101
|
Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers (Basel) 2021; 13:polym13193370. [PMID: 34641182 PMCID: PMC8512865 DOI: 10.3390/polym13193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Finding a simple and eco-friendly production technique that matches to the natural agent and results in a truly valuable natural scaffold production is still limited amongst the intensively competitive natural scaffold development. Therefore, the purpose of this study was to develop natural scaffolds that were environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. These scaffolds were prepared from agarose and sericin using the freeze-drying method (D) or freeze-thawing together with the freeze-drying method (TD). Moreover, plasticizers were added into the scaffold to improve their properties. Their physical, mechanical, and biological properties were investigated. The results showed that scaffolds that were prepared using the TD method had stronger bonding between sericin and other compounds, leading to a low swelling ratio and low protein release of the scaffolds. This property may be applied in the development of further material as a controlled drug release scaffold. Adding plasticizers, especially glycerin, into the scaffolds significantly increased elongation properties, leading to an increase in elasticity of the scaffold. Moreover, all scaffolds could activate cell migration, which had an advantage on wound healing acceleration. Accordingly, this study was successful in developing natural scaffolds using natural agents and simple and green crosslinking methods.
Collapse
|
102
|
Su J, Li J, Liang J, Zhang K, Li J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life (Basel) 2021; 11:life11101016. [PMID: 34685387 PMCID: PMC8540918 DOI: 10.3390/life11101016] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Wounds have become one of the causes of death worldwide. The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds that bring great pain to patients, and there is currently no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and ability to provide a moist environment for wound repair, which overcomes the shortcomings of traditional dressings. This article first briefly introduces the skin wound healing process, then the preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings made of natural biomaterials and synthetic materials are introduced. Finally, the development prospects and challenges of hydrogel wound dressings are discussed.
Collapse
Affiliation(s)
- Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; (J.S.); (J.L.); (J.L.)
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Correspondence: (K.Z.); (J.L.); Tel.:+86-185-3995-8495 (K.Z.); +86-185-3995-6211 (J.L.)
| |
Collapse
|
103
|
Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021; 9:1235. [PMID: 34572421 PMCID: PMC8472341 DOI: 10.3390/biomedicines9091235] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds do not progress through the wound healing process in a timely manner and are considered a burden for healthcare system; they are also the most common reason for decrease in patient quality of life. Traditional wound dressings e.g., bandages and gauzes, although highly absorbent and effective for dry to mild, exudating wounds, require regular application, which therefore can cause pain upon dressing change. In addition, they have poor adhesional properties and cannot provide enough drainage for the wound. In this regard, the normalization of the healing process in chronic wounds is an extremely urgent task of public health and requires the creation and implementation of affordable dressings for patients with chronic wounds. Modern wound dressings (WDs) are aimed to solve these issues. At the same time, hydrogels, unlike other types of modern WDs (foam, films, hydrocolloids), have positive degradation properties that makes them the perfect choice in applications where a targeted delivery of bioactive substances to the wound is required. This mini review is focused on different types of traditional and modern WDs with an emphasis on hydrogels. Advantages and disadvantages of traditional and modern WDs as well as their applicability to different chronic wounds are elucidated. Furthermore, an effectiveness comparison between hydrogel WDs and the some of the frequently used biotechnologies in the field of regenerative medicine (adipose-derived mesenchymal stem cells (ADMSCs), mesenchymal stem cells, conditioned media, platelet-rich plasma (PRP)) is provided.
Collapse
Affiliation(s)
| | - Tatiana Astrelina
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, 123098 Moscow, Russia; (V.B.); (T.M.); (A.S.)
| | | | | |
Collapse
|
104
|
Li M, Hu M, Zeng H, Yang B, Zhang Y, Li Z, Lu L, Ming Y. Multifunctional Zinc Oxide/Silver Bimetallic Nanomaterial-Loaded Nanofibers for Enhanced Tissue Regeneration and Wound Healing. J Biomed Nanotechnol 2021; 17:1840-1849. [PMID: 34688329 DOI: 10.1166/jbn.2021.3152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Native skin repair requires wound care products that not only protect the wound from bacterial infection, but also accelerate wound closure and minimize scarring. Nanomaterials have been widely applied for wound healing due to their multifunctional properties. In a previous study, we prepared and characterized electrospinning zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibers using ZnO and Ag nanoparticles, and evaluated their antibacterial effect in vitro. In this work, further characterization studies were performed, which confirmed that the ZnO/Ag nanoparticles were physically embedded and evenly distributed in the ZnO/Ag/PVP/PCL nanofibers, enabling the sustained release of Ag and Zn. In addition, the bimetallic nanofibers showed satisfactory fluid handling and flexibility. In vivo wound healing and histology studies showed that the ZnO/Ag/PVP/PCL nanofibers had a better anti-inflammatory, skin tissue regeneration, and wound healing effect than monometallic nanofibers or a commercially available wound plaster (Yunnan Baiyao). Therefore, ZnO/Ag/PVP/PCL bimetallic nanofibers may be a safe, efficient biomedical dressing for wound healing.
