101
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
102
|
El Kholy S, Wang K, El-Seedi HR, Al Naggar Y. Dopamine Modulates Drosophila Gut Physiology, Providing New Insights for Future Gastrointestinal Pharmacotherapy. BIOLOGY 2021; 10:biology10100983. [PMID: 34681083 PMCID: PMC8533061 DOI: 10.3390/biology10100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Dopamine has a variety of physiological roles in the gastrointestinal tract (GI) through binding to Drosophila dopamine D1-like receptors (DARs) and/or adrenergic receptors and has been confirmed as one of the enteric neurotransmitters. To gain new insights into what could be a potential future promise for GI pharmacology, we used Drosophila as a model organism to investigate the effects of dopamine on intestinal physiology and gut motility. GAL4/UAS system was utilized to knock down specific dopamine receptors using specialized GAL4 driver lines targeting neurons or enterocytes cells to identify which dopamine receptor controls stomach contractions. DARs (Dop1R1 and Dop1R2) were shown by immunohistochemistry to be strongly expressed in all smooth muscles in both larval and adult flies, which could explain the inhibitory effect of dopamine on GI motility. Adult males' gut peristalsis was significantly inhibited by knocking down dopamine receptors Dop1R1, Dop1R2, and Dop2R, but female flies' gut peristalsis was significantly repressed by knocking down only Dop1R1 and Dop1R2. Our findings also showed that dopamine drives PLC-β translocation from the cytoplasm to the plasma membrane in enterocytes for the first time. Overall, these data revealed the role of dopamine in modulating Drosophila gut physiology, offering us new insights for the future gastrointestinal pharmacotherapy of neurodegenerative diseases associated with dopamine deficiency.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (K.W.); (Y.A.N.); Tel.: +86-10-62593411 (K.W.); +49-345-55-26503 (Y.A.N.)
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
- Correspondence: (K.W.); (Y.A.N.); Tel.: +86-10-62593411 (K.W.); +49-345-55-26503 (Y.A.N.)
| |
Collapse
|
103
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
104
|
Norepinephrine May Oppose Other Neuromodulators to Impact Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147364. [PMID: 34298984 PMCID: PMC8304567 DOI: 10.3390/ijms22147364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
While much of biomedical research since the middle of the twentieth century has focused on molecular pathways inside the cell, there is increasing evidence that extracellular signaling pathways are also critically important in health and disease. The neuromodulators norepinephrine (NE), serotonin (5-hydroxytryptamine, 5HT), dopamine (DA), acetylcholine (ACH), and melatonin (MT) are extracellular signaling molecules that are distributed throughout the brain and modulate many disease processes. The effects of these five neuromodulators on Alzheimer's disease (AD) are briefly examined in this paper, and it is hypothesized that each of the five molecules has a u-shaped (or Janus-faced) dose-response curve, wherein too little or too much signaling is pathological in AD and possibly other diseases. In particular it is suggested that NE is largely functionally opposed to 5HT, ACH, MT, and possibly DA in AD. In this scenario, physiological "balance" between the noradrenergic tone and that of the other three or four modulators is most healthy. If NE is largely functionally opposed to other prominent neuromodulators in AD, this may suggest novel combinations of pharmacological agents to counteract this disease. It is also suggested that the majority of cases of AD and possibly other diseases involve an excess of noradrenergic tone and a collective deficit of the other four modulators.
Collapse
|
105
|
Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: Monoamines and their derivatives in biological fluids. Exp Gerontol 2021; 152:111452. [PMID: 34182050 DOI: 10.1016/j.exger.2021.111452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage. Accumulating evidence support the hypothesis that initial degeneration of profound monoaminergic nuclei may trigger a transneuronal spread of AD pathology towards hippocampus and cortex. These studies aroused great interest on monoamines, i.e. noradrenaline (NA), dopamine (D) ad serotonin (5-HT), as early hallmarks of AD pathology. The present work reviews current literature on the potential role of monoamines and related metabolites as biomarkers of AD. First, morphological changes in the monoaminergic systems during AD are briefly described. Second, we focus on concentration changes of these molecules and their derivatives in biological fluids, including cerebrospinal fluid, obtained by lumbar puncture, and blood or urine, sampled via less invasive procedures. Starting from initial observations, we then discuss recent insights on metabolomics-based analysis, highlighting the promising clinical utility of monoamines for the identification of a molecular AD signature, aimed at improving early diagnosis and discrimination from other dementia.
