101
|
Kinoshita I, Jin D, Higashino M, Terada T, Kurisu Y, Takai S, Kawata R. Increase in Chymase-Positive Mast Cells in Recurrent Pleomorphic Adenoma and Carcinoma Ex Pleomorphic Adenoma of the Parotid Gland. Int J Mol Sci 2021; 22:ijms222312613. [PMID: 34884420 PMCID: PMC8657626 DOI: 10.3390/ijms222312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Incomplete excision of pleomorphic adenoma (PA) may result in recurrent pleomorphic adenoma (RPA). Furthermore, long-term neglected PA may become carcinoma ex pleomorphic adenoma (CXPA). In the present study, the relationships between mast cell-derived chymase and these tumors were examined. The tumor tissues of PA consisted of either or both glandular and fibrotic structures. Histological features of RPA were almost similar to those of PA, except that they showed multinodular structures. CXPA is composed of a mixture of PA and carcinoma. The main stromal cells in PA were myofibroblasts, whereas fibroblasts constituted the main cellular portion in the stromal tissue of RPA. Cancer-associated fibroblasts (CAFs) were present abundantly in CXPA. With increased VEGF expression, neovascularization tended to increase in RPA or CXPA. Compared with PA, chymase-positive mast cells, as well as chymase gene expression, were increased in the tumor tissues from patients with RPA or CXPA. SCF, TGFβ1, and PCNA-positive staining was widely observed in these tumor tissues. The above results suggest that mast cell-derived chymase through its direct or cooperative effects with other mediators may participate in the pathophysiology of RPA and CXPA.
Collapse
Affiliation(s)
- Ichita Kinoshita
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan; (I.K.); (M.H.); (T.T.); (R.K.)
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan;
- Correspondence: ; Tel.: +81-72-683-1221
| | - Masaaki Higashino
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan; (I.K.); (M.H.); (T.T.); (R.K.)
| | - Tetsuya Terada
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan; (I.K.); (M.H.); (T.T.); (R.K.)
| | - Yoshitaka Kurisu
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan;
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan;
| | - Ryo Kawata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Japan; (I.K.); (M.H.); (T.T.); (R.K.)
| |
Collapse
|
102
|
Uncovering the anti-angiogenic effect of semisynthetic triterpenoid CDDO-Im on HUVECs by an integrated network pharmacology approach. Comput Biol Med 2021; 141:105034. [PMID: 34802714 DOI: 10.1016/j.compbiomed.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023]
Abstract
AIM To reveal the molecular mechanism of anti-angiogenic activity of semisynthetic triterpenoid CDDO-Im. MATERIALS AND METHODS Using re-analysis of cDNA microarray data of CDDO-Im-treated human vascular endothelial cells (HUVECs) (GSE71622), functional annotation of revealed differentially expressed genes (DEGs) and analysis of their co-expression, the key processes induced by CDDO-Im in HUVECs were identified. Venn diagram analysis was further performed to reveal the common DEGs, i.e. genes both susceptible to CDDO-Im and involved in the regulation of angiogenesis. A list of probable protein targets of CDDO-Im was prepared based on Connectivity Map/cheminformatics analysis and chemical proteomics data, among which the proteins that were most associated with the angiogenesis-related regulome were identified. Finally, identified targets were validated by molecular docking and text mining approaches. KEY FINDINGS The effect of CDDO-Im in HUVECs can be divided into two main phases: the short early phase (0.5-3 h) with an acute FOXD1/CEBPA/JUNB-regulated pro-angiogenic response induced by xenobiotic stress, and the second anti-angiogenic step (6-24 h) with massive suppression of various angiogenesis-related processes, accompanied by the activation of cytoprotective mechanisms. Our analysis showed that the anti-angiogenic activity of CDDO-Im is mediated by its inhibition of the expression of PLAT, ETS1, A2M, SPAG9, RASGRP3, FBXO32, GCNT1 and HDGFRP3 and its direct interactions with EGFR, mTOR, NOS2, HSP90AA1, MDM2, SYK, IRF3, ATR and KIF14. SIGNIFICANCE Our findings provide valuable insights into the understanding of the molecular mechanisms of the anti-angiogenic activity of cyano enone-bearing triterpenoids and revealed a range of novel promising therapeutic targets to control pathological neovascularization.
Collapse
|
103
|
Fan B, Tan X, Lou Y, Zheng Y, Zhang L, Wu X. Prognostic factors of patients with advanced lung cancer treated with anlotinib: a retrospective cohort study. J Int Med Res 2021; 49:3000605211046173. [PMID: 34758674 PMCID: PMC8591656 DOI: 10.1177/03000605211046173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective Our study aimed to evaluate the main factors affecting the efficacy of anlotinib to determine the therapeutically dominant populations. Methods The medical records of patients with lung cancer who were treated with anlotinib from July 2018 to February 2020 at Renji Hospital, School of Medicine, Shanghai Jiaotong University were retrospectively reviewed. The optimal cutoff prognostic nutritional index (PNI) value for predicting efficacy was determined according to receiver operating characteristic curves. Progression-free survival (PFS) and overall survival (OS) were calculated and compared using the Kaplan–Meier method and log‐rank test. The prognostic values of each variable were evaluated with univariate and multivariate Cox proportional hazard regression analyses. Results The overall disease control rate of 44 patients with lung cancer was 93.2% (41/44). The median PFS was 5.0 months (95% [confidence interval] CI: 2.2–7.8), and the median OS was 6.5 months (95% CI: 3.6–9.3). The multivariate analysis results indicated that hand–foot syndrome and high PNI values were independent protective factors of PFS and OS. Conclusions Anlotinib was effective in treating locally advanced or advanced lung cancer. High pretreatment PNI scores and the presence of hand–foot syndrome after treatment were independent prognostic markers for favorable OS and PFS.
Collapse
Affiliation(s)
- Bijun Fan
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoming Tan
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yueyan Lou
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Zheng
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liyan Zhang
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xueling Wu
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
104
|
Hegde M, Bhat SM, Guruprasad KP, Moka R, Ramachandra L, Satyamoorthy K, Joshi MB. Human breast tumor derived endothelial cells exhibit distinct biological properties. Biol Cell 2021; 114:73-85. [PMID: 34755911 DOI: 10.1111/boc.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND INFORMATION Excessive angiogenesis characterized by leaky, tortuous, and chaotic vasculature is one of the hallmarks of cancers and is significantly correlated to poor prognosis. Disorganized angiogenesis leads to poor perfusion of anti-cancer drugs and limits access to immune cells. Hence, impeding angiogenesis is one of the attractive therapeutic targets to inhibit progression and metastasis in several solid tumors including breast. RESULTS We have developed a robust and reproducible method for isolating and ex vivo culture of endothelial cells (EC) derived from non-malignant (Endo-N) and malignant (Endo-T) part from clinically characterized human breast tumors. RT-PCR and immunoblotting analysis indicated that these cells exhibited expression of endothelial specific genes such as PECAM-1 (CD31), Endoglin (CD105), eNOS, VE-cadherin, VCAM1, and MCAM. Vasculogenic mimicry and contamination of progenitor EC recruited in tumors was ruled out by absence of CD133 expression and normal karyotype. Both the cell types showed stable expression of CD31 and CD105 up to seven passages. Furthermore, compared to Endo-N cells, Endo-T cells showed (a) constitutively increased proliferation marked by nearly 36% of cells in mitotic phase, (b) requirement of glutamine for cell survival, (c) pro-migratory phenotype, (d) produced increased number of sprouts in 3D cultures, and (e) resistance to sorafenib. CONCLUSION Tumor derived EC showed distinct biological properties compared to normal breast EC. SIGNIFICANCE Our method for isolating endothelial cell types from human breast tumors may be explored to (a) understand cellular and molecular mechanisms, (b) screen anti-angiogenic molecules, and (c) formulate organoid cultures to develop personalized medicine facilitating better clinical management of breast cancers.
