuroSCORE I legacy data with EuroSCORE II data to predict cardiac surgery risk. Methods Using the National Adult Cardiac Surgery Audit dataset, we trained 12 different base learner models, based on two different variable sets from either EuroSCORE I (LogES) or EuroScore II (ES II), partitioned by the time of score adoption (1996-2016 or 2012-2016) and evaluated on holdout set (2017-2019). These base learner models were ensembled using nine different combinations of six ML algorithms to produce homogeneous or heterogeneous ensembles. Performance was assessed using a consensus metric. Results Xgboost homogenous ensemble (HE) was the highest performing model (clinical effectiveness metric (CEM) 0.725) with area under the curve (AUC) (0.8327; 95% confidence interval (CI) 0.8323-0.8329) followed by Random Forest HE (CEM 0.723; AUC 0.8325; 95%CI 0.8320-0.8326). Across different heterogenous ensembles, significantly better performance was obtained by combining siloed datasets across time (CEM 0.720) than building ensembles of either 1996-2011 (t-test adjusted, p = 1.67×10-6) or 2012-2019 (t-test adjusted, p = 1.35×10-193) datasets alone. Conclusions Both homogenous and heterogenous ML ensembles performed significantly better than DMA ensemble of Bayesian Update models. Time-dependent ensemble combination of variables, having differing qualities according to time of score adoption, enabled previously siloed data to be combined, leading to increased power, clinical interpretability of variables and usage of data.
Collapse
Affiliation(s)
- Tim Dong
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Shubhra Sinha
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Ben Zhai
- School of Computing Science, Northumbria University, Newcastle upon Tyne, UK
| | - Daniel P Fudulu
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Jeremy Chan
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Pradeep Narayan
- Department of Cardiac Surgery, Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, India
| | - Andy Judge
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Massimo Caputo
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Arnaldo Dimagli
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Umberto Benedetto
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Translational Health Sciences, Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
114
|
Zheng HL, An SY, Qiao BJ, Guan P, Huang DS, Wu W. A data-driven interpretable ensemble framework based on tree models for forecasting the occurrence of COVID-19 in the USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13648-13659. [PMID: 36131178 PMCID: PMC9492466 DOI: 10.1007/s11356-022-23132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
This prevalence of coronavirus disease 2019 (COVID-19) has become one of the most serious public health crises. Tree-based machine learning methods, with the advantages of high efficiency, and strong interpretability, have been widely used in predicting diseases. A data-driven interpretable ensemble framework based on tree models was designed to forecast daily new cases of COVID-19 in the USA and to determine the important factors related to COVID-19. Based on a hyperparametric optimization technique, we developed three machine learning algorithms based on decision trees, including random forest (RF), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), and three linear ensemble models were used to integrate these outcomes for better prediction accuracy. Finally, the SHapley Additive explanation (SHAP) value was used to obtain the feature importance ranking. Our outcomes demonstrated that, among the three basic machine learners, the prediction accuracy was the following in descending order: LightGBM, XGBoost, and RF. The optimized LAD ensemble was the most precise prediction model that reduced the prediction error of the best base learner (LightGBM) by approximately 3.111%, while vaccination, wearing masks, less mobility, and government interventions had positive effects on the control and prevention of COVID-19.
Collapse
Affiliation(s)
- Hu-Li Zheng
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning Province China
| | - Shu-Yi An
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning China
| | - Bao-Jun Qiao
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning Province China
| | - De-Sheng Huang
- Department of Mathematics, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning China
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning Province China
| |
Collapse
|
115
|
An effective intrusion detection approach based on ensemble learning for IIoT edge computing. JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES 2022. [DOI: 10.1007/s11416-022-00456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
116
|
Dauda KA. Optimal Tuning of Random Survival Forest Hyperparameter with an Application to Liver Disease. Malays J Med Sci 2022; 29:67-76. [PMID: 36818901 PMCID: PMC9910370 DOI: 10.21315/mjms2022.29.6.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Background Random Forest (RF) is a technique that optimises predictive accuracy by fitting an ensemble of trees to stabilise model estimates. The RF techniques were adapted into survival analysis to model the survival of patients with liver disease in order to identify biomarkers that are highly influential in patient prognostics. Methods The methodology of this study begins by applying the classical Cox proportional hazard (Cox-PH) model and three parametric survival models (exponential, Weibull and lognormal) to the published dataset. The study further applied the supervised learning methods of Tuning Random Survival Forest (TRSF) parameters and the conditional inference Forest (Cforest) to optimally predict patient survival probabilities. Results The efficiency of these models was compared using the Akaike information criteria (AIC) and integrated Brier score (IBS). The results revealed that the Cox-PH model (AIC = 185.7233) outperforms the three classical models. We further analysed these data to observe the functional relationships that exist between the patient survival function and the covariates using TRSF. Conclusion The IBS result of the TRFS demonstrated satisfactory performance over other methods. Ultimately, it was observed from the TRSF results that some of the covariates contributed positively and negatively to patient survival prognostics.
Collapse
|
117
|
Ganji Z, Aghaee Hakak M, Zare H. Comparison of machine learning methods for the detection of focal cortical dysplasia lesions: decision tree, support vector machine and artificial neural network. Neurol Res 2022; 44:1142-1149. [PMID: 35981138 DOI: 10.1080/01616412.2022.2112381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accurate classification of focal cortical dysplasia (FCD) has been challenging due to the problematic visual detection in magnetic resonance imaging (MRI). Hence, recently, there has been a necessity for employing new techniques to solve the problem. Among the new techniques for FCD lesion diagnosis, classification techniques can be of great help in FCD patient's detection from healthy individuals. METHODS MRI data were collected from 58 participants (30 subjects with FCD type II and 28 normal subjects). Morphological and intensity-based characteristics were calculated for each cortical level and then the performance of the three classifiers: decision tree (DT), support vector machine (SVM) and artificial neural network (ANN) was evaluated. RESULTS Metrics for evaluating classification methods, sensitivity, specificity and accuracy for the DT were 90%, 100% and 95.8%, respectively; it was 95%, 100% and 97.9% for the SVM and 96.7%, 100% and 98.6% for the ANN. CONCLUSION Comparison of the performance of the three classifications used in this study showed that all three have excellent performance in specificity, but in terms of classification sensitivity and accuracy, the artificial neural network method has worked better.
Collapse
Affiliation(s)
- Zohreh Ganji
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aghaee Hakak
- Epilepsy Monitoring Unit, Research and Education Department, Razavi Hospital, Mashhad, Iran
| | - Hoda Zare
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
118
|
Wu K, Li Y, Zou Y, Ren Y, Wang Y, Hu X, Wang Y, Chen C, Lu M, Xu L, Wu L, Li K. Tai Chi increases functional connectivity and decreases chronic fatigue syndrome: A pilot intervention study with machine learning and fMRI analysis. PLoS One 2022; 17:e0278415. [PMID: 36454926 PMCID: PMC9714925 DOI: 10.1371/journal.pone.0278415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The latest guidance on chronic fatigue syndrome (CFS) recommends exercise therapy. Tai Chi, an exercise method in traditional Chinese medicine, is reportedly helpful for CFS. However, the mechanism remains unclear. The present longitudinal study aimed to detect the influence of Tai Chi on functional brain connectivity in CFS. METHODS The study recruited 20 CFS patients and 20 healthy controls to receive eight sessions of Tai Chi exercise over a period of one month. Before the Tai Chi exercise, an abnormal functional brain connectivity for recognizing CFS was generated by a linear support vector model. The prediction ability of the structure was validated with a random forest classification under a permutation test. Then, the functional connections (FCs) of the structure were analyzed in the large-scale brain network after Tai Chi exercise while taking the changes in the Fatigue Scale-14, Pittsburgh Sleep Quality Index (PSQI), and the 36-item short-form health survey (SF-36) as clinical effectiveness evaluation. The registration number is ChiCTR2000032577 in the Chinese Clinical Trial Registry. RESULTS 1) The score of the Fatigue Scale-14 decreased significantly in the CFS patients, and the scores of the PSQI and SF-36 changed significantly both in CFS patients and healthy controls. 2) Sixty FCs were considered significant to discriminate CFS (P = 0.000, best accuracy 90%), with 80.5% ± 9% average accuracy. 3) The FCs that were majorly related to the left frontoparietal network (FPN) and default mode network (DMN) significantly increased (P = 0.0032 and P = 0.001) in CFS patients after Tai Chi exercise. 4) The change of FCs in the left FPN and DMN were positively correlated (r = 0.40, P = 0.012). CONCLUSION These results demonstrated that the 60 FCs we found using machine learning could be neural biomarkers to discriminate between CFS patients and healthy controls. Tai Chi exercise may improve CFS patients' fatigue syndrome, sleep quality, and body health statement by strengthening the functional connectivity of the left FPN and DMN under these FCs. The findings promote our understanding of Tai Chi exercise's value in treating CFS.