Collapse
|
106
|
Liu J, Tao J, Xia R, Li M, Huang M, Li S, Chen X, Wilson G, Park J, Zheng G, Chen L, Kong J. Mind-Body Exercise Modulates Locus Coeruleus and Ventral Tegmental Area Functional Connectivity in Individuals With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:646807. [PMID: 34194314 PMCID: PMC8236862 DOI: 10.3389/fnagi.2021.646807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment (MCI) is a common global health problem. Recently, the potential of mind-body intervention for MCI has drawn the interest of investigators. This study aims to comparatively explore the modulation effect of Baduanjin, a popular mind-body exercise, and physical exercise on the cognitive function, as well as the norepinephrine and dopamine systems using the resting state functional connectivity (rsFC) method in patients with MCI. 69 patients were randomized to the Baduanjin, brisk walking, or healthy education control group for 6 months. The Montreal Cognitive Assessment (MoCA) and magnetic resonance imaging (MRI) scans were applied at baseline and at the end of the experiment. Results showed that (1) compared to the brisk walking, the Baduanjin significantly increased MoCA scores; (2) Baduanjin significantly increased the right locus coeruleus (LC) and left ventral tegmental area (VTA) rsFC with the right insula and right amygdala compared to that of the control group; and the right anterior cingulate cortex (ACC) compared to that of the brisk walking group; (3) the increased right LC-right insula rsFC and right LC-right ACC rsFC were significantly associated with the corresponding MoCA score after 6-months of intervention; (4) both exercise groups experienced an increased effective connectivity from the right ACC to the left VTA compared to the control group; and (5) Baduanjin group experienced an increase in gray matter volume in the right ACC compared to the control group. Our results suggest that Baduanjin can significantly modulate intrinsic functional connectivity and the influence of the norepinephrine (LC) and dopamine (VTA) systems. These findings may shed light on the mechanisms of mind-body intervention and aid the development of new treatments for MCI.
Collapse
Affiliation(s)
- Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Ministry of Education, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Moyi Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Maomao Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuzhen Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangli Chen
- Department of Rehabilitation Psychology and Special Education, University of Wisconsin, Madison, WI, United States
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Joe Park
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Guohua Zheng
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
107
|
van Dooren R, de Kleijn R, Hommel B, Sjoerds Z. The exploration-exploitation trade-off in a foraging task is affected by mood-related arousal and valence. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:549-560. [PMID: 34086199 PMCID: PMC8208924 DOI: 10.3758/s13415-021-00917-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
The exploration-exploitation trade-off shows conceptual, functional, and neural analogies with the persistence-flexibility trade-off. We investigated whether mood, which is known to modulate the persistence-flexibility balance, would similarly affect the exploration-exploitation trade-off in a foraging task. More specifically, we tested whether interindividual differences in foraging behavior can be predicted by mood-related arousal and valence. In 119 participants, we assessed mood-related interindividual differences in exploration-exploitation using a foraging task that included minimal task constraints to reduce paradigm-induced biases of individual control tendencies. We adopted the marginal value theorem as a model-based analysis approach, which approximates optimal foraging behavior by tackling the patch-leaving problem. To assess influences of mood on foraging, participants underwent either a positive or negative mood induction. Throughout the experiment, we assessed arousal and valence levels as predictors for explorative/exploitative behavior. Our mood manipulation affected participants' arousal and valence ratings as expected. Moreover, mood-related arousal was found to predict exploration while valence predicted exploitation, which only partly matched our expectations and thereby the proposed conceptual overlap with flexibility and persistence, respectively. The current study provides a first insight into how processes related to arousal and valence differentially modulate foraging behavior. Our results imply that the relationship between exploration-exploitation and flexibility-persistence is more complicated than the semantic overlap between these terms might suggest, thereby calling for further research on the functional, neural, and neurochemical underpinnings of both trade-offs.