Collapse
Affiliation(s)
- Mangala Hegde
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sharath Mohan Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajasekhar Moka
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
105
|
Brisset M, Grandin M, Bernet A, Mehlen P, Hollande F. Dependence receptors: new targets for cancer therapy. EMBO Mol Med 2021; 13:e14495. [PMID: 34542930 PMCID: PMC8573599 DOI: 10.15252/emmm.202114495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Dependence receptors are known to promote survival and positive signaling such as proliferation, migration, and differentiation when activated, but to actively trigger apoptosis when unbound to their ligand. Their abnormal regulation was shown to be an important feature of tumorigenesis, allowing cancer cells to escape apoptosis triggered by these receptors while promoting in parallel major aspects of tumorigenesis such as proliferation, angiogenesis, invasiveness, and chemoresistance. This involvement in multiple cancer hallmarks has raised interest in dependence receptors as targets for cancer therapy. Although additional studies remain necessary to fully understand the complexity of signaling pathways activated by these receptors and to target them efficiently, it is now clear that dependence receptors represent very exciting targets for future cancer treatment. This manuscript reviews current knowledge on the contribution of dependence receptors to cancer and highlights the potential for therapies that activate pro-apoptotic functions of these proteins.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Agnès Bernet
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Patrick Mehlen
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| |
Collapse
|
106
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
107
|
Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Molecules 2021; 26:molecules26196019. [PMID: 34641563 PMCID: PMC8513016 DOI: 10.3390/molecules26196019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.
Collapse
Affiliation(s)
- Reem Aljanabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Lina Alsous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Yakutiye 25030, Turkey;
| | - Mustafa Gul
- Department of Physiology, School of Medicine, Ataturk University, Yakutiye 25030, Turkey;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
- Correspondence: ; Tel.: +962-6535-5000 (ext. 23318)
| |
Collapse
|
108
|
Assis A, Camargo S, Margalit R, Mitrani E. Creation of a vascular inducing device using mesenchymal stem cells to induce angiogenesis. J Biosci Bioeng 2021; 132:408-416. [PMID: 34326013 DOI: 10.1016/j.jbiosc.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Conventional treatments of peripheral vascular disease and coronary artery disease have partial success but are still limited. Methods to deliver angiogenic factors into ischemic areas using gene, protein and cell therapies are faced with difficult issues such a delivery, effective concentration and duration of action. Tissue engineering offers the possibility of creating a functional self-contained three-dimensional (3D) unit that works as a coordinated biological pump that can secrete a whole range of angiogenic factors. We report a tissue engineering approach using decellularized micro-fragments and mesenchymal stem cells (MSCs) to create a vascular inducing device (VID). Proteomic analysis of the decellularized micro-fragments and of the VIDs reveals a large number of extracellular-matrix (ECM) proteins. Moreover, the VIDs were found to transcribe and secrete a whole repertoire of angiogenic factors in a sustained manner. Furthermore, preliminary results of implantation VIDs into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice indicate formation of vascular network at the site within a week. We propose that those VIDs could serve as a safe, localized, simple and powerful method for the treatment of certain types of vascular diseases.
Collapse
Affiliation(s)
- Assaf Assis
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | - Sandra Camargo
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | | | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel.
| |
Collapse
|
109
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
110
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
111
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
112
|
Vásquez X, Sánchez-Gómez P, Palma V. Netrin-1 in Glioblastoma Neovascularization: The New Partner in Crime? Int J Mol Sci 2021; 22:8248. [PMID: 34361013 PMCID: PMC8348949 DOI: 10.3390/ijms22158248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.
Collapse
Affiliation(s)
- Ximena Vásquez
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
113
|
Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int J Mol Sci 2021; 22:ijms22147470. [PMID: 34299097 PMCID: PMC8305153 DOI: 10.3390/ijms22147470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Collapse
|
114
|
Estolano-Cobián A, Alonso MM, Díaz-Rubio L, Ponce CN, Córdova-Guerrero I, Marrero JG. Tanshinones and their Derivatives: Heterocyclic Ring-Fused Diterpenes of Biological Interest. Mini Rev Med Chem 2021; 21:171-185. [PMID: 32348220 DOI: 10.2174/1389557520666200429103225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
The available scientific literature regarding tanshinones is very abundant, and after its review, it is noticeable that most of the articles focus on the properties of tanshinone I, cryptotanshinone, tanshinone IIA, sodium tanshinone IIA sulfonate and the dried root extract of Salvia miltiorrhiza (Tan- Shen). However, although these products have demonstrated important biological properties in both in vitro and in vivo models, their poor solubility and bioavailability have limited their clinical applications. For these reasons, many studies have focused on the search for new pharmaceutical formulations for tanshinones, as well as the synthesis of new derivatives that improve their biological properties. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2015) on tanshinones in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we offer an update on the last five years of new research on these quinones, focusing on their synthesis, biological activity on noncommunicable diseases and drug delivery systems, to support future research on its clinical applications.
Collapse
Affiliation(s)
- Arturo Estolano-Cobián
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Mariana Macías Alonso
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Cecilia Naredo Ponce
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Joaquín G Marrero
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| |
Collapse
|
115
|
Iksen, Pothongsrisit S, Pongrakhananon V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules 2021; 26:4100. [PMID: 34279440 PMCID: PMC8271933 DOI: 10.3390/molecules26134100] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan 20131, Indonesia
| | - Sutthaorn Pothongsrisit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
116
|
Dey M, Ayan B, Yurieva M, Unutmaz D, Ozbolat IT. Studying Tumor Angiogenesis and Cancer Invasion in a Three-Dimensional Vascularized Breast Cancer Micro-Environment. Adv Biol (Weinh) 2021; 5:e2100090. [PMID: 33857356 PMCID: PMC8574137 DOI: 10.1002/adbi.202100090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/28/2021] [Indexed: 12/19/2022]
Abstract
Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro-environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro-environment is developed comprising of metastatic MDA-MB-231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer-specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor-associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration-assisted bioprinting, cancer-endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom-up approach of tumor micro-environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform.