Collapse
Affiliation(s)
- Kang Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Xinhua Hospital, Tongzhou District, Beijing, China
| | - Yuanyuan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yahui Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojie Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxin Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linlu Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kuangshi Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
119
|
Mortazavi SAR, Tahmasebi S, Parsaei H, Taleie A, Faraz M, Rezaianzadeh A, Zamani A, Zamani A, Mortazavi SMJ. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens. J Biomed Phys Eng 2022; 12:637-644. [PMID: 36569561 PMCID: PMC9759638 DOI: 10.31661/jbpe.v0i0.2105-1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/02/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nowadays, there is a growing global concern over rapidly increasing screen time (smartphones, tablets, and computers). An accumulating body of evidence indicates that prolonged exposure to short-wavelength visible light (blue component) emitted from digital screens may cause cancer. The application of machine learning (ML) methods has significantly improved the accuracy of predictions in fields such as cancer susceptibility, recurrence, and survival. OBJECTIVE To develop an ML model for predicting the risk of breast cancer in women via several parameters related to exposure to ionizing and non-ionizing radiation. MATERIAL AND METHODS In this analytical study, three ML models Random Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron Neural Network (MLPNN) were used to analyze data collected from 603 cases, including 309 breast cancer cases and 294 gender and age-matched controls. Standard face-to-face interviews were performed using a standard questionnaire for data collection. RESULTS The examined models RF, SVM, and MLPNN performed well for correctly classifying cases with breast cancer and the healthy ones (mean sensitivity> 97.2%, mean specificity >96.4%, and average accuracy >97.1%). CONCLUSION Machine learning models can be used to effectively predict the risk of breast cancer via the history of exposure to ionizing and non-ionizing radiation (including blue light and screen time issues) parameters. The performance of the developed methods is encouraging; nevertheless, further investigation is required to confirm that machine learning techniques can diagnose breast cancer with relatively high accuracies automatically.
Collapse
Affiliation(s)
| | - Sedigheh Tahmasebi
- MD, Breast Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Parsaei
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdorasoul Taleie
- MD, Breast Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Faraz
- MSc, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rezaianzadeh
- PhD, Department of Epidemiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Zamani
- PhD, Department of Statistics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zamani
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Javad Mortazavi
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
120
|
Austin AM, Ramkumar N, Gladders B, Barnes JA, Eid MA, Moore KO, Feinberg MW, Creager MA, Bonaca M, Goodney PP. Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling. BMC Med Res Methodol 2022; 22:300. [PMID: 36418976 PMCID: PMC9685056 DOI: 10.1186/s12874-022-01774-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study illustrates the use of logistic regression and machine learning methods, specifically random forest models, in health services research by analyzing outcomes for a cohort of patients with concomitant peripheral artery disease and diabetes mellitus. METHODS Cohort study using fee-for-service Medicare beneficiaries in 2015 who were newly diagnosed with peripheral artery disease and diabetes mellitus. Exposure variables include whether patients received preventive measures in the 6 months following their index date: HbA1c test, foot exam, or vascular imaging study. Outcomes include any reintervention, lower extremity amputation, and death. We fit both logistic regression models as well as random forest models. RESULTS There were 88,898 fee-for-service Medicare beneficiaries diagnosed with peripheral artery disease and diabetes mellitus in our cohort. The rate of preventative treatments in the first six months following diagnosis were 52% (n = 45,971) with foot exams, 43% (n = 38,393) had vascular imaging, and 50% (n = 44,181) had an HbA1c test. The directionality of the influence for all covariates considered matched those results found with the random forest and logistic regression models. The most predictive covariate in each approach differs as determined by the t-statistics from logistic regression and variable importance (VI) in the random forest model. For amputation we see age 85 + (t = 53.17) urban-residing (VI = 83.42), and for death (t = 65.84, VI = 88.76) and reintervention (t = 34.40, VI = 81.22) both models indicate age is most predictive. CONCLUSIONS The use of random forest models to analyze data and provide predictions for patients holds great potential in identifying modifiable patient-level and health-system factors and cohorts for increased surveillance and intervention to improve outcomes for patients. Random forests are incredibly high performing models with difficult interpretation most ideally suited for times when accurate prediction is most desirable and can be used in tandem with more common approaches to provide a more thorough analysis of observational data.
Collapse
Affiliation(s)
- Andrea M. Austin
- grid.254880.30000 0001 2179 2404The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Niveditta Ramkumar
- grid.254880.30000 0001 2179 2404The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Barbara Gladders
- grid.413480.a0000 0004 0440 749XHeart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Jonathan A. Barnes
- grid.413480.a0000 0004 0440 749XHeart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Mark A. Eid
- grid.413480.a0000 0004 0440 749XHeart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Kayla O. Moore
- grid.413480.a0000 0004 0440 749XHeart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Mark W. Feinberg
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cardiovascular Division, Boston, MA USA
| | - Mark A. Creager
- grid.413480.a0000 0004 0440 749XHeart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Marc Bonaca
- grid.413085.b0000 0000 9908 7089University of Colorado Medical Center, Denver, CO USA
| | - Philip P. Goodney
- grid.254880.30000 0001 2179 2404The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, NH USA ,grid.413480.a0000 0004 0440 749XHeart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| |
Collapse
|
121
|
Chen S, Li T, Yang L, Zhai F, Jiang X, Xiang R, Ling G. Artificial intelligence-driven prediction of multiple drug interactions. Brief Bioinform 2022; 23:6720429. [PMID: 36168896 DOI: 10.1093/bib/bbac427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
When a drug is administered to exert its efficacy, it will encounter multiple barriers and go through multiple interactions. Predicting the drug-related multiple interactions is critical for drug development and safety monitoring because it provides foundations for practical, safe compatibility and rational use of multiple drugs. With the progress of artificial intelligence (AI) technology, a variety of novel prediction methods for single interaction have emerged and shown great advantages compared to the traditional, expensive and time-consuming laboratory research. To promote the comprehensive and simultaneous predictions of multiple interactions, we systematically reviewed the application of AI in drug-drug, drug-food (excipients) and drug-microbiome interactions. We began by outlining the model methods, evaluation indicators, algorithms and databases commonly used to build models for three types of drug interactions. The models based on the metabolic enzyme P450, drug similarity and drug targets have empathized among the machine learning models of drug-drug interactions. In particular, we discussed the limitations of current approaches and identified potential areas for future research. It is anticipated the in-depth review will be helpful for the development of the next-generation of systematic prediction models for simultaneous multiple interactions.