Collapse
Affiliation(s)
- Roel van Dooren
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
| | - Roy de Kleijn
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| | - Bernhard Hommel
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| | - Zsuzsika Sjoerds
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| |
Collapse
|
108
|
Abstract
Modulation of cognitive control by emotion and motivation has become a major topic in cognition research; however, characterizing the extent to which these influences may dissociate has proved challenging. Here, I examine recent advances in this literature, focusing on: (1) neuromodulator mechanisms underlying positive affect and reward motivation effects on cognitive control; (2) contingency and associative learning in interactions between affect/reward and cognitive control; (3) aspects of task design, unrelated to affect/reward, that may have acted as confounding influences on cognitive control in prior work. I suggest that positive affect and reward should not be considered singular in their effects on cognitive control, but instead varying on multiple parameters and interacting with task demands, to determine goal-directed, adaptive behavior.
Collapse
|
109
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
110
|
Ao Y, Yang B, Zhang C, Wu B, Zhang X, Xing D, Xu H. Locus Coeruleus to Paraventricular Thalamus Projections Facilitate Emergence From Isoflurane Anesthesia in Mice. Front Pharmacol 2021; 12:643172. [PMID: 33986675 PMCID: PMC8111010 DOI: 10.3389/fphar.2021.643172] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Locus coeruleus (LC) sends widespread outputs to many brain regions to modulate diverse functions, including sleep/wake states, attention, and the general anesthetic state. The paraventricular thalamus (PVT) is a critical thalamic area for arousal and receives dense tyrosine-hydroxylase (TH) inputs from the LC. Although anesthesia and sleep may share a common pathway, it is important to understand the processes underlying emergence from anesthesia. In this study, we hypothesize that LC TH neurons and the TH:LC-PVT circuit may be involved in regulating emergence from anesthesia. Only male mice are used in this study. Here, using c-Fos as a marker of neural activity, we identify LC TH expressing neurons are active during anesthesia emergence. Remarkably, chemogenetic activation of LC TH neurons shortens emergence time from anesthesia and promotes cortical arousal. Moreover, enhanced c-Fos expression is observed in the PVT after LC TH neurons activation. Optogenetic activation of the TH:LC-PVT projections accelerates emergence from anesthesia, whereas, chemogenetic inhibition of the TH:LC-PVT circuit prolongs time to wakefulness. Furthermore, optogenetic activation of the TH:LC-PVT projections produces electrophysiological evidence of arousal. Together, these results demonstrate that activation of the TH:LC-PVT projections is helpful in facilitating the transition from isoflurane anesthesia to an arousal state, which may provide a new strategy in shortening the emergence time after general anesthesia.