Collapse
Affiliation(s)
- Madhuri Dey
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Bugra Ayan
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine and University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine and University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
117
|
Marzo T, La Mendola D. The Effects on Angiogenesis of Relevant Inorganic Chemotherapeutics. Curr Top Med Chem 2021; 21:73-86. [PMID: 33243124 DOI: 10.2174/1568026620666201126163436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a key process allowing the formation of blood vessels. It is crucial for all the tissues and organs, ensuring their function and growth. Angiogenesis is finely controlled by several mechanisms involving complex interactions between pro- or antiangiogenic factors, and an imbalance in this control chain may result in pathological conditions. Metals as copper, zinc and iron cover an essential role in regulating angiogenesis, thus therapies having physiological metals as target have been proposed. In addition, some complexes of heavier metal ions (e.g., Pt, Au, Ru) are currently used as established or experimental anticancer agents targeting genomic or non-genomic targets. These molecules may affect the angiogenic mechanisms determining different effects that have been only poorly and non-systematically investigated so far. Accordingly, in this review article, we aim to recapitulate the impact on the angiogenic process of some reference anticancer drugs, and how it is connected to the overall pharmacological effects. In addition, we highlight how the activity of these drugs can be related to the role of biological essential metal ions. Overall, this may allow a deeper description and understanding of the antineoplastic activity of both approved or experimental metal complexes, providing important insights for the synthesis of new inorganic drugs able to overcome resistance and recurrence phenomena.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| |
Collapse
|
118
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
119
|
Kras P, Talkowski K, Grabarek BO, Skalska-Dziobek N, Boroń D, Oplawski M. Evaluation of Variances in VEGF-A-D and VEGFR-1-3 Expression in the Ishikawa Endometrial Cancer Cell Line Treated with Salinomycin and Anti-Angiogenic/Lymphangiogenic Effect. Curr Pharm Biotechnol 2021; 22:697-705. [PMID: 32648839 DOI: 10.2174/1389201021666200710093519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In cancer, an excessive and uncontrolled process of creating new blood and lymphatic vessels that play a key role in the metastasis process can be observed. The Vascular Endothelial Growth Factor (VEGF-A,-B,-C,-D) family together with their specific receptors (VEGFR-1,-2,- 3) plays a key role in these processes, therefore, it would be reasonable to determine the correct pattern of their expression. OBJECTIVES The study aimed to assess the use of salinomycin as an anti-angiogenic and anti-lymphangiogenic drug during endometrial cancer by examining changes in the expression pattern of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3 depending on the treatment period of the Ishikawa endometrial cancer cells with salinomycin in comparison to the control culture. MATERIALS AND METHODS To determine how influential salinomycin was on the expression of both mRNAs, 1 μM of the drug was added to the cell culture and then it was cultured all together for 12, 24 and 48 hour periods. The cells that made up the control culture were not treated with salinomycin. To determine the changes in the expression profile of the selected genes, we used the microarray, techniques: RTqPCR and ELISA (p<0.05). RESULTS For all isoforms of VEGF-A-D as well as receptors of VEGFR-1-3, a decrease in expression under the influence of salinomycin was noted. For VEGF-A and VEGFR-1, the difference in the expression between the culture treated with salinomycin in comparison to the control was statistically significant (p=0.0004). In turn, for VEGF-B, the difference between the culture exposed for 24 hours in comparison to the control (p=0.00000) as well as the comparison between H48 vs. C (p=0.00000) was statistically significant. In reference to VEGF-C, VEGFR-2 and VEGFR-3, the statistical analysis showed the significant difference in expression between the culture incubated with the drug for 12, 24 and 48 hours in comparison to the control as well as between the selected times. For all of these comparisons, p=0.00000 was utilized. CONCLUSION Salinomycin changes the expression pattern of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2, and VEGFR-3 in endometrial cancer cells. The obtained results suggest that salinomycin might exert the effect via VEGF signaling pathways.
Collapse
Affiliation(s)
- Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Karol Talkowski
- Department of Psychiatry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | - Nina Skalska-Dziobek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| |
Collapse
|
120
|
Nanoformulation Shows Cytotoxicity against Glioblastoma Cell Lines and Antiangiogenic Activity in Chicken Chorioallantoic Membrane. Pharmaceutics 2021; 13:pharmaceutics13060862. [PMID: 34208088 PMCID: PMC8230781 DOI: 10.3390/pharmaceutics13060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GB) is a histological and genetically heterogeneous brain tumor that is highly proliferative and vascularized. The prognosis is poor with currently available treatment. In this study, we evaluated the cytotoxicity and antiangiogenic activity of doxorubicin-loaded-chitosan-coated-arginylglycylaspartic acid-functionalized-poly(ε-caprolactone)-alpha bisabolol-LNC (AB-DOX-LNC-L-C-RGD). The nanoformulation was prepared by self-assembling followed by interfacial reactions, physicochemically characterized and evaluated in vitro against GB cell lines (U87MG and U138MG) and in vivo using the chicken chorioallantoic membrane assay (CAM). Spherical shape nanocapsules had a hydrodynamic mean diameter of 138 nm, zeta potential of +13.4 mV, doxorubicin encapsulation of 65%, and RGD conjugation of 92%. After 24 h of treatment (U87MG and U138MG), the median inhibition concentrations (IC50) were 520 and 490 nmol L−1 doxorubicin-equivalent concentrations, respectively. The treatment induced antiproliferative activity with S-phase cell-cycle arrest and apoptosis in the GB cells. Furthermore, after 48 h of exposure, evaluation of antiangiogenic activity (CAM) showed that the relative vessel growth following treatment with the nanocapsules was 5.4 times lower than that with the control treatment. The results support the therapeutic potential of the nanoformulation against GB and, thereby, pave the way for future preclinical studies.
Collapse
|
121
|
Aziz MNM, Rahim NFC, Hussin Y, Yeap SK, Masarudin MJ, Mohamad NE, Akhtar MN, Osman MA, Cheah YK, Alitheen NB. Anti-Metastatic and Anti-Angiogenic Effects of Curcumin Analog DK1 on Human Osteosarcoma Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14060532. [PMID: 34204873 PMCID: PMC8228595 DOI: 10.3390/ph14060532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.
Collapse
Affiliation(s)
- Muhammad Nazirul Mubin Aziz
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Nurul Fattin Che Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.M.A.); (N.F.C.R.); (Y.H.); (M.J.M.); (N.E.M.); (M.A.O.)
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-9769-7471
| |
Collapse
|
122
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
123
|
Hargreaves A, Barry ST, Bigley A, Kendrew J, Price S. Tumors modulate fenestrated vascular beds and host endocrine status. J Appl Toxicol 2021; 41:1952-1965. [PMID: 33977518 DOI: 10.1002/jat.4176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/12/2022]
Abstract
Allograft and xenograft transplantation into a mouse host is frequently utilized to study cancer biology, tumor behavior, and response to treatment. Preclinical studies employing these models often focus solely upon the intra-tumoral effects of a given treatment, without consideration of systemic toxicity or tumor-host interaction, nor whether this latter relationship could modulate the toxicologic response to therapy. Here it is demonstrated that the implantation and growth of a range of human- and mouse-derived cell lines leads to structural vascular and, potentially, functional changes within peripheral endocrine tissues, a process that could conceivably ameliorate the severity of anti-angiogenic-induced fenestrated vessel attenuation. Observations suggest a multifactorial process, which may involve host- and tumor-derived cytokines/growth factors, and the liberation of myeloid-derived suppressor cells. Further investigation revealed a structurally comparable response to the administration of exogenous estrogen. These findings, in addition to providing insight into the development of clinical anti-angiogenic "adaptation," may be of significance within the "cancer-cachexia" and cancer-related anemia syndromes in man.