Collapse
Affiliation(s)
- Siqi Chen
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tiancheng Li
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Luna Yang
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Fei Zhai
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiwei Jiang
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Rongwu Xiang
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.,Liaoning Medical Big Data and Artificial Intelligence Engineering Technology Research Center, Shenyang 110016, China
| | - Guixia Ling
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
122
|
Estimates of regeneration potential in the Pannonian sand region help prioritize ecological restoration interventions. Commun Biol 2022; 5:1136. [PMID: 36302892 DOI: 10.1038/s42003-022-04047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/29/2022] [Indexed: 11/08/2022] Open
Abstract
Restoration prioritization helps determine optimal restoration interventions in national and regional spatial planning to create sustainable landscapes and maintain biodiversity. Here we investigate different forest-steppe vegetation types in the Pannonian sand region to provide restoration recommendations for conservation management, policy and research. We create spatial trajectories based on local, neighbouring and old-field regeneration capacity estimates of the Hungarian Habitat Mapping Database, compare the trajectories between different mesoregions and determine which environmental predictors possibly influence them at the mesoregion level using a random forest model. The trajectories indicate which types of passive or active restoration intervention are needed, including increasing connectivity, controlling invasive species, or introducing native species. Better restoration results can be achieve in the vicinity of larger (semi-)natural areas, but the specific site conditions must also be taken into account during prioritization. We also propose large-scale grassland restoration on abandoned agricultural fields instead of industrial forest plantations and afforestation with non-native species.
Collapse
|
123
|
Krajnc D, Spielvogel CP, Grahovac M, Ecsedi B, Rasul S, Poetsch N, Traub-Weidinger T, Haug AR, Ritter Z, Alizadeh H, Hacker M, Beyer T, Papp L. Automated data preparation for in vivo tumor characterization with machine learning. Front Oncol 2022; 12:1017911. [PMID: 36303841 PMCID: PMC9595446 DOI: 10.3389/fonc.2022.1017911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background This study proposes machine learning-driven data preparation (MLDP) for optimal data preparation (DP) prior to building prediction models for cancer cohorts. Methods A collection of well-established DP methods were incorporated for building the DP pipelines for various clinical cohorts prior to machine learning. Evolutionary algorithm principles combined with hyperparameter optimization were employed to iteratively select the best fitting subset of data preparation algorithms for the given dataset. The proposed method was validated for glioma and prostate single center cohorts by 100-fold Monte Carlo (MC) cross-validation scheme with 80-20% training-validation split ratio. In addition, a dual-center diffuse large B-cell lymphoma (DLBCL) cohort was utilized with Center 1 as training and Center 2 as independent validation datasets to predict cohort-specific clinical endpoints. Five machine learning (ML) classifiers were employed for building prediction models across all analyzed cohorts. Predictive performance was estimated by confusion matrix analytics over the validation sets of each cohort. The performance of each model with and without MLDP, as well as with manually-defined DP were compared in each of the four cohorts. Results Sixteen of twenty established predictive models demonstrated area under the receiver operator characteristics curve (AUC) performance increase utilizing the MLDP. The MLDP resulted in the highest performance increase for random forest (RF) (+0.16 AUC) and support vector machine (SVM) (+0.13 AUC) model schemes for predicting 36-months survival in the glioma cohort. Single center cohorts resulted in complex (6-7 DP steps) DP pipelines, with a high occurrence of outlier detection, feature selection and synthetic majority oversampling technique (SMOTE). In contrast, the optimal DP pipeline for the dual-center DLBCL cohort only included outlier detection and SMOTE DP steps. Conclusions This study demonstrates that data preparation prior to ML prediction model building in cancer cohorts shall be ML-driven itself, yielding optimal prediction models in both single and multi-centric settings.
Collapse
Affiliation(s)
- Denis Krajnc
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Marko Grahovac
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Boglarka Ecsedi
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Nina Poetsch
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander R. Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Zsombor Ritter
- Department of Medical Imaging, University of Pécs, Medical School, Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Internal Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Applied Quantum Computing group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
124
|
Lokanan M. The determinants of investment fraud: A machine learning and artificial intelligence approach. Front Big Data 2022; 5:961039. [PMID: 36299659 PMCID: PMC9589362 DOI: 10.3389/fdata.2022.961039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Investment fraud continues to be a severe problem in the Canadian securities industry. This paper aims to employ machine learning algorithms and artificial neural networks (ANN) to predict investment in Canada. Data for this study comes from cases heard by the Investment Industry Regulatory Organization of Canada (IIROC) between June 2008 and December 2019. In total, 406 cases were collected and coded for further analysis. After data cleaning and pre-processing, a total of 385 cases were coded for further analysis. The machine learning algorithms and artificial neural networks were able to predict investment fraud with very good results. In terms of standardized coefficient, the top five features in predicting fraud are offender experience, retired investors, the amount of money lost, the amount of money invested, and the investors' net worth. Machine learning and artificial intelligence have a pivotal role in regulation because they can identify the risks associated with fraud by learning from the data they ingest to survey past practices and come up with the best possible responses to predict fraud. If used correctly, machine learning in the form of regulatory technology can equip regulators with the tools to take corrective actions and make compliance more efficient to safeguard the markets and protect investors from unethical investment advisors.
Collapse
|
125
|
Miley K, Michalowski M, Yu F, Leng E, McMorris BJ, Vinogradov S. Predictive models for social functioning in healthy young adults: A machine learning study integrating neuroanatomical, cognitive, and behavioral data. Soc Neurosci 2022; 17:414-427. [PMID: 36196662 PMCID: PMC9707316 DOI: 10.1080/17470919.2022.2132285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/14/2022] [Indexed: 10/10/2022]
Abstract
Poor social functioning is an emerging public health problem associated with physical and mental health consequences. Developing prognostic tools is critical to identify individuals at risk for poor social functioning and guide interventions. We aimed to inform prediction models of social functioning by evaluating models relying on bio-behavioral data using machine learning. With data from the Human Connectome Project Healthy Young Adult sample (age 22-35, N = 1,101), we built Support Vector Regression models to estimate social functioning from variable sets of brain morphology to behavior with increasing complexity: 1) brain-only model, 2) brain-cognition model, 3) cognition-behavioral model, and 4) combined brain-cognition-behavioral model. Predictive accuracy of each model was assessed and the importance of individual variables for model performance was determined. The combined and cognition-behavioral models significantly predicted social functioning, whereas the brain-only and brain-cognition models did not. Negative affect, psychological wellbeing, extraversion, withdrawal, and cortical thickness of the rostral middle-frontal and superior-temporal regions were the most important predictors in the combined model. Results demonstrate that social functioning can be accurately predicted using machine learning methods. Behavioral markers may be more significant predictors of social functioning than brain measures for healthy young adults and may represent important leverage points for preventative intervention.
Collapse
Affiliation(s)
- Kathleen Miley
- School of Nursing, University of Minnesota, Minneapolis MN, United States
| | - Martin Michalowski
- School of Nursing, University of Minnesota, Minneapolis MN, United States
| | - Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, United States
| | - Ethan Leng
- Department of Biomedical Engineering, University of Minnesota, Minneapolis MN, United States
| | | | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis MN, United States
| |
Collapse
|
126
|
Sarica A, Quattrone A, Quattrone A. Explainable machine learning with pairwise interactions for the classification of Parkinson's disease and SWEDD from clinical and imaging features. Brain Imaging Behav 2022; 16:2188-2198. [PMID: 35614327 PMCID: PMC9132761 DOI: 10.1007/s11682-022-00688-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
Abstract
Scans without evidence of dopaminergic deficit (SWEDD) refers to patients who mimics motor and non-motor symptoms of Parkinson's disease (PD) but showing integrity of dopaminergic system. For this reason, the differential diagnosis between SWEDD and PD patients is often not possible in absence of dopamine imaging. Machine Learning (ML) showed optimal performance in automatically distinguishing these two diseases from clinical and imaging data. However, the most common applied ML algorithms provide high accuracy at expense of findings intelligibility. In this work, a novel ML glass-box model, the Explainable Boosting Machine (EBM), based on Generalized Additive Models plus interactions (GA2Ms), was employed to obtain interpretability in classifying PD and SWEDD while still providing optimal performance. Dataset (168 healthy controls, HC; 396 PD; 58 SWEDD) was obtained from PPMI database and consisted of 178 among clinical and imaging features. Six binary EBM classifiers were trained on feature space with (SBR) and without (noSBR) dopaminergic striatal specific binding ratio: HC-PDSBR, HC-SWEDDSBR, PD-SWEDDSBR and HC-PDnoSBR, HC-SWEDDnoSBR, PD-SWEDDnoSBR. Excellent AUC-ROC (1) was reached in classifying HC from PD and SWEDD, both with and without SBR, and by PD-SWEDDSBR (0.986), while PD-SWEDDnoSBR showed lower AUC-ROC (0.882). Apart from optimal accuracies, EBM algorithm was able to provide global and local explanations, revealing that the presence of pairwise interactions between UPSIT Booklet #1 and Epworth Sleepiness Scale item 3 (ESS3), MDS-UPDRS-III pronation-supination movements right hand (NP3PRSPR) and MDS-UPDRS-III rigidity left upper limb (NP3RIGLU) could provide good performance in predicting PD and SWEDD also without imaging features.