Collapse
Affiliation(s)
- Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xuefen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dong Xing
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
111
|
Sarno E, Moeser AJ, Robison AJ. Neuroimmunology of depression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:259-292. [PMID: 34099111 DOI: 10.1016/bs.apha.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Depression is one of the leading causes of disability worldwide and a major contributor to the global burden of disease, yet the cellular and molecular etiology of depression remain largely unknown. Major Depressive Disorder (MDD) is associated with a variety of chronic physical inflammatory and autoimmune disorders, and mood disorders may act synergistically with other medical disorders to worsen patient outcomes. Here, we outline the neuroimmune complement, explore the evidence for altered immune system function in MDD, and present some of the potential mechanisms by which immune cells and molecules may drive the onset and course of MDD. These include pro-inflammatory signaling, alterations in the hypothalamic-pituitary-adrenal axis, dysregulation of the serotonergic and noradrenergic neurotransmitter systems, neuroinflammation, and meningeal immune dysfunction. Finally, we discuss the interactions between current antidepressants and the immune system and propose the possibility of immunomodulatory drugs as potential novel antidepressant treatments.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
112
|
van der Linden D, Tops M, Bakker AB. The Neuroscience of the Flow State: Involvement of the Locus Coeruleus Norepinephrine System. Front Psychol 2021; 12:645498. [PMID: 33935902 PMCID: PMC8079660 DOI: 10.3389/fpsyg.2021.645498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Flow is a state of full task engagement that is accompanied with low-levels of self-referential thinking. Flow is considered highly relevant for human performance and well-being and has, therefore, been studied extensively. Yet, the neurocognitive processes of flow remain largely unclear. In the present mini-review we focus on how the brain's locus coeruleus-norepinephrine (LC-NE) system may be involved in a range of behavioral and subjective manifestations of flow. The LC-NE system regulates decisions regarding task engagement vs. disengagement. This is done via different modes of baseline and stimulus-evoked norepinephrine release. We emphasize the theoretical and empirical overlap between the LC-NE system and flow. For both, a match between a person's skill and task challenge is important in order to induce high levels task-related attention. Moreover, psychophysiological indicators of LC-NE system activity, such as eye pupil diameter and arousal are also sensitive to flow states. Flow is related to arousal in an inverted U-shape. Similarly, in theories on the LC-NE system, task engagement is highest with intermediate levels of arousal. We argue that knowledge about the role of the LC-NE system in establishing the flow experience may help to gain fundamental knowledge of flow and can contribute to unifying various empirical findings on this topic.
Collapse
Affiliation(s)
- Dimitri van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Mattie Tops
- Developmental and Educational Psychology Unit, Leiden University, Leiden, Netherlands
| | - Arnold B. Bakker
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
- Department of Industrial Psychology and People Management, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
113
|
Unveiling the pathogenesis of perineural invasion from the perspective of neuroactive molecules. Biochem Pharmacol 2021; 188:114547. [PMID: 33838132 DOI: 10.1016/j.bcp.2021.114547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Perineural invasion (PNI) is characterized by an encounter between the cancer cells and neuronal fibers and holds an extremely poor prognosis for malignant tumors. The exact molecular mechanism behind PNI yet remains to be explored. However, it is worth-noting that an involvement of the neuroactive molecules plays a major part in this process. A complex signaling network comprising the interplay between immunological cascades and neurogenic molecules such as tumor-derived neurotrophins, neuromodulators, and growth factors constitutes an active microenvironment for PNI associated with malignancy. The present review aims at discussing the following points in relation to PNI: a) Communication between PNI and neuroplasticity mechanisms can explain the pathophysiology of poor, short and long-term outcomes in cancer patients; b) Neuroactive molecules can significantly alter the neurons and cancer cells so as to sustain PNI progression; c) Finally, careful manipulation of neurogenic pathways and/or their crosstalk with the immunological molecules implicated in PNI could provide a potential breakthrough in cancer therapeutics.
Collapse
|
114
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
115
|
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF, Devinsky O. Immunoreactivity of Muscarinic Acetylcholine M2 and Serotonin 5-HT2B Receptors, Norepinephrine Transporter and Kir Channels in a Model of Epilepsy. Life (Basel) 2021; 11:life11040276. [PMID: 33810231 PMCID: PMC8066555 DOI: 10.3390/life11040276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Betul Koklu
- Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey;
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alina Arulsamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone School of Medicine, New York, NY 10010, USA
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| |
Collapse
|
116
|
Warren WG, Papagianni EP, Stevenson CW, Stubbendorff C. In it together? The case for endocannabinoid-noradrenergic interactions in fear extinction. Eur J Neurosci 2021; 55:952-970. [PMID: 33759226 DOI: 10.1111/ejn.15200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Anxiety and trauma-related disorders, such as post-traumatic stress disorder (PTSD), are debilitating mental illnesses with great personal and socioeconomic costs. Examining memory formation and relevant behavioural responding associated with aversive stimuli may improve our understanding of the neurobiology underlying fear memory processing and PTSD treatment. The neurocircuitry underpinning learned fear and its inhibition through extinction is complex, involving synergistic interactions between different neurotransmitter systems in inter-connected brain areas. Endocannabinoid and noradrenergic transmission have both been implicated separately in fear memory processing and PTSD, but potential interactions between these systems in relation to fear extinction have received little attention to date. Their receptors are expressed together in brain areas crucial for fear extinction, which is enhanced by both cannabinoid and noradrenergic receptor activation in these areas. Moreover, cannabinoid signalling modulates the activity of locus coeruleus noradrenaline (NA) neurons and the release of NA in the medial prefrontal cortex, a brain area that is crucial for fear extinction. Interestingly, endocannabinoid-noradrenergic system interactions have been shown to regulate the encoding and retrieval of fear memory. Thus, noradrenergic regulation of fear extinction may also be driven indirectly in part via cannabinoid receptor signalling. In this perspective paper, we collate the available relevant literature and propose a synergistic role for the endocannabinoid and noradrenergic systems in regulating fear extinction, the study of which may further our understanding of the neurobiological substrates of PTSD and its treatment.