Collapse
|
124
|
Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2440. [PMID: 34066710 PMCID: PMC8125868 DOI: 10.3390/ma14092440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.
Collapse
Affiliation(s)
- Octav Ginghină
- Department of Surgery, “Sf. Ioan” Emergency Clinical Hospital, 13 Vitan Barzesti Street, 042122 Bucharest, Romania;
- Department II, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 17-21 Calea Plevnei Street, 010232 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| |
Collapse
|
125
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
126
|
Choroba K, Machura B, Szlapa-Kula A, Malecki JG, Raposo L, Roma-Rodrigues C, Cordeiro S, Baptista PV, Fernandes AR. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2':6',2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur J Med Chem 2021; 218:113404. [PMID: 33823390 DOI: 10.1016/j.ejmech.2021.113404] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Cancer is the second leading cause of death worldwide. Cisplatin has challenged cancer treatment; however, resistance and side effects hamper its use. New agents displaying improved activity and more reduced side effects relative to cisplatin are needed. In this work we present the synthesis, characterization and biological activities of three complexes with quinoline-substituted 2,2':6',2″-terpyridine ligand: [Pt(4'-(2-quin)-terpy)Cl](SO3CF3) (1), [Au(4'-(2-quin)-terpy)Cl](PF6)2·CH3CN (2) and [Cu(4'-(2-quin)-terpy)Cl](PF6) (3). The three complexes displayed a high antiproliferative activity in ovarian carcinoma cell line (A2780) and even more noticeable in a colorectal carcinoma cell line (HCT116) following the order 3 > 2 > 1. The complexes IC50 are at least 20 × lower than the IC50 displayed by cisplatin (15.4 μM) in HCT116 cell line while displaying at the same time, much reduced cytotoxicity in a normal dermal fibroblast culture. These cytotoxic activities seem to be correlated with the inclination angles of 2-quin unit to the central pyridine. Interestingly, all complexes can interact with calf-thymus DNA (CT-DNA) in vitro via different mechanisms, although intercalation seems to be the preferred mechanism at least for 2 and 3 at higher concentrations of DNA. Moreover, circular dichroism (CD) data seems to indicate that complex 3, more planar, induces a high destabilization of the DNA double helix (shift from B-form to Z-form). Higher the deviation from planar, the lower the cytotoxicity displayed by the complexes. Cellular uptake may be also responsible for the different cytotoxicity exhibited by complexes with 3 > 2 >1. Complex 2 seems to enter cells more passively while complex 1 and 3 might enter cells via energy-dependent and -independent mechanisms. Complexes 1-3 were shown to induce ROS are associated with the increased apoptosis and autophagy. Moreover, all complexes dissipate the mitochondrial membrane potential leading to an increased BAX/BCL-2 ratio that triggered apoptosis. Complexes 2 and 3 were also shown to exhibit an anti-angiogenic effect by significantly reduce the number of newly formed blood vessel in a CAM model with no toxicity in this in vivo model. Our results seem to suggest that the increased cytotoxicity of complex 3 in HCT116 cells and its potential interest for further translation to pre-clinical mice xenografts might be associated with: 1) higher % of internalization of HCT116 cells via energy-dependent and -independent mechanisms; 2) ability to intercalate DNA and due to its planarity induced higher destabilization of DNA; 3) induce intracellular ROS that trigger apoptosis and autophagy; 4) low toxicity in an in vivo model of CAM; 5) potential anti-angiogenic effect.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Jan G Malecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Luis Raposo
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
127
|
Parmar D, Apte M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur J Pharmacol 2021; 899:174021. [PMID: 33741382 DOI: 10.1016/j.ejphar.2021.174021] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is the process of formation of new blood vessels from existing ones. Vessels serve the purpose of providing oxygen, nutrients and removal of waste from the cells. The physiological angiogenesis is a normal process and is required in the embryonic development, wound healing, menstrual cycle. For homeostasis, balance of pro angiogenic factors and anti angiogenic factors like is important. Their imbalance causes a process known as "angiogenic switch" which leads to various pathological conditions like inflammation, tumor and restenosis. Like normal cells, tumor cells also require oxygen and nutrients to grow which is provided by tumor angiogenesis. Hence angiogenic process can be inhibited to prevent tumor growth. This gives rise to study of anti angiogenic drugs. Currently approved anti angiogenic drugs are mostly VEGF inhibitors, but VEGF inhibitors have certain limitations like toxicity, low progression free survival (PFS), and resistance to anti VEGF therapy. This article focuses on angiopoietins as alternative and potential targets for anti angiogenic therapy. Angiopoietins are ligands of Tie receptor and play a crucial role in angiogenesis, their inhibition can prevent many tumor growths even on later stages of development. We present current clinical and preclinical stages of angiopoietin inhibitors. Drugs studied in the article are selective as well as non-selective inhibitors of angiopoietin 2 like Trebananib (AMG 386), AMG 780, REGN 910, CVX 060, MEDI 3617 and dual inhibitors of angiopoietin 2 and VEGF like Vanucizumab and RG7716. The angiopoietin inhibitors show promising results alone and in combination with VEGF inhibitors in various malignancies.
Collapse
Affiliation(s)
- Digna Parmar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Maharashtra, India.
| | - Madhavi Apte
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Maharashtra, India.
| |
Collapse
|
128
|
Angiogenesis in the Normal Adrenal Fetal Cortex and Adrenocortical Tumors. Cancers (Basel) 2021; 13:cancers13051030. [PMID: 33804534 PMCID: PMC7957756 DOI: 10.3390/cancers13051030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis plays an important role in several physiological and pathological processes. Pharmacological angiogenesis modulation has been robustly demonstrated to achieve clinical benefits in several cancers. Adrenocortical carcinomas (ACC) are rare tumors that often have a poor prognosis. In addition, therapeutic options for ACC are limited. Understanding the mechanisms that regulate adrenocortical angiogenesis along the embryonic development and in ACC could provide important clues on how these processes could be pharmacologically modulated for ACC treatment. In this report, we performed an integrative review on adrenal cortex angiogenesis regulation in physiological conditions and ACC. During embryonic development, adrenal angiogenesis is regulated by both VEGF and Ang-Tie signaling pathways. In ACC, early research efforts were focused on VEGF signaling and this pathway was identified as a good prognostic factor and thus a promising therapeutic target. However, every clinical trial so far conducted in ACC using VEGF pathway- targeting drugs, alone or in combination, yielded disappointing results. In contrast, although the Ang-Tie pathway has been pointed out as an important regulator of fetal adrenocortical angiogenesis, its role is yet to be explored in ACC. In the future, further research on the role and efficacy of modulating both Ang-Tie and VEGF pathways in ACC is needed.