Collapse
Affiliation(s)
- Alessia Sarica
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, 88100, Catanzaro, Germaneto, Italy.
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, 88100, Catanzaro, Germaneto, Italy
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, 88100, Catanzaro, Italy
| |
Collapse
|
127
|
Wang X, Ezeana CF, Wang L, Puppala M, Huang Y, He Y, Yu X, Yin Z, Zhao H, Lai EC, Wong STC. Risk factors and machine learning model for predicting hospitalization outcomes in geriatric patients with dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12351. [PMID: 36204350 PMCID: PMC9520763 DOI: 10.1002/trc2.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Introduction Geriatric patients with dementia incur higher healthcare costs and longer hospital stays than other geriatric patients. We aimed to identify risk factors for hospitalization outcomes that could be mitigated early to improve outcomes and impact overall quality of life. Methods We identified risk factors, that is, demographics, hospital complications, pre-admission, and post-admission risk factors including medical history and comorbidities, affecting hospitalization outcomes determined by hospital stays and discharge dispositions. Over 150 clinical and demographic factors of 15,678 encounters (8407 patients) were retrieved from our institution's data warehouse. We further narrowed them down to twenty factors through feature selection engineering by using analysis of variance (ANOVA) and Glmnet. We developed an explainable machine-learning model to predict hospitalization outcomes among geriatric patients with dementia. Results Our model is based on stacking ensemble learning and achieved accuracy of 95.6% and area under the curve (AUC) of 0.757. It outperformed prevalent methods of risk assessment for encounters of patients with Alzheimer's disease dementia (ADD) (4993), vascular dementia (VD) (4173), Parkinson's disease with dementia (PDD) (3735), and other unspecified dementias (OUD) (2777). Top identified hospitalization outcome risk factors, mostly from medical history, include encephalopathy, number of medical problems at admission, pressure ulcers, urinary tract infections, falls, admission source, age, race, anemia, etc., with several overlaps in multi-dementia groups. Discussion Our model identified several predictive factors that can be modified or intervened so that efforts can be made to prevent recurrence or mitigate their adverse effects. Knowledge of the modifiable risk factors would help guide early interventions for patients at high risk for poor hospitalization outcome as defined by hospital stays longer than seven days, undesirable discharge disposition, or both. The interventions include starting specific protocols on modifiable risk factors like encephalopathy, falls, and infections, where non-existent or not routine, to improve hospitalization outcomes of geriatric patients with dementia. Highlights A total 15,678 encounters of Geriatrics with dementia with a final 20 risk factors.Developed a predictive model for hospitalization outcomes for multi-dementia types.Risk factors for each type were identified including those amenable to interventions.Top factors are encephalopathy, pressure ulcers, urinary tract infection (UTI), falls, and admission source.With accuracy of 95.6%, our ensemble predictive model outperforms other models.
Collapse
Affiliation(s)
- Xin Wang
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Chika F. Ezeana
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Lin Wang
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Mamta Puppala
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | | | - Yunjie He
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Xiaohui Yu
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Zheng Yin
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Hong Zhao
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Eugene C. Lai
- Neurological InstituteHouston Methodist HospitalHoustonTexasUSA
| | - Stephen T. C. Wong
- T.T. & W.F. Chao Center for BRAINHouston Methodist Academic InstituteHouston Methodist HospitalHoustonTexasUSA
- Brain and Mind Research InstituteWeill Cornell Medical CollegeNew YorkUSA
| |
Collapse
|
128
|
Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022; 13:985863. [PMID: 36211379 PMCID: PMC9538115 DOI: 10.3389/fimmu.2022.985863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor microenvironment (TME) is gaining increasing attention in modern cancer therapies because it can reveal unique information about the tumor status. As tumor-associated macrophages (TAMs) are the major immune cells infiltrating in TME, a better understanding of TAMs could help us further elucidate the cellular and molecular mechanisms responsible for cancer development. However, the high-dimensional and heterogeneous data in biology limit the extensive integrative analysis of cancer research. Machine learning algorithms are particularly suitable for oncology data analysis due to their flexibility and scalability to analyze diverse data types and strong computation power to learn underlying patterns from massive data sets. With the application of machine learning in analyzing TME, especially TAM’s traceable status, we could better understand the role of TAMs in tumor biology. Furthermore, we envision that the promotion of machine learning in this field could revolutionize tumor diagnosis, treatment stratification, and survival predictions in cancer research. In this article, we described key terms and concepts of machine learning, reviewed the applications of common methods in TAMs, and highlighted the challenges and future direction for TAMs in machine learning.
Collapse
Affiliation(s)
- Zhen Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyuan Zhu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Yang
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhaobin Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Fu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Fu,
| |
Collapse
|
129
|
Metabolomic and exposomic biomarkers of risk of future neurodevelopmental delay in human milk. Pediatr Res 2022; 93:1710-1720. [PMID: 36109618 PMCID: PMC10172108 DOI: 10.1038/s41390-022-02283-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The chemical composition of human milk has long-lasting effects on brain development. We examined the prognostic value of the human milk metabolome and exposome in children with the risk of neurodevelopmental delay (NDD). METHODS This retrospective cohort study included 82 mother-infant pairs (40 male and 42 female infants). A total of 59 milk samples were from mothers with typically developing children and 23 samples were from mothers of children at risk. Milk samples were collected before 9 months of age (4.6 ± 2.5 months, mean ± SD). Neurocognitive development was assessed by maternal report at 14.2 ± 3.1 months using the Ages and Stages Questionnaires-2. RESULTS Metabolome and exposome profiling identified 453 metabolites and 61 environmental chemicals in milk. Machine learning tools identified changes in deoxysphingolipids, phospholipids, glycosphingolipids, plasmalogens, and acylcarnitines in the milk of mothers with children at risk for future delay. A predictive classifier had a diagnostic accuracy of 0.81 (95% CI: 0.66-0.96) for females and 0.79 (95% CI: 0.62-0.94) for males. CONCLUSIONS Once validated in larger studies, the chemical analysis of human milk might be added as an option in well-baby checks to help identify children at risk of NDD before the first symptoms appear. IMPACT Maternal milk for infants sampled before 9 months of age contained sex-specific differences in deoxysphingolipids, sphingomyelins, plasmalogens, phospholipids, and acylcarnitines that predicted the risk of neurodevelopmental delay at 14.2 months of age. Once validated, this early biosignature in human milk might be incorporated into well-baby checks and help to identify infants at risk so early interventions might be instituted before the first symptoms appear.