Collapse
Affiliation(s)
- William G Warren
- School of Biosciences, University of Nottingham, Loughborough, UK
| | | | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Christine Stubbendorff
- School of Biosciences, University of Nottingham, Loughborough, UK.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
117
|
Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021; 53:3039-3062. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
How does the brain guide our actions? This is a complex issue, where the medial prefrontal cortex (mPFC) plays a crucial role. The mPFC is essential for cognitive flexibility and decision making. These functions are related to reward- and aversion-based learning, which ultimately drive behavior. Though, cortical projections and modulatory systems that may regulate those processes in the mPFC are less understood. How does the mPFC regulate approach-avoidance behavior in the case of conflicting aversive and appetitive stimuli? This is likely dependent on the bottom-up neuromodulation of the mPFC projection neurons. In this review, we integrate behavioral-, pharmacological-, and viral-based circuit manipulation data showing the involvement of mPFC dopaminergic, noradrenergic, cholinergic, and serotoninergic inputs in reward and aversion processing. Given that an incorrect balance of reward and aversion value could be a key problem in mental diseases such as substance use disorders, we discuss outstanding questions for future research on the role of mPFC modulation in reward and aversion.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Jorge Horacio Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
118
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
119
|
Horie S, Kiyokage E, Hayashi S, Inoue K, Sohn J, Hioki H, Furuta T, Toida K. Structural basis for noradrenergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2021; 529:2189-2208. [PMID: 33616936 DOI: 10.1002/cne.25085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/09/2022]
Abstract
Olfactory input is processed in the glomerulus of the main olfactory bulb (OB) and relayed to higher centers in the brain by projection neurons. Conversely, centrifugal inputs from other brain regions project to the OB. We have previously analyzed centrifugal inputs into the OB from several brain regions using single-neuron labeling. In this study, we analyzed the centrifugal noradrenergic (NA) fibers derived from the locus coeruleus (LC), because their projection pathways and synaptic connections in the OB have not been clarified in detail. We analyzed the NA centrifugal projections by single-neuron labeling and immunoelectron microscopy. Individual NA neurons labeled by viral infection were three-dimensionally traced using Neurolucida software to visualize the projection pathway from the LC to the OB. Also, centrifugal NA fibers were visualized using an antibody for noradrenaline transporter (NET). NET immunoreactive (-ir) fibers contained many varicosities and synaptic vesicles. Furthermore, electron tomography demonstrated that NET-ir fibers formed asymmetrical synapses of varied morphology. Although these synapses were present at varicosities, the density of synapses was relatively low throughout the OB. The maximal density of synapses was found in the external plexiform layer; about 17% of all observed varicosities contained synapses. These results strongly suggest that NA-containing fibers in the OB release NA from both varicosities and synapses to influence the activities of OB neurons. The present study provides a morphological basis for olfactory modulation by centrifugal NA fibers derived from the LC.