Collapse
Affiliation(s)
- Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Min Hu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Honglian Zeng
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Bo Yang
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Yi Zhang
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Laichun Lu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| |
Collapse
|
105
|
Effectiveness of Semiocclusive Sodium Carboxymethyl Cellulose Fibers and Hydrocolloid Dressings for Irritant Peristomal Dermatitis: A Case Series. Adv Skin Wound Care 2021; 34:493-497. [PMID: 34415254 DOI: 10.1097/01.asw.0000767336.91651.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The most common complication in individuals with ostomies is irritant contact dermatitis from the acidic stoma effluent coming into contact with the peristomal skin. Although protective powders are widely used for the treatment of peristomal skin, there is little scientific evidence to justify their use. The combined use of sodium carboxymethylcellulose cellulose fibers (SCCFs) together with a hydrocolloid dressing for fixation is an effective alternative in the management of these wounds. Here, the authors report a case series of three patients presenting at a stoma therapy clinic with peristomal skin lesions because of severe irritant contact dermatitis. Patients were men aged between 70 and 81 years, had been diagnosed with colon cancer (n = 2) or bladder cancer (n = 1), and had undergone a colostomy (n = 1), ileostomy (n = 1), or Bricker-type ureteroileostomy (n = 1). A semiocclusive care protocol was applied in a moist environment using SCCF and an extrathin hydrocolloid adhesive dressing, and the collection device was secured using adhesive resin and an ostomy belt. The combined use of SCCF and hydrocolloid dressings provided beneficial results to treat the dermatitis, with reduced discomfort after 7 days and lesions healing within 4 weeks.
Collapse
|
106
|
Jung O, Barbeck M, Fan LU, Korte F, Zhao C, Krastev R, Pantermehl S, Xiong X. In Vitro and Ex Vivo Analysis of Collagen Foams for Soft and Hard Tissue Regeneration. In Vivo 2021; 35:2541-2549. [PMID: 34410941 DOI: 10.21873/invivo.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications. MATERIALS AND METHODS After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established soft and hard tissue materials cerabone and Jason membrane (both botiss biomaterials GmbH, Zossen, Germany). RESULTS Collagen foams with different compositions were successfully produced from bovine sources. Ex vivo, the foams showed a stable and long-lasting primary structure quality with a bubble area of 1,000 to 2,000 μm2 In vitro, all foams showed sufficient cytocompatibility. CONCLUSION Collagen sponges represent a promising material for hard and soft tissue regeneration. Future studies could focus on integrating and investigating different additives in the foams.
Collapse
Affiliation(s)
- Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Mike Barbeck
- BerlinAnalytix GmbH, Berlin, Germany.,Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, Berlin, Germany
| | - L U Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Fabian Korte
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Cuifeng Zhao
- Faculty of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Faculty of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Sven Pantermehl
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Xin Xiong
- BerlinAnalytix GmbH, Berlin, Germany;
| |
Collapse
|
107
|
Zhang B, Wu Y, Mori M, Yoshimura K. Adipose-Derived Stem Cell Conditioned Medium and Wound Healing: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:830-847. [PMID: 34409890 DOI: 10.1089/ten.teb.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adipose-derived stem cells (ASCs) have been growing in popularity for their potential in wound healing and tissue engineering. Stem cell therapies are limited in application, with the need to maintain cell viability and function as well as safety concerns. It has been increasingly reported that the effects of ASCs are predominantly attributable to the paracrine effects of the secreted factors, which can be collected in conditioned medium (CM). The goal of this systematic review is to investigate the effects on wound healing of CM collected from ASC culture. Original articles relevant to ASC-CM and wound healing (in vitro: dermal fibroblast, epidermal keratinocytes and their equivalent cell lines; in vivo: full-thickness wound models) were included. The agreement level of selections between two investigators were calculated by the kappa scores. And the information concerning to the publications, CM preparation and its application and effects were extracted and reported in a systematic way and summarized in tables. In total, 121 publications were initially identified through a search of the PubMed/MEDLINE database with a specific search algorithm, and 36 articles were ultimately included after two screenings. Nineteen were in vitro studies that met the search criteria and 17 were in vivo studies with or without in vitro data. In summary, based on the included articles, treatment with ASC conditioned medium (ASC-CM), to a large extent, resulted in positive effects on wound healing in vitro and in vivo. Modulation of the culture conditions of ASCs producing the CM, including hypoxic conditions, alternative substrates, medium supplementation, as well as genetic modification of cells, favorably promoted the effects of ASC-CM. Finally, a discussion of the future perspectives and therapeutic potential of ASC-CM, which also addresses the limitations of the field, is presented. A limitation of the evidence is the inconsistency in CM preparation methods among included articles. In conclusion, ASC-CM is a promising novel cell-free therapy for wound healing in regenerative medicine and warrants further exploration.