Collapse
|
129
|
Lee JY, Chaudhuri O. Modeling the tumor immune microenvironment for drug discovery using 3D culture. APL Bioeng 2021; 5:010903. [PMID: 33564739 PMCID: PMC7857858 DOI: 10.1063/5.0030693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
A few decades ago, the notion that a patient's own immune system could recognize and eliminate tumor cells was highly controversial; now, it is the basis for a thriving new field of cancer research, cancer immunology. With these new immune-based cancer treatments come the need for new complex preclinical models to assess their efficacy. Traditional therapeutics have often targeted the intrinsic growth of cancer cells and could, thus, be modeled with 2D monoculture. However, the next generation of therapeutics necessitates significantly greater complexity to model the ability of immune cells to infiltrate, recognize, and eliminate tumor cells. Modeling the physical and chemical barriers to immune infiltration requires consideration of extracellular matrix composition, architecture, and mechanobiology in addition to interactions between multiple cell types. Here, we give an overview of the unique properties of the tumor immune microenvironment, the challenges of creating physiologically relevant 3D culture models for drug discovery, and a perspective on future opportunities to meet this significant challenge.
Collapse
Affiliation(s)
- Joanna Y. Lee
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California 94080, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
130
|
Hooglugt A, van der Stoel MM, Boon RA, Huveneers S. Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Front Oncol 2021; 10:612802. [PMID: 33614496 PMCID: PMC7890025 DOI: 10.3389/fonc.2020.612802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature, proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/TAZ activation is important for the formation of new blood and lymphatic vessels during development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has been studied in great detail, however the role of YAP/TAZ within the tumor endothelium remains insufficiently understood, which complicates therapeutic strategies aimed at targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor microenvironment that control endothelial YAP/TAZ activation and explore the role of their downstream targets in driving tumor angiogenesis. We further discuss the potential for anti-cancer treatments and vascular normalization strategies to improve tumor therapies.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
| | - Miesje M. van der Stoel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
131
|
Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021; 26:775. [PMID: 33546106 PMCID: PMC7913218 DOI: 10.3390/molecules26040775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aula Ammar
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow City G61 1BD, UK;
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
132
|
A single nucleotide mutation drastically increases the expression of tumor-homing NGR-TNFα in the E. coli M15-pQE30 system by improving gene transcription. Appl Microbiol Biotechnol 2021; 105:1447-1460. [PMID: 33528691 PMCID: PMC7852052 DOI: 10.1007/s00253-021-11136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
Due to their potent immune stimulation, tumor necrosis factor alpha (TNFα) variants with tumor-homing activity are attractive as novel antitumor drugs. The promising antitumor effect of NGR-TNFα in clinical trials triggered extensive interest in developing novel tumor-homing TNFα variants in recent years. Owing to its promising antitumor effect, NGR-TNFα is usually used as a control for newly developed tumor-homing TNFα variants. In our previous works, we produced a pericyte-targeting Z-TNFα at high levels using the Escherichia coli (E. coli) M15-pQE30 system. To further compare Z-TNFα and NGR-TNFα, we attempted to express NGR-TNFα using the same system. Surprisingly, native NGR-TNFα was expressed at a low (~ 0.2 mg/L) level in E. coli M15 containing the pQE30 plasmid. However, a single nucleotide mutation of C to G, resulting in a substitution of leucine (L) with valine (V) at the start of TNFα, increased the expression of NGR-TNFα by ~ 100 times through improving transcription. In addition, the amino acid substitution showed a little impact on the receptor binding, in vitro cytotoxicity, and in vivo antitumor effect of NGR-TNFα. As fusing NGR to the N-terminus of TNFα with a valine substitution did not reduce the protein yield, the TNFα gene with a C > G mutation might be used to prepare novel tumor-homing TNFα when the native TNFα-based variant is expressed at an extremely low level in E. coli. Notably, in addition to the mutated valine, the impact of N-terminal additional amino acids provided by pQE30 vector on the function of TNFα variant must be carefully evaluated. KEY POINTS : • A single nucleotide mutation increased the expression of NGR-TNFα by two orders. • Nucleotide mutation-induced amino acid substitution did not reduce NGR-TNFα activity.
Collapse
|
133
|
Wooster AL, Girgis LH, Brazeale H, Anderson TS, Wood LM, Lowe DB. Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 2021; 164:105374. [PMID: 33348026 PMCID: PMC7867624 DOI: 10.1016/j.phrs.2020.105374] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States despite an array of available treatment options. Current standard-of-care interventions for this malignancy include surgical resection, chemotherapy, and targeted therapies depending on the disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in combination with chemotherapy was an important development in improving the survival of patients with advanced colorectal cancer, while also helping give rise to other forms of anti-angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, leading to cytotoxic immune responses that decrease tumor growth and synergize with other systemic therapies. Early generations of such vaccines exhibited protection against various forms of cancer in pre-clinical models, but clinical results have historically been disappointing. Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive FDA approval after significantly increasing overall survival in prostate cancer patients. The unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic cell vaccines, which will be examined in this review. We also highlight the promise of these vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
Collapse
Affiliation(s)
- Amanda L Wooster
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Lydia H Girgis
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Hayley Brazeale
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Trevor S Anderson
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Laurence M Wood
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
134
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
135
|
Muhammad Sakri MS, Abdul Rahman WFW, Tengku Din TADAA, Idris FM, Jaafar H. Microvessel density and vascular endothelial growth factor receptors in breast carcinoma under the influence of rapamycin and platelet factor 4. INDIAN J PATHOL MICR 2021; 63:205-209. [PMID: 32317516 DOI: 10.4103/ijpm.ijpm_496_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Vascular endothelial growth factor receptors (VEGFRs) are major endothelial growth factor receptors that influence the growth of a tumor. Microvessel density. ( MVD) is the quantification method of various aspects of tumor vasculature that indicates angiogenic activity. This study aims to analyze the correlation between MVD to the expression of VEGFRs on breast cancer tissue. Materials and Method A total of 60 N-methyl-N-nitrosourea (MNU)-induced breast carcinomas in rats were suppressed by using antiangiogenic drugs. The rats were then sacrificed, and the tumor was fixed in 10% formalin, paraffin embedded, and immunohistochemistry stained using VEGFRs and CD34. Result One-way ANOVA test showed a significant difference in all markers that have been used (P < 0.05) on MNU-breast tumor treated with rapamycin (M= 90.1664, SD= 7.4487), PF4 (M= 93.7946, SD= 7.1303) and rapamycin + PF4 (M= 93.6990, SD= 1.8432). We obtained a significant reduction of MVD count on breast carcinoma for rapamycin group (M= 25.6786, SD= 9.7075) and rapamycin + PF4 group (M= 30.5250, SD= 13.6928) while PF4 group (M=47.7985, SD=4.8892) showed slightly increase compared to control (M= 45.1875, SD= 4.4786). There was a moderately strong, positive correlation between angiogenic markers; Flt-1 (r= 0.544, n=60, P < 0.005) and Flt-4 (r= 0.555, n= 60, P < 0.005) while Flk-1 (r= 0.797, n= 60, P < 0.005) showed a strong, positive correlation with MVD. Conclusion MVD was strongly correlated to the VEGFRs expression on breast carcinoma.