Collapse
Affiliation(s)
- Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Emi Kiyokage
- Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| |
Collapse
|
120
|
van der Linden D, Tops M, Bakker AB. Go with the flow: A neuroscientific view on being fully engaged. Eur J Neurosci 2021; 53:947-963. [PMID: 33084102 PMCID: PMC7983950 DOI: 10.1111/ejn.15014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
Flow is a state of full task absorption, accompanied with a strong drive and low levels of self-referential thinking. Flow is likely when there is a match between a person's skills and the task challenge. Despite its relevance for human performance and the vast body of research on flow, there is currently still relatively little insight in its underlying neurocognitive mechanisms. In this paper, we discuss a set of large brain networks that may be involved in establishing the core dimensions of flow. We propose that dopaminergic and noradrenergic systems mediate the intrinsic motivation and activate mood states that are typical for flow. The interaction between three large-scale attentional networks, namely the Default Mode Network, Central Executive Network and the Salience Network is proposed to play a role in the strong task engagement, low self-referential thinking, feedback and feelings of control in flow. The proposed relationships between flow and the brain networks may support the generation of new hypotheses and can guide future research in this field.
Collapse
Affiliation(s)
- Dimitri van der Linden
- Department of Psychology, Education, and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
| | - Mattie Tops
- Developmental and Educational Psychology UnitLeiden UniversityLeidenThe Netherlands
| | - Arnold B. Bakker
- Department of Psychology, Education, and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
- University of JohannesburgSouth Africa
| |
Collapse
|
121
|
The Neuromelanin Paradox and Its Dual Role in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10010124. [PMID: 33467040 PMCID: PMC7829956 DOI: 10.3390/antiox10010124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with an increasing dysfunction of key brain homeostasis mechanisms and represents the main risk factor across most neurodegenerative disorders. However, the degree of dysregulation and the affectation of specific pathways set apart normal aging from neurodegenerative disorders. In particular, the neuronal metabolism of catecholaminergic neurotransmitters appears to be a specifically sensitive pathway that is affected in different neurodegenerations. In humans, catecholaminergic neurons are characterized by an age-related accumulation of neuromelanin (NM), rendering the soma of the neurons black. This intracellular NM appears to serve as a very efficient quencher for toxic molecules. However, when a neuron degenerates, NM is released together with its load (many undegraded cellular components, transition metals, lipids, xenobiotics) contributing to initiate and worsen an eventual immune response, exacerbating the oxidative stress, ultimately leading to the neurodegenerative process. This review focuses on the analysis of the role of NM in normal aging and neurodegeneration related to its capabilities as an antioxidant and scavenging of harmful molecules, versus its involvement in oxidative stress and aberrant immune response, depending on NM saturation state and its extracellular release.
Collapse
|
122
|
Devoto P, Sagheddu C, Santoni M, Flore G, Saba P, Pistis M, Gessa GL. Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex. Front Pharmacol 2020; 11:588160. [PMID: 33071798 PMCID: PMC7538903 DOI: 10.3389/fphar.2020.588160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities.
Collapse
Affiliation(s)
- Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,"Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Santoni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gian Luigi Gessa
- "Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
123
|
Alluri SR, Kim SW, Volkow ND, Kil KE. PET Radiotracers for CNS-Adrenergic Receptors: Developments and Perspectives. Molecules 2020; 25:molecules25174017. [PMID: 32899124 PMCID: PMC7504810 DOI: 10.3390/molecules25174017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Epinephrine (E) and norepinephrine (NE) play diverse roles in our body’s physiology. In addition to their role in the peripheral nervous system (PNS), E/NE systems including their receptors are critical to the central nervous system (CNS) and to mental health. Various antipsychotics, antidepressants, and psychostimulants exert their influence partially through different subtypes of adrenergic receptors (ARs). Despite the potential of pharmacological applications and long history of research related to E/NE systems, research efforts to identify the roles of ARs in the human brain taking advantage of imaging have been limited by the lack of subtype specific ligands for ARs and brain penetrability issues. This review provides an overview of the development of positron emission tomography (PET) radiotracers for in vivo imaging of AR system in the brain.
Collapse
Affiliation(s)
- Santosh Reddy Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| |
Collapse
|