Collapse
|
130
|
Chang HH, Chiang JH, Wang CS, Chiu PF, Abdel-Kader K, Chen H, Siew ED, Yabes J, Murugan R, Clermont G, Palevsky PM, Jhamb M. Predicting Mortality Using Machine Learning Algorithms in Patients Who Require Renal Replacement Therapy in the Critical Care Unit. J Clin Med 2022; 11:5289. [PMID: 36142936 PMCID: PMC9500742 DOI: 10.3390/jcm11185289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/13/2023] Open
Abstract
Background: General severity of illness scores are not well calibrated to predict mortality among patients receiving renal replacement therapy (RRT) for acute kidney injury (AKI). We developed machine learning models to make mortality prediction and compared their performance to that of the Sequential Organ Failure Assessment (SOFA) and HEpatic failure, LactatE, NorepInephrine, medical Condition, and Creatinine (HELENICC) scores. Methods: We extracted routinely collected clinical data for AKI patients requiring RRT in the MIMIC and eICU databases. The development models were trained in 80% of the pooled dataset and tested in the rest of the pooled dataset. We compared the area under the receiver operating characteristic curves (AUCs) of four machine learning models (multilayer perceptron [MLP], logistic regression, XGBoost, and random forest [RF]) to that of the SOFA, nonrenal SOFA, and HELENICC scores and assessed calibration, sensitivity, specificity, positive (PPV) and negative (NPV) predicted values, and accuracy. Results: The mortality AUC of machine learning models was highest for XGBoost (0.823; 95% confidence interval [CI], 0.791−0.854) in the testing dataset, and it had the highest accuracy (0.758). The XGBoost model showed no evidence of lack of fit with the Hosmer−Lemeshow test (p > 0.05). Conclusion: XGBoost provided the highest performance of mortality prediction for patients with AKI requiring RRT compared with previous scoring systems.
Collapse
Affiliation(s)
- Hsin-Hsiung Chang
- Division of Nephrology, Department of Internal Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Donggang 928, Taiwan
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jung-Hsien Chiang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Shiang Wang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Ping-Fang Chiu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Hospitality Management, MingDao University, Changhua 500, Taiwan
| | - Khaled Abdel-Kader
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37011, USA
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, TN 37011, USA
| | - Huiwen Chen
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward D. Siew
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37011, USA
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, TN 37011, USA
- Tennessee Valley Health Systems (TVHS), Veteran’s Health Administration, Nashville, TN 37212, USA
| | - Jonathan Yabes
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Raghavan Murugan
- Program for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gilles Clermont
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul M. Palevsky
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Kidney Medicine Section, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Manisha Jhamb
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
131
|
Alarefi A, Alhusaini N, Wang X, Tao R, Rui Q, Gao G, Pang L, Qiu B, Zhang X. Alcohol dependence inpatients classification with GLM and hierarchical clustering integration using fMRI data of alcohol multiple scenario cues. Exp Brain Res 2022; 240:2595-2605. [PMID: 36029312 DOI: 10.1007/s00221-022-06447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Alterations in brain reactions to alcohol-related cues are a neurobiological characteristic of alcohol dependence (AD) and a prospective target for achieving substantial treatment effects. However, a robust prediction of the differences in inpatients' brain responses to alcohol cues during the treatment process is still required. This study offers a data-driven approach for classifying AD inpatients undertaking alcohol treatment protocols based on their brain responses to alcohol imagery with and without drinking actions. The brain activity of thirty inpatients with AD undergoing treatment was scanned using functional magnetic resonance imaging (fMRI) while seeing alcohol and matched non-alcohol images. The mean values of brain regions of interest (ROI) for alcohol-related brain responses were obtained using general linear modeling (GLM) and subjected to hierarchical clustering analysis. The proposed classification technique identified two distinct subgroups of inpatients. For the two types of cues, subgroup one exhibited significant activation in a wide range of brain regions, while subgroup two showed mainly decreased activation. The proposed technique may aid in detecting the vulnerability of the classified inpatient subgroups, which can suggest allocating the inpatients in the classified subgroups to more effective therapies and developing prognostic future relapse markers in AD.
Collapse
Affiliation(s)
- Abdulqawi Alarefi
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Naji Alhusaini
- School of Computer and Information Engineering, Chuzhou University, Chuzhou, 239099, Anhui, China.,School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230009, China
| | - Xunshi Wang
- Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, 230017, China
| | - Rui Tao
- Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, 230017, China
| | - Qinqin Rui
- Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, 230017, China
| | - Guoqing Gao
- Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, 230017, China
| | - Liangjun Pang
- Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, 230017, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, 230017, China. .,Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, 230031, China.
| |
Collapse
|
132
|
Intelligent Facemask Coverage Detector in a World of Chaos. Processes (Basel) 2022. [DOI: 10.3390/pr10091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The recent outbreak of COVID-19 around the world has caused a global health catastrophe along with economic consequences. As per the World Health Organization (WHO), this devastating crisis can be minimized and controlled if humans wear facemasks in public; however, the prevention of spreading COVID-19 can only be possible only if they are worn properly, covering both the nose and mouth. Nonetheless, in public places or in chaos, a manual check of persons wearing the masks properly or not is a hectic job and can cause panic. For such conditions, an automatic mask-wearing system is desired. Therefore, this study analyzed several deep learning pre-trained networks and classical machine learning algorithms that can automatically detect whether the person wears the facemask or not. For this, 40,000 images are utilized to train and test 9 different models, namely, InceptionV3, EfficientNetB0, EfficientNetB2, DenseNet201, ResNet152, VGG19, convolutional neural network (CNN), support vector machine (SVM), and random forest (RF), to recognize facemasks in images. Besides just detecting the mask, the trained models also detect whether the person is wearing the mask properly (covering nose and mouth), partially (mouth only), or wearing it inappropriately (not covering nose and mouth). Experimental work reveals that InceptionV3 and EfficientNetB2 outperformed all other methods by attaining an overall accuracy of around 98.40% and a precision, recall, and F1-score of 98.30%.
Collapse
|
133
|
Song W, Zhou X, Duan Q, Wang Q, Li Y, Li A, Zhou W, Sun L, Qiu L, Li R, Li Y. Using random forest algorithm for glomerular and tubular injury diagnosis. Front Med (Lausanne) 2022; 9:911737. [PMID: 35966858 PMCID: PMC9366016 DOI: 10.3389/fmed.2022.911737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Chronic kidney disease (CKD) is a common chronic condition with high incidence and insidious onset. Glomerular injury (GI) and tubular injury (TI) represent early manifestations of CKD and could indicate the risk of its development. In this study, we aimed to classify GI and TI using three machine learning algorithms to promote their early diagnosis and slow the progression of CKD. Methods Demographic information, physical examination, blood, and morning urine samples were first collected from 13,550 subjects in 10 counties in Shanxi province for classification of GI and TI. Besides, LASSO regression was employed for feature selection of explanatory variables, and the SMOTE (synthetic minority over-sampling technique) algorithm was used to balance target datasets, i.e., GI and TI. Afterward, Random Forest (RF), Naive Bayes (NB), and logistic regression (LR) were constructed to achieve classification of GI and TI, respectively. Results A total of 12,330 participants enrolled in this study, with 20 explanatory variables. The number of patients with GI, and TI were 1,587 (12.8%) and 1,456 (11.8%), respectively. After feature selection by LASSO, 14 and 15 explanatory variables remained in these two datasets. Besides, after SMOTE, the number of patients and normal ones were 6,165, 6,165 for GI, and 6,165, 6,164 for TI, respectively. RF outperformed NB and LR in terms of accuracy (78.14, 80.49%), sensitivity (82.00, 84.60%), specificity (74.29, 76.09%), and AUC (0.868, 0.885) for both GI and TI; the four variables contributing most to the classification of GI and TI represented SBP, DBP, sex, age and age, SBP, FPG, and GHb, respectively. Conclusion RF boasts good performance in classifying GI and TI, which allows for early auxiliary diagnosis of GI and TI, thus facilitating to help alleviate the progression of CKD, and enjoying great prospects in clinical practice.