Collapse
Affiliation(s)
- Muhammad Shahidan Muhammad Sakri
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | | | - Fauziah Mohd Idris
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
136
|
Vedenko A, Panara K, Goldstein G, Ramasamy R, Arora H. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:143-158. [PMID: 33119871 DOI: 10.1007/978-3-030-50224-9_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cancer tissue exists not as a single entity, but as a combination of different cellular phenotypes which, taken together, dramatically contribute to the entirety of their ecosystem, collectively termed as the tumor microenvironment (TME). The TME is composed of both immune and nonimmune cell types, stromal components, and vasculature-all of which cooperate to promote cancer progression. Not all immune cells, however, are immune-suppressive; some of them can promote the immune microenvironment to fight the invading and uncontrollably dividing cell populations at the initial stages of tumor growth. Yet, many of these processes and cellular phenotypes fall short, and the immune ecosystem more often than not ends up stabilizing in favor of the "resistant" resident cells that begin clonal expansion and may progress to metastatic forms. Stromal components, making up the extracellular matrix and basement membrane, are also not the most innocuous: CAFs embedded throughout secrete proteases that allow the onset of one of the most invasive processes-angiogenesis-through destruction of the ECM and the basement membrane. Vasculature formation, because of angiogenesis, is the largest invader of the TME and the reason metastasis happens. Vasculature is so sporadic and omnipresent in the TME that most drug therapies are mainly focused on stopping this uncontrollable process. As the tumor continues to grow, different processes are constantly supplying it with the ingredients favorable for tumor progression and eventual metastasis. For example, angiogenesis promotes blood vessel formation that will allow the bona fide escape of tumor cells to take place. Another process like hypoxia will present itself in several forms throughout the tumor (mild or acute, cycling or permanent), starting mechanisms such as epithelial to mesenchymal transitions (EMT) of resident cells and inadvertently placing the cells in such a stressful condition that production of ROS and DNA damage is unavoidable. DNA damage can induce mutagenicity while allowing resistant cells to survive. This is where drugs and treatments can subsequently suffer in effectiveness. Finally, another molecule has just surfaced as being a very important player in the TME: nitric oxide. Often overlooked and equated with ROS and initially assigned in the category of pathogenic molecules, nitric oxide can definitely do some damage by causing metabolic reprogramming and promotion of immunosuppressive phenotypes at low concentrations. However, its actions seem to be extremely dose-dependent, and this issue has become a hot target of current treatment goals. Shockingly, nitric oxide, although omnipresent in the TME, can have a positive effect on targeting the TME broadly. Thus, while the TME is a myriad of cellular phenotypes and a combination of different tumor-promoting processes, each process is interconnected into one whole: the tumor microenvironment.
Collapse
Affiliation(s)
- Anastasia Vedenko
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kush Panara
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Himanshu Arora
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
137
|
Nazari M, Javandoost E, Talebi M, Movassaghpour A, Soleimani M. Platelet Microparticle Controversial Role in Cancer. Adv Pharm Bull 2021; 11:39-55. [PMID: 33747851 PMCID: PMC7961228 DOI: 10.34172/apb.2021.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are a group of micrometer-scale extracellular vesicles released by platelets upon activation that are responsible for the majority of microvesicles found in plasma. PMPs' physiological properties and functions have long been investigated by researchers. In this regard, a noticeable area of studies has been devoted to evaluating the potential roles and effects of PMPs on cancer progression. Clinical and experimental evidence conflictingly implicates supportive and suppressive functions for PMPs regarding cancer. Many of these functions could be deemed as a cornerstone for future considerations of PMPs usage in cancer targeted therapy. This review discusses what is currently known about PMPs and provides insights for new and possible research directions for further grasping the intricate interplay between PMPs and cancer.
Collapse
Affiliation(s)
- Mahnaz Nazari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Javandoost
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
138
|
Jogalekar MP, Veerabathini A, Gangadaran P. Recent developments in autophagy-targeted therapies in cancer. Exp Biol Med (Maywood) 2021; 246:207-212. [PMID: 33167689 PMCID: PMC7871123 DOI: 10.1177/1535370220966545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy plays a crucial role in cellular development and differentiation as well as in the maintenance of homeostasis in healthy cells. Autophagy is well documented in neurodegenerative disorders, aging, and infectious diseases. However, recognizing its significance in cancer has always been challenging due to its tumor-promoting and suppressive attributes. Various modulators targeting key components of autophagy machinery directly or indirectly have been developed over the years, and have shown promising results in preclinical models. Some of these compounds are even being tested in clinical trials for safety and efficacy. A detailed review of strategies used to target autophagy in cancer is presented including our opinion on developing better therapies and outstanding issues.
Collapse
Affiliation(s)
- Manasi P Jogalekar
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
139
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
140
|
Nawara HM, Afify SM, Hassan G, Zahra MH, Atallah MN, Seno A, Seno M. An assay for cancer stem cell-induced angiogenesis on chick chorioallantoic membrane. Cell Biol Int 2020; 45:749-756. [PMID: 33274828 DOI: 10.1002/cbin.11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 11/21/2020] [Indexed: 11/07/2022]
Abstract
Angiogenesis is generally involved in tumor growth and metastasis. Cancer stem cells (CSCs) are considered to facilitate the angiogenesis. Therefore, CSCs could be the effective targets to stop angiogenesis. Recently, our group successfully generated CSC models from induced pluripotent stem cells (iPSCs) in the presence of conditioned medium derived from cancer derived cells. These novel model CSCs has been characterized by highly tumorigenic, angiogenic and metastatic potentials in vivo. The angiogenic potential of CSCs has been explained by the expression of both angiogenic factors and their receptors implying the angiogenesis in autocrine manner. In this protocol we optimized the method to evaluate tumor angiogenesis with the CSC model, which was described effective to assess sorafenib as an antiangiogenic drug, on chick chorioallantoic membrane (CAM) assay. Our results demonstrate that CSCs developed from iPSCs and CAM assay are a robust and cost-effective tool to evaluate tumor angiogenesis with CSCs. Collectively, CSCs in CAM assay could serve as a very useful model for the screening of potential therapeutic agents targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Hend M Nawara
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Said M Afify
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Maram H Zahra
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Marwa N Atallah
- Department of Zoology, Vertebrates Embryology, and Comparative Anatomy, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Akimasa Seno
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
141
|
Deshmukh S, Saini S. Phenotypic Heterogeneity in Tumor Progression, and Its Possible Role in the Onset of Cancer. Front Genet 2020; 11:604528. [PMID: 33329751 PMCID: PMC7734151 DOI: 10.3389/fgene.2020.604528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity among isogenic cells/individuals has been known for at least 150 years. Even Mendel, working on pea plants, realized that not all tall plants were identical. However, Mendel was more interested in the discontinuous variation between genetically distinct individuals. The concept of environment dictating distinct phenotypes among isogenic individuals has since been shown to impact the evolution of populations in numerous examples at different scales of life. In this review, we discuss how phenotypic heterogeneity and its evolutionary implications exist at all levels of life, from viruses to mammals. In particular, we discuss how a particular disease condition (cancer) is impacted by heterogeneity among isogenic cells, and propose a potential role that phenotypic heterogeneity might play toward the onset of the disease.