Collapse
Affiliation(s)
- Bihang Zhang
- Jichi Medical University, 12838, Department of Plastic Surgery, Shimotsuke, Tochigi, Japan;
| | - Yunyan Wu
- Jichi Medical University, 12838, Department of Plastic Surgery, Shimotsuke, Tochigi, Japan;
| | - Masanori Mori
- Jichi Medical University, 12838, Department of Plastic surgery, Shimotsuke, Tochigi, Japan;
| | - Kotaro Yoshimura
- Jichi Medical University, 12838, Department of Plastic Surgery, Shimotsuke, Tochigi, Japan;
| |
Collapse
|
108
|
Kandhwal M, Behl T, Kumar A, Arora S. Understanding the Potential Role and Delivery Approaches of Nitric Oxide in Chronic Wound Healing Management. Curr Pharm Des 2021; 27:1999-2014. [PMID: 33106138 DOI: 10.2174/1381612826666201026152209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is a promising pharmaceutical component that has vasodilator, anti-bacterial, and wound healing activities. Chronic ulcers are non-healing disorders that are generally associated with distortion of lower limbs. Among the severe consequence derivatives of these diseases are the problems of chronic wound progression. NO, which is categorized as the smallest gaseous neurotransmitter, has beneficial effects in different phases of chronic inflammation. The defensive mechanism of NO is found useful in several severe conditions, such as gestational healing, gastrointestinal healing, and diabetic healing. The current review presents an updated collection of literature about the role of NO in chronic ulcers due to the prevalence of diabetes, DPN, and diabetic foot ulcers, and because of the lack of available effective treatments to directly address the pathology contributing to these conditions, novel treatments are being sought. This review also collects information about deficiency of NO synthase in diabetic patients, leading to a lack of vascularization of the peripheral nerves, which causes diabetic neuropathy, and this could be treated with vasodilators such as nitric oxide. Apart from the pharmacological mechanism of NO, the article also reviewed and analyzed to elucidate the potential of transdermal delivery of NO for the treatment of chronic ulcers.
Collapse
Affiliation(s)
- Mimansa Kandhwal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
109
|
Arampatzis AS, Kontogiannopoulos KN, Theodoridis K, Aggelidou E, Rat A, Willems A, Tsivintzelis I, Papageorgiou VP, Kritis A, Assimopoulou AN. Electrospun wound dressings containing bioactive natural products: physico-chemical characterization and biological assessment. Biomater Res 2021; 25:23. [PMID: 34271983 PMCID: PMC8284004 DOI: 10.1186/s40824-021-00223-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Current research on skin tissue engineering has been focusing on novel therapies for the effective management of chronic wounds. A critical aspect is to develop matrices that promote growth and uniform distribution of cells across the wound area, and at the same time offer protection, as well as deliver drugs that help wound healing and tissue regeneration. In this context, we aimed at developing electrospun scaffolds that could serve as carriers for the bioactive natural products alkannin and shikonin (A/S). Methods A series of polymeric nanofibers composed of cellulose acetate (CA) or poly(ε-caprolactone) (PCL) and varying ratios of a mixture of A/S derivatives, has been successfully fabricated and their physico-chemical and biological properties have been explored. Results Scanning electron microscopy revealed a uniform and bead-free morphology for CA scaffolds, while for PCL beads along the fibers were observed. The average diameters for all nanofibers ranged between 361 ± 47 and 487 ± 88 nm. During the assessment of physicochemical characteristics, CA fiber mats exhibited a more favored profile, while the assessment of the biological properties of the scaffolds showed that CA samples containing A/S mixture up to 1 wt.% achieved to facilitate attachment, survival and migration of Hs27 fibroblasts. With respect to the antimicrobial properties of the scaffolds, higher drug-loaded (1 and 5 wt.%) samples succeeded in inhibiting the growth of Staphylococcus epidermidis and S. aureus around the edges of the fiber mats. Finally, carrying out a structure-activity relationship study regarding the biological activities (fibroblast toxicity/proliferation and antibacterial activity) of pure A/S compounds – present in the A/S mixture – we concluded that A/S ester derivatives and the dimeric A/S augmented cell proliferation after 3 days, whereas shikonin proved to be toxic at 500 nM and 1 μM and alkannin only at 1 μM. Additionally, alkannin, shikonin and acetyl-shikonin showed more pronounced antibacterial properties than the other esters, the dimeric derivative and the A/S mixture itself. Conclusions Taken together, these findings indicate that embedding A/S derivatives into CA nanofibers might be an advantageous drug delivery system that could also serve as a potential candidate for biomedical applications in the field of skin tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-021-00223-9.