Collapse
Affiliation(s)
- Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Duan
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Qian Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yaheng Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Aizhong Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lin Sun
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lixia Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China.,Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
134
|
Cortical atrophy distinguishes idiopathic normal-pressure hydrocephalus from progressive supranuclear palsy: A machine learning approach. Parkinsonism Relat Disord 2022; 103:7-14. [PMID: 35988437 DOI: 10.1016/j.parkreldis.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) and idiopathic normal pressure hydrocephalus (iNPH) share several clinical and radiological features, making the differential diagnosis challenging. In this study, we aimed to differentiate between these two diseases using a machine learning approach based on cortical thickness and volumetric data. METHODS Twenty-three iNPH patients, 50 PSP patients and 55 control subjects were enrolled. All participants underwent a brain 3T-MRI, and cortical thickness and volumes were extracted using Freesurfer 6 on T1-weighted images and compared among groups. Finally, the performance of a machine learning approach with random forest using the extracted cortical features was investigated to differentiate between iNPH and PSP patients. RESULTS iNPH patients showed cortical thinning and volume loss in the frontal lobe, temporal lobe and cingulate cortex, and thickening in the superior parietal gyrus in comparison with controls and PSP patients. PSP patients only showed mild thickness and volume reduction in the frontal lobe, compared to control subjects. Random Forest algorithm distinguished iNPH patients from controls with AUC of 0.96 and from PSP patients with AUC of 0.95, while a lower performance (AUC 0.76) was reached in distinguishing PSP from controls. CONCLUSION This study demonstrated a more severe and widespread cortical involvement in iNPH than in PSP, possibly due to the marked lateral ventricular enlargement which characterizes iNPH. A machine learning model using thickness and volumetric data led to accurate differentiation between iNPH and PSP patients, which may help clinicians in the differential diagnosis and in the selection of patients for shunt procedures.
Collapse
|
135
|
Bhardwaj V, Sharma A, Parambath SV, Gul I, Zhang X, Lobie PE, Qin P, Pandey V. Machine Learning for Endometrial Cancer Prediction and Prognostication. Front Oncol 2022; 12:852746. [PMID: 35965548 PMCID: PMC9365068 DOI: 10.3389/fonc.2022.852746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) is a prevalent uterine cancer that remains a major contributor to cancer-associated morbidity and mortality. EC diagnosed at advanced stages shows a poor therapeutic response. The clinically utilized EC diagnostic approaches are costly, time-consuming, and are not readily available to all patients. The rapid growth in computational biology has enticed substantial research attention from both data scientists and oncologists, leading to the development of rapid and cost-effective computer-aided cancer surveillance systems. Machine learning (ML), a subcategory of artificial intelligence, provides opportunities for drug discovery, early cancer diagnosis, effective treatment, and choice of treatment modalities. The application of ML approaches in EC diagnosis, therapies, and prognosis may be particularly relevant. Considering the significance of customized treatment and the growing trend of using ML approaches in cancer prediction and monitoring, a critical survey of ML utility in EC may provide impetus research in EC and assist oncologists, molecular biologists, biomedical engineers, and bioinformaticians to further collaborative research in EC. In this review, an overview of EC along with risk factors and diagnostic methods is discussed, followed by a comprehensive analysis of the potential ML modalities for prevention, screening, detection, and prognosis of EC patients.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Arundhiti Sharma
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Peiwu Qin
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- *Correspondence: Vijay Pandey,
| |
Collapse
|
136
|
Lombardi A, Diacono D, Amoroso N, Biecek P, Monaco A, Bellantuono L, Pantaleo E, Logroscino G, De Blasi R, Tangaro S, Bellotti R. A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer's Disease. Brain Inform 2022; 9:17. [PMID: 35882684 PMCID: PMC9325942 DOI: 10.1186/s40708-022-00165-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/03/2022] [Indexed: 11/11/2022] Open
Abstract
In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the neurocognitive status of patients with neurodegenerative diseases such as Alzheimer's disease. Important research efforts have been devoted so far to the development of multivariate machine learning models that combine the different test indexes to predict the diagnosis and prognosis of cognitive decline with remarkable results. However, less attention has been devoted to the explainability of these models. In this work, we present a robust framework to (i) perform a threefold classification between healthy control subjects, individuals with cognitive impairment, and subjects with dementia using different cognitive indexes and (ii) analyze the variability of the explainability SHAP values associated with the decisions taken by the predictive models. We demonstrate that the SHAP values can accurately characterize how each index affects a patient's cognitive status. Furthermore, we show that a longitudinal analysis of SHAP values can provide effective information on Alzheimer's disease progression.
Collapse
Affiliation(s)
- Angela Lombardi
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Loredana Bellantuono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Scienze mediche di base, Neuroscienze e Organi di senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ester Pantaleo
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Giancarlo Logroscino
- Dipartimento di Scienze mediche di base, Neuroscienze e Organi di senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | | | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| |
Collapse
|
137
|
Dlima SD, Shevade S, Menezes SR, Ganju A. Digital Phenotyping in Health Using Machine Learning Approaches: Scoping Review. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e39618. [PMID: 38935947 PMCID: PMC11135220 DOI: 10.2196/39618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND Digital phenotyping is the real-time collection of individual-level active and passive data from users in naturalistic and free-living settings via personal digital devices, such as mobile phones and wearable devices. Given the novelty of research in this field, there is heterogeneity in the clinical use cases, types of data collected, modes of data collection, data analysis methods, and outcomes measured. OBJECTIVE The primary aim of this scoping review was to map the published research on digital phenotyping and to outline study characteristics, data collection and analysis methods, machine learning approaches, and future implications. METHODS We utilized an a priori approach for the literature search and data extraction and charting process, guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews). We identified relevant studies published in 2020, 2021, and 2022 on PubMed and Google Scholar using search terms related to digital phenotyping. The titles, abstracts, and keywords were screened during the first stage of the screening process, and the second stage involved screening the full texts of the shortlisted articles. We extracted and charted the descriptive characteristics of the final studies, which were countries of origin, study design, clinical areas, active and/or passive data collected, modes of data collection, data analysis approaches, and limitations. RESULTS A total of 454 articles on PubMed and Google Scholar were identified through search terms associated with digital phenotyping, and 46 articles were deemed eligible for inclusion in this scoping review. Most studies evaluated wearable data and originated from North America. The most dominant study design was observational, followed by randomized trials, and most studies focused on psychiatric disorders, mental health disorders, and neurological diseases. A total of 7 studies used machine learning approaches for data analysis, with random forest, logistic regression, and support vector machines being the most common. CONCLUSIONS Our review provides foundational as well as application-oriented approaches toward digital phenotyping in health. Future work should focus on more prospective, longitudinal studies that include larger data sets from diverse populations, address privacy and ethical concerns around data collection from consumer technologies, and build "digital phenotypes" to personalize digital health interventions and treatment plans.
Collapse
|
138
|
Chai K, Zhang X, Chen S, Gu H, Tang H, Cao P, Wang G, Ye W, Wan F, Liang J, Shen D. Application of weighted co-expression network analysis and machine learning to identify the pathological mechanism of Alzheimer's disease. Front Aging Neurosci 2022; 14:837770. [PMID: 35912089 PMCID: PMC9326231 DOI: 10.3389/fnagi.2022.837770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant deposits of neurofibrillary tangles (NFT), the main characteristic of Alzheimer's disease (AD), are highly related to cognitive impairment. However, the pathological mechanism of NFT formation is still unclear. This study explored differences in gene expression patterns in multiple brain regions [entorhinal, temporal, and frontal cortex (EC, TC, FC)] with distinct Braak stages (0- VI), and identified the hub genes via weighted gene co-expression network analysis (WGCNA) and machine learning. For WGCNA, consensus modules were detected and correlated with the single sample gene set enrichment analysis (ssGSEA) scores. Overlapping the differentially expressed genes (DEGs, Braak stages 0 vs. I-VI) with that in the interest module, metascape analysis, and Random Forest were conducted to explore the function of overlapping genes and obtain the most significant genes. We found that the three brain regions have high similarities in the gene expression pattern and that oxidative damage plays a vital role in NFT formation via machine learning. Through further filtering of genes from interested modules by Random Forest, we screened out key genes, such as LYN, LAPTM5, and IFI30. These key genes, including LYN, LAPTM5, and ARHGDIB, may play an important role in the development of AD through the inflammatory response pathway mediated by microglia.