Collapse
Affiliation(s)
- Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
142
|
Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, Abdullah R, Alitheen NB. An Overview of In Vitro, In Vivo, and Computational Techniques for Cancer-Associated Angiogenesis Studies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8857428. [PMID: 33381591 PMCID: PMC7748901 DOI: 10.1155/2020/8857428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a crucial area in scientific research because it involves many important physiological and pathological processes. Indeed, angiogenesis is critical for normal physiological processes, including wound healing and embryonic development, as well as being a component of many disorders, such as rheumatoid arthritis, obesity, and diabetic retinopathies. Investigations of angiogenic mechanisms require assays that can activate the critical steps of angiogenesis as well as provide a tool for assessing the efficacy of therapeutic agents. Thus, angiogenesis assays are key tools for studying the mechanisms of angiogenesis and identifying the potential therapeutic strategies to modulate neovascularization. However, the regulation of angiogenesis is highly complex and not fully understood. Difficulties in assessing the regulators of angiogenic response have necessitated the development of an alternative approach. In this paper, we review the standard models for the study of tumor angiogenesis on the macroscopic scale that include in vitro, in vivo, and computational models. We also highlight the differences in several modeling approaches and describe key advances in understanding the computational models that contributed to the knowledge base of the field.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, 46001 Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaesee, 46001 Sulaymaniyah, Iraq
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, 46001 Sulaymaniyah, Iraq
| | | | - Yashwant Pathak
- College of Pharmacy, University of South Florida, Tampa, USA and Adjunct Professor at Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
143
|
Zhang K, Wang H, Wang Z, LI F, Cui Y, Ma S, Chen R, Wang Y, Guo S, Wei Y. Intensity-modulated radiation therapy (IMRT)-based concurrent chemoradiotherapy (CCRT) with Endostar in patients with pelvic locoregional recurrence of cervical cancer: Results from a hospital in the Qinghai-Tibet Plateau. Medicine (Baltimore) 2020; 99:e21966. [PMID: 33285664 PMCID: PMC7717818 DOI: 10.1097/md.0000000000021966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The treatment of recurrent cervical cancer, especially pelvic locoregional recurrence, is very challenging for gynecologic oncologists. This study investigated the efficacy and safety of intensity-modulated radiation therapy (IMRT)-based concurrent chemoradiotherapy (CCRT) with Endostar, a novel modified recombinant human endostatin, in patients with pelvic locoregional recurrence of cervical cancer following surgical treatment.This phase 2 study was conducted between May 2018 and May 2019 at a single center in the Qinghai-Tibet Plateau and enrolled 31 patients with pelvic locoregional recurrence of cervical cancer following surgical treatment. All patients were treated with IMRT-based CCRT for 6 weeks and intravenous infusions of Endostar (15 mg/m), which were administered on days 1 to 7 of CCRT, followed by rest for 4 weeks. After resting, chemotherapy with cisplatin (70 mg/m) plus paclitaxel (135-175 mg/m) was given every 3 weeks for a total of 4 treatments.Thirty-one patients were evaluable for the primary endpoint. The mean age was 50.03 years (SD 7.72). The objective response rate was 67.74% and the disease control rate was 83.87% (48.39% achieved a complete response, 19.35% a partial response, 16.13% had disease stabilization, and 16.13% had progressive disease). The most common adverse events were nausea, vomiting, alopecia, neutropenia, and leukopenia; most events were grade 1 or 2 in intensity. Grade 3 toxicities included thrombocytopenia and neutropenia in 2 patients each, and leukopenia in 4 patients. No cases of grade 4 acute toxicity were observed.IMRT-based CCRT with Endostar infusions is effective and safe. Our results support the use of this treatment for patients with pelvic locoregional recurrence of cervical cancer following surgical treatment.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Huiping Wang
- Ultrasonic Medicine, Xining Maternal and Child Health Planning Branch Family Planning Service Centre, Qinghai, China
| | - Zhenqing Wang
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Fuqing LI
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Ying Cui
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Shengchun Ma
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Rui Chen
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Yuhui Wang
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Shul Guo
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| | - Ying Wei
- Department of Radiation Oncology, Qinghai Red Cross Hospital
| |
Collapse
|
144
|
Wang W, Zheng Y, Wu XF, Zhao D, Hou LZ, Shi F, Liu JJ, Dong FL. Value of contrast-enhanced ultrasound area ratio in identifying benign and malignant small breast masses. Gland Surg 2020; 9:1486-1494. [PMID: 33224823 DOI: 10.21037/gs-20-697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Tumor size affects clinical staging and is closely related to prognosis. Therefore, early diagnosis of breast cancer is one of the most important methods to reduce mortality and improve prognosis. However, minimal breast cancer is difficult to differentiate from small benign breast masses due to insufficient typical malignant signs. The significantly increased range of enhancement can be an important indication for the prediction of malignancy; however, quantitative studies on the extent of enhancement are rarely reported. The purpose of this study was to investigate the value of contrast-enhanced ultrasound (CEUS) area ratio in finding benign and malignant small breast masses. Methods A retrospective analysis was conducted on 88 patients with breast masses confirmed by surgery or needle biopsy (the maximal diameter not over 1 cm). 88 breast masses were divided into the younger age group (not over 40 years old) and older age group (over 40 years old) according to the patient's age. The receiver operating characteristic (ROC) curve was used to determine the cutoff values of CEUS area ratio in diagnosing benign or malignant small breast masses in each group. The efficiency of different cutoff values in finding benign and malignant small breast masses of the distinct groups was analyzed. Results The CEUS area ratio of malignant mass was larger than benign masses (P<0.05). The CEUS area ratio of malignant masses in the younger age group was larger than that in the older age group (P<0.05). The results of the ROC curve analysis showed that the area under the curve (AUC) and the cutoff values of the entire group, the younger age group, and the older age group were 0.887, 1.65; 0.909, 1.95; and 0.908, 1.22, respectively. When the cutoff value of the older age group was reduced from 1.65 to 1.22, its diagnostic sensitivity was improved significantly (P<0.05). Conclusions CEUS area ratio has specific application value in finding benign and malignant small breast masses. Proper reduction of the cutoff value of elderly patients can further improve its diagnostic sensitivity without significantly reducing the specificity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zheng
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Feng Wu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Zhao
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Zhu Hou
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Shi
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Jin Liu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng-Lin Dong
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
145
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
146
|