Collapse
Affiliation(s)
- Keping Chai
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Keping Chai
| | - Xiaolin Zhang
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan, China
| | - Shufang Chen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Huaqian Gu
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Huitao Tang
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Panlong Cao
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Gangqiang Wang
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Weiping Ye
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Feng Wan
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan, China
- Feng Wan
| | - Jiawei Liang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Jiawei Liang
| | - Daojiang Shen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
- Daojiang Shen
| |
Collapse
|
139
|
Suzuki Y, Suzuki H, Ishikawa T, Yamada Y, Yatoh S, Sugano Y, Iwasaki H, Sekiya M, Yahagi N, Hada Y, Shimano H. Exploratory analysis using machine learning of predictive factors for falls in type 2 diabetes. Sci Rep 2022; 12:11965. [PMID: 35831378 PMCID: PMC9279484 DOI: 10.1038/s41598-022-15224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the status of falls and to identify important risk factors for falls in persons with type 2 diabetes (T2D) including the non-elderly. Participants were 316 persons with T2D who were assessed for medical history, laboratory data and physical capabilities during hospitalization and given a questionnaire on falls one year after discharge. Two different statistical models, logistic regression and random forest classifier, were used to identify the important predictors of falls. The response rate to the survey was 72%; of the 226 respondents, there were 129 males and 97 females (median age 62 years). The fall rate during the first year after discharge was 19%. Logistic regression revealed that knee extension strength, fasting C-peptide (F-CPR) level and dorsiflexion strength were independent predictors of falls. The random forest classifier placed grip strength, F-CPR, knee extension strength, dorsiflexion strength and proliferative diabetic retinopathy among the 5 most important variables for falls. Lower extremity muscle weakness, elevated F-CPR levels and reduced grip strength were shown to be important risk factors for falls in T2D. Analysis by random forest can identify new risk factors for falls in addition to logistic regression.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | | | | | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Sugano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
140
|
The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review. NPJ Digit Med 2022; 5:87. [PMID: 35798934 PMCID: PMC9262920 DOI: 10.1038/s41746-022-00631-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. We included 15 systematic reviews of 852 citations identified. The included reviews assessed the performance of AI models in diagnosing Alzheimer's disease (n = 7), mild cognitive impairment (n = 6), schizophrenia (n = 3), bipolar disease (n = 2), autism spectrum disorder (n = 1), obsessive-compulsive disorder (n = 1), post-traumatic stress disorder (n = 1), and psychotic disorders (n = 1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. Healthcare professionals in the field should cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety.
Collapse
|
141
|
Tautan AM, Casula E, Borghi I, Maiella M, Bonni S, Minei M, Assogna M, Ionescu B, Koch G, Santarnecchi E. Preliminary study on the impact of EEG density on TMS-EEG classification in Alzheimer's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:394-397. [PMID: 36086206 DOI: 10.1109/embc48229.2022.9870920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcranial magnetic stimulation co-registered with electroencephalographic (TMS-EEG) has previously proven a helpful tool in the study of Alzheimer's disease (AD). In this work, we investigate the use of TMS-evoked EEG responses to classify AD patients from healthy controls (HC). By using a dataset containing 17AD and 17HC, we extract various time domain features from individual TMS responses and average them over a low, medium and high density EEG electrode set. Within a leave-one-subject-out validation scenario, the best classification performance for AD vs. HC was obtained using a high-density electrode with a Random Forest classifier. The accuracy, sensitivity and specificity were of 92.7%, 96.58% and 88.82% respectively. Clinical relevance- TMS-EEG responses were successfully used to identify Alzheimer's disease patients from healthy controls.
Collapse
|
142
|
Incorporating a Machine Learning Model into a Web-Based Administrative Decision Support Tool for Predicting Workplace Absenteeism. INFORMATION 2022. [DOI: 10.3390/info13070320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Productivity losses caused by absenteeism at work cost U.S. employers billions of dollars each year. In addition, employers typically spend a considerable amount of time managing employees who perform poorly. By using predictive analytics and machine learning algorithms, organizations can make better decisions, thereby increasing organizational productivity, reducing costs, and improving efficiency. Thus, in this paper we propose hybrid optimization methods in order to find the most parsimonious model for absenteeism classification. We utilized data from a Brazilian courier company. In order to categorize absenteeism classes, we preprocessed the data, selected the attributes via multiple methods, balanced the dataset using the synthetic minority over-sampling method, and then employed four methods of machine learning classification: Support Vector Machine (SVM), Multinomial Logistic Regression (MLR), Artificial Neural Network (ANN), and Random Forest (RF). We selected the best model based on several validation scores, and compared its performance against the existing model. Furthermore, project managers may lack experience in machine learning, or may not have the time to spend developing machine learning algorithms. Thus, we propose a web-based interactive tool supported by cognitive analytics management (CAM) theory. The web-based decision tool enables managers to make more informed decisions, and can be used without any prior knowledge of machine learning. Understanding absenteeism patterns can assist managers in revising policies or creating new arrangements to reduce absences in the workplace, financial losses, and the probability of economic insolvency.
Collapse
|
143
|
Prediction of Dental Implants Using Machine Learning Algorithms. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7307675. [PMID: 35769356 PMCID: PMC9236838 DOI: 10.1155/2022/7307675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
It has been claimed that artificial intelligence (AI) has transformative potential for the healthcare sector by enabling increased productivity and creative methods of delivering healthcare services. Recently, there has been a major shift to artificial intelligence by businesses, government, and private sectors in general and the health sector in particular. Many studies have proven that artificial intelligence is contributing greatly to the health sector by discovering diseases and determining the best treatments for patients. Dentistry requires new innovative methods that serve both the patient and the service provider in obtaining the best and appropriate medical services. Artificial intelligence has the ability to develop the field of dentistry through early diagnosis and prediction of dental implant cases. This research develops a set of four machine learning algorithms to predict when a patient might need dental implants. These models are the Bayesian network, random forest, AdaBoost algorithm, and improved AdaBoost algorithm. This work shows that the developed algorithms can predict when a patient needs dental implants. Also, we believe that this proposal will advise managers and decision-makers in targeting patients with particular diagnoses. Analysis of the obtained results indicates good performance of the developed machine learning. As a result of this research, we note that the proposed improved AdaBoost algorithm increases the level of prediction accuracy and gives significantly higher performance than the other studied methods with the accuracy for the improved AdaBoost algorithm reaching 91.7%.
Collapse
|
144
|
Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 2022; 39:120. [PMID: 35704152 PMCID: PMC9198206 DOI: 10.1007/s12032-022-01711-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 10/28/2022]
Abstract
The advancement of precision medicine in medical care has led behind the conventional symptom-driven treatment process by allowing early risk prediction of disease through improved diagnostics and customization of more effective treatments. It is necessary to scrutinize overall patient data alongside broad factors to observe and differentiate between ill and relatively healthy people to take the most appropriate path toward precision medicine, resulting in an improved vision of biological indicators that can signal health changes. Precision and genomic medicine combined with artificial intelligence have the potential to improve patient healthcare. Patients with less common therapeutic responses or unique healthcare demands are using genomic medicine technologies. AI provides insights through advanced computation and inference, enabling the system to reason and learn while enhancing physician decision making. Many cell characteristics, including gene up-regulation, proteins binding to nucleic acids, and splicing, can be measured at high throughput and used as training objectives for predictive models. Researchers can create a new era of effective genomic medicine with the improved availability of a broad range of datasets and modern computer techniques such as machine learning. This review article has elucidated the contributions of ML algorithms in precision and genome medicine.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, 560043, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
145
|
Abstract
The advancement of precision medicine in medical care has led behind the conventional symptom-driven treatment process by allowing early risk prediction of disease through improved diagnostics and customization of more effective treatments. It is necessary to scrutinize overall patient data alongside broad factors to observe and differentiate between ill and relatively healthy people to take the most appropriate path toward precision medicine, resulting in an improved vision of biological indicators that can signal health changes. Precision and genomic medicine combined with artificial intelligence have the potential to improve patient healthcare. Patients with less common therapeutic responses or unique healthcare demands are using genomic medicine technologies. AI provides insights through advanced computation and inference, enabling the system to reason and learn while enhancing physician decision making. Many cell characteristics, including gene up-regulation, proteins binding to nucleic acids, and splicing, can be measured at high throughput and used as training objectives for predictive models. Researchers can create a new era of effective genomic medicine with the improved availability of a broad range of datasets and modern computer techniques such as machine learning. This review article has elucidated the contributions of ML algorithms in precision and genome medicine.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, 560043, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
146
|
Development of Machine-Learning Model to Predict COVID-19 Mortality: Application of Ensemble Model and Regarding Feature Impacts. Diagnostics (Basel) 2022; 12:diagnostics12061464. [PMID: 35741274 PMCID: PMC9221552 DOI: 10.3390/diagnostics12061464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study was designed to develop machine-learning models to predict COVID-19 mortality and identify its key features based on clinical characteristics and laboratory tests. For this, deep-learning (DL) and machine-learning (ML) models were developed using receiver operating characteristic (ROC) area under the curve (AUC) and F1 score optimization of 87 parameters. Of the two, the DL model exhibited better performance (AUC 0.8721, accuracy 0.84, and F1 score 0.76). However, we also blended DL with ML, and the ensemble model performed the best (AUC 0.8811, accuracy 0.85, and F1 score 0.77). The DL model is generally unable to extract feature importance; however, we succeeded by using the Shapley Additive exPlanations method for each model. This study demonstrated both the applicability of DL and ML models for classifying COVID-19 mortality using hospital-structured data and that the ensemble model had the best predictive ability.