Zhang Z, Wang D, Xu C, Li Y, Yu Y, Chen C, Li M, Zhang X. Analysis of expression levels of markers associated with tumor proliferation and angiogenesis in familial adenomatous polyposis. Mol Genet Genomic Med 2020; 8:e1534. [PMID: 33108070 PMCID: PMC7767556 DOI: 10.1002/mgg3.1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/11/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary disease with colorectal adenomatous polyps as the main clinical manifestations. The objective of this study was to analyze and compare the expression levels of tumor proliferation and angiogenesis‐related genes in different tissue sections of FAP patients through qPCR, western blot, and immunohistochemistry (IHC) analysis. Methods Seventeen patients with FAP admitted to Tianjin Union Medical Center from January 2010 to June 2015 were selected, and then, normal intestinal mucosa, polyp tissue, or cancerous polyp tissue were collected. QPCR, western blot, and IHC were used to detect the expression level of genes or proteins correlated with tumor proliferation. Results The mRNA expression of CD31 in large polyp tissue was significantly higher than that in normal tissue and small polyp tissue. Compared with normal tissue and polyp tissue, the expression level of KI67 mRNA in cancer tissue was remarkably increased. The VEGFA mRNA and CDH5 mRNA expression in both polyp and cancer tissues were prominently lower than those in normal tissue. The expression of CD31 protein in cancer tissue was lower than that in normal tissue and polyp tissue, whereas the expression levels of VEGF, CDH5, and KI67 protein were widely higher than that in normal tissue and polyp tissue. Conclusion Abnormal expressions of CD31, KI67, VEGF(A), and CDH5 were associated with the carcinogenesis of FAP.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Dan Wang
- Department of pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chao Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mingsen Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
147
|
Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, Smejkal K, Biringer K, Petras M, Blahutova D, Bugos O, Pec M, Adamkov M, Büsselberg D, Ciccocioppo R, Adamek M, Rodrigo L, Caprnda M, Kruzliak P, Kubatka P. Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol 2020; 146:3079-3096. [PMID: 32902794 DOI: 10.1007/s00432-020-03383-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The formation of new blood vessels from previous ones, angiogenesis, is critical in tissue repair, expansion or remodeling in physiological processes and in various pathologies including cancer. Despite that, the development of anti-angiogenic drugs has great potential as the treatment of cancer faces many problems such as development of the resistance to treatment or an improperly selected therapy approach. An evaluation of predictive markers in personalized medicine could significantly improve treatment outcomes in many patients. METHODS This comprehensive review emphasizes the anticancer potential of flavonoids mediated by their anti-angiogenic efficacy evaluated in current preclinical and clinical cancer research. RESULTS AND CONCLUSION Flavonoids are important groups of phytochemicals present in common diet. Flavonoids show significant anticancer effects. The anti-angiogenic effects of flavonoids are currently a widely discussed topic of preclinical cancer research. Flavonoids are able to regulate the process of tumor angiogenesis through modulation of signaling molecules such as VEGF, MMPs, ILs, HIF or others. However, the evaluation of the anti-angiogenic potential of flavonoids within the clinical studies is not frequently discussed and is still of significant scientific interest.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Petras
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar.
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic. .,St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| |
Collapse
|
148
|
The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochem Soc Trans 2020; 48:1493-1504. [PMID: 32779712 PMCID: PMC7458396 DOI: 10.1042/bst20190988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
US28 is a viral G protein-coupled receptor (GPCR) encoded by the human cytomegalovirus (HCMV). This receptor, expressed both during lytic replication and viral latency, is required for latency. US28 is binding to a wide variety of chemokines but also exhibits a particularly high constitutive activity robustly modulating a wide network of cellular pathways altering the host cell environment to benefit HCMV infection. Several studies suggest that US28-mediated signalling may contribute to cancer progression. In this review, we discuss the unique structural characteristics that US28 acquired through evolution that confer a robust constitutive activity to this viral receptor. We also describe the wide downstream signalling network activated by this constitutive activation of US28 and discuss how these signalling pathways may promote and support important cellular aspects of cancer.
Collapse
|
149
|
Safaeian L, Vaseghi G, Mirian M, Firoozabadi MD. The effect of pramlintide, an antidiabetic amylin analogue, on angiogenesis-related markers in vitro. Res Pharm Sci 2020; 15:323-330. [PMID: 33312210 PMCID: PMC7714014 DOI: 10.4103/1735-5362.293510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/15/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background and purpose: Irregularities of angiogenesis may participate in the pathogenesis of diabetes complications. Pramlintide is an amylin analogue administered for the treatment of type 1 and type 2 diabetes. The present investigation aimed at surveying the effect of pramlintide on angiogenesis-related markers in human umbilical vein endothelial cells (HUVECs). Experimental approach: The proliferation of cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) method. The effect of pramlintide on migration was estimated by Transwell® assay. in vitro evaluation of angiogenesis was performed by tube formation assay. The secretion of vascular endothelial growth factor (VEGF) to the supernatant of HUVECs was measured by an enzyme- linked immunosorbent assay (ELISA) kit. All experiments were performed in triplicate. Findings / Results: Pramlintide exhibited no inhibitory effect on HUVECs proliferation. It significantly increased cell migration at the concentration of 1 μg/mL. Pramlintide (1 μg/mL) also enhanced average tubules length, size, and the mean number of junctions. However, there was not any significant change in VEGF release from HUVECs. Conclusion and implications: Findings of this research revealed the effect of pramlintide on angiogenesis- related markers via enhancing migration and tubulogenesis in vitro, suggesting a worthwhile proposition for further clinical researches on improving vascular complications and healing of diabetic wounds.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mehdi Dehghani Firoozabadi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
150
|
Tian W, Jiang X, Kim D, Guan T, Nicolls MR, Rockson SG. Leukotrienes in Tumor-Associated Inflammation. Front Pharmacol 2020; 11:1289. [PMID: 32973519 PMCID: PMC7466732 DOI: 10.3389/fphar.2020.01289] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Leukotrienes are biologically active eicosanoid lipid mediators that originate from oxidative metabolism of arachidonic acid. Biosynthesis of leukotrienes involves a set of soluble and membrane-bound enzymes that constitute a machinery complex primarily expressed by cells of myeloid origin. Leukotrienes and their synthetic enzymes are critical immune modulators for leukocyte migration. Increased concentrations of leukotrienes are implicated in a number of inflammatory disorders. More recent work indicates that leukotrienes may also interact with a variety of tissue cells, contributing to the low-grade inflammation of cardiovascular, neurodegenerative, and metabolic conditions, as well as that of cancer. Leukotriene signaling contributes to the active tumor microenvironment, promoting tumor growth and resistance to immunotherapy. This review summarizes recent insights into the intricate roles of leukotrienes in promoting tumor growth and metastasis through shaping the tumor microenvironment. The emerging possibilities for pharmacological targeting of leukotriene signaling in tumor metastasis are considered.
Collapse
Affiliation(s)
- Wen Tian
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongeon Kim
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Torrey Guan
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark R Nicolls
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stanley G Rockson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|