Collapse
|
147
|
Jagomast T, Idel C, Klapper L, Kuppler P, Proppe L, Beume S, Falougy M, Steller D, Hakim SG, Offermann A, Roesch MC, Bruchhage KL, Perner S, Ribbat-Idel J. Comparison of manual and automated digital image analysis systems for quantification of cellular protein expression. Histol Histopathol 2022; 37:527-541. [PMID: 35146728 DOI: 10.14670/hh-18-434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Quantifying protein expression in immunohistochemically stained histological slides is an important tool for oncologic research. The use of computer-aided evaluation of IHC-stained slides significantly contributes to objectify measurements. Manual digital image analysis (mDIA) requires a user-dependent annotation of the region of interest (ROI). Others have built-in machine learning algorithms with automated digital image analysis (aDIA) and can detect the ROIs automatically. We aimed to investigate the agreement between the results obtained by aDIA and those derived from mDIA systems. METHODS We quantified chromogenic intensity (CI) and calculated the positive index (PI) in cohorts of tissue microarrays (TMA) using mDIA and aDIA. To consider the different distributions of staining within cellular sub-compartments and different tumor architecture our study encompassed nuclear and cytoplasmatic stainings in adenocarcinomas and squamous cell carcinomas. RESULTS Within all cohorts, we were able to show a high correlation between mDIA and aDIA for the CI (p<0.001) along with high agreement for the PI. Moreover, we were able to show that the cell detections of the programs were comparable as well and both proved to be reliable when compared to manual counting. CONCLUSION mDIA and aDIA show a high correlation in acquired IHC data. Both proved to be suitable to stratify patients for evaluation with clinical data. As both produce the same level of information, aDIA might be preferable as it is time-saving, can easily be reproduced, and enables regular and efficient output in large studies in a reasonable time period.
Collapse
Affiliation(s)
- T Jagomast
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.
| | - C Idel
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany.
| | - L Klapper
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - P Kuppler
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - L Proppe
- Department of Gynecology and Obstetrics, University of Luebeck, Luebeck, Germany
| | - S Beume
- Department of Gynecology and Obstetrics, University of Luebeck, Luebeck, Germany
| | - M Falougy
- Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck, Germany
| | - D Steller
- Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck, Germany
| | - S G Hakim
- Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck, Germany
| | - A Offermann
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - M C Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - K L Bruchhage
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - S Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - J Ribbat-Idel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| |
Collapse
|
148
|
Analysis of Machine Learning Techniques for Sentinel-2A Satellite Images. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2022. [DOI: 10.1155/2022/9092299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents the comparative analysis of classification techniques to assign land use and land cover classes from different strategies (pixel-based, object-based, rule-based, distance-based, and neural-based) with a Sentinel-2A satellite image for 2016. The study area is the Sana’a city of Yemen which covers about 18,796.88 km2 land area. This research aims to present the fundamentals of supervised machine learning approaches, including their limitations and strengths and experimentation for twelve classifiers. The outcome of experimentation showed that the Random Forest could be a good choice as a classifier for object-based strategy. In contrast, DTC and SVM were efficient in rule-based and pixel-based strategies. Results also showed that the highest accuracy was with object-based strategy, followed by rule-based and then pixel-based and distance-based strategies.
Collapse
|
149
|
You Y, Lai X, Pan Y, Zheng H, Vera J, Liu S, Deng S, Zhang L. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther 2022; 7:156. [PMID: 35538061 PMCID: PMC9090746 DOI: 10.1038/s41392-022-00994-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Artificial intelligence is an advanced method to identify novel anticancer targets and discover novel drugs from biology networks because the networks can effectively preserve and quantify the interaction between components of cell systems underlying human diseases such as cancer. Here, we review and discuss how to employ artificial intelligence approaches to identify novel anticancer targets and discover drugs. First, we describe the scope of artificial intelligence biology analysis for novel anticancer target investigations. Second, we review and discuss the basic principles and theory of commonly used network-based and machine learning-based artificial intelligence algorithms. Finally, we showcase the applications of artificial intelligence approaches in cancer target identification and drug discovery. Taken together, the artificial intelligence models have provided us with a quantitative framework to study the relationship between network characteristics and cancer, thereby leading to the identification of potential anticancer targets and the discovery of novel drug candidates.
Collapse
Affiliation(s)
- Yujie You
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91052, Germany
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Room D513, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Huiru Zheng
- School of Computing, Ulster University, Belfast, BT15 1ED, UK
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91052, Germany
| | - Suran Liu
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Senyi Deng
- Institute of Thoracic Oncology, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
150
|
Leenings R, Winter NR, Dannlowski U, Hahn T. Recommendations for machine learning benchmarks in neuroimaging. Neuroimage 2022; 257:119298. [PMID: 35561945 DOI: 10.1016/j.neuroimage.2022.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
The field of neuroimaging has embraced methods from machine learning in a variety of ways. Although an increasing number of initiatives have published open-access neuroimaging datasets, specifically designed benchmarks are rare in the field. In this article, we first describe how benchmarks in computer science and biomedical imaging have fostered methodological progress in machine learning. Second, we identify the special characteristics of neuroimaging data and outline what researchers have to ensure when establishing a neuroimaging benchmark, how datasets should be composed and how adequate evaluation criteria can be chosen. Based on lessons learned from machine learning benchmarks, we argue for an extended evaluation procedure that, next to applying suitable performance metrics, focuses on scientifically relevant aspects such as explainability, robustness, uncertainty, computational efficiency and code quality. Lastly, we envision a collaborative neuroimaging benchmarking platform that combines the discussed aspects in a collaborative and agile framework, allowing researchers across disciplines to work together on the key predictive problems of the field of neuroimaging and psychiatry.
Collapse
Affiliation(s)
- Ramona Leenings
- University of Münster, Institute for Translational Psychiatry, Albert-Schweitzer-Campus 1, Münster 48149, Germany; University of Münster, Faculty of Mathematics and Computer Science, Münster, Germany.
| | - Nils R Winter
- University of Münster, Institute for Translational Psychiatry, Albert-Schweitzer-Campus 1, Münster 48149, Germany
| | - Udo Dannlowski
- University of Münster, Institute for Translational Psychiatry, Albert-Schweitzer-Campus 1, Münster 48149, Germany
| | - Tim Hahn
- University of Münster, Institute for Translational Psychiatry, Albert-Schweitzer-Campus 1, Münster 48149, Germany
| |
Collapse
|