Collapse
Affiliation(s)
- Athanasios S Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ioannis Tsivintzelis
- Physical Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Vassilios P Papageorgiou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece. .,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece.
| |
Collapse
|
110
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
111
|
Sterpione F, Mas K, Rippon M, Rogers A, Mayeux G, Rigaudier F, Chauvelot P, Robilliart L, Juhel C, Lecomte Y. The clinical impact of hydroresponsive dressings in dynamic wound healing: Part I. J Wound Care 2021; 30:15-24. [PMID: 33439084 DOI: 10.12968/jowc.2021.30.1.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Management of any wound, either acute or hard-to-heal, might involve the use of multiple and different wound dressings in its treatment. This approach is necessary to overcome the myriad of clinical challenges the wound presents, as well as any underlying comorbidities that might affect the clinical outcomes. This article describes the clinical effectiveness of a coordinated wound dressing treatment regimen. METHOD This was an open-labelled non-comparative study involving patients with a variety of hard-to-heal and acute wounds of differing levels of severity, but all of which required removal of devitalised tissue to enable wound healing to progress. The first phase used the hydroresponsive wound dressing HydroClean (PAUL HARTMANN AG, Germany). The PUSH score was used as the primary measurement parameter. RESULTS A total of 86 patients (38 male/48 female), with a mean age of 67.7±21.7 years, took part in the study. The results showed that the hydroresponsive dressing was effective in managing wound exudate production and promoting wound cleansing and debridement, supporting good wound bed preparation. Wound closure was observed in 16/86 (18.6%) wounds at the end of the study (20 weeks). This enabled clinicians to switch to alternative wound dressings to promote subsequent clinical healing outcomes. CONCLUSION In this study, the hydroresponsive wound dressing was highly effective in preparing a clean wound bed such that the next stage of wound healing could be supported.
Collapse
Affiliation(s)
| | - Karine Mas
- Infirmière, 19 rue Paul Broca, 66100 Perpignan, France
| | - Mark Rippon
- Huddersfield University, Huddersfield, UK.,Daneriver Consultancy Ltd, Holmes Chapel, UK
| | | | | | | | | | | | | | - Yann Lecomte
- CEN Biotech, Dijon, Bourgogne-Franche-Comté, France
| |
Collapse
|
112
|
Elbialy ZI, Assar DH, Abdelnaby A, Asa SA, Abdelhiee EY, Ibrahim SS, Abdel-Daim MM, Almeer R, Atiba A. RETRACTED: Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed Pharmacother 2021; 137:111349. [PMID: 33567349 DOI: 10.1016/j.biopha.2021.111349] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The journal was alerted to an associated PubPeer post in which suspected duplicated features were identified within Figure 4 B1, and the histological image in Figure 3 A1 appears to have been previously published in another article, as detailed here: https://pubpeer.com/publications/E5658B7B735FF993AA795A5F14C086. The journal performed independent analysis and identified additional suspected image duplications between the images of mice in Figure 1 A+B and images of mice in Figure 6 A+B from Elbialy et al., BMC Veterinary Research (2020). The journal requested the authors provide an explanation to these concerns and associated raw data, but this request was not satisfactorily fulfilled. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Zizy I Elbialy
- Fish Processing and Biotechnology Department, Faculty of Fisheries Sciences and Aquaculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Aml Abdelnaby
- Fish Processing and Biotechnology Department, Faculty of Fisheries Sciences and Aquaculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samah Abu Asa
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab Y Abdelhiee
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Samar S Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Atiba
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
113
|
Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The great variety of wounds and the lack of an effective universal treatment method has resulted in high demand for modern treatment strategies. Traditional approaches are often ineffective on a variety of chronic wounds, such as venous ulcers or the diabetic foot ulcer. There is strong evidence that naturally derived bioactive compounds have pro-healing properties, raising a great interest in their potential use for wound healing. Plant-derived compounds, such as curcumin and essential oils, are widely used to modify materials applied as wound dressings. Moreover, dressing materials are more often enriched with vitamins (e.g., L-ascorbic acid, tocopherol) and drugs (e.g., antibiotics, inhibitors of proteases) to improve the skin healing rate. Biomaterials loaded with the above-mentioned molecules show better biocompatibility and are basically characterized by better biological properties, ensuring faster tissue repair process. The main emphasis of the presented review is put on the novel findings concerning modern pro-healing wound dressings that have contributed to the development of regenerative medicine. The article briefly describes the synthesis and modifications of biomaterials with bioactive compounds (including curcumin, essential oils, vitamins) to improve their pro-healing properties. The paper also summarizes biological effects of the novel wound dressings on the enhancement of skin regeneration. The current review was prepared based on the scientific contributions in the PubMed database (supported with Google Scholar searching) over the past 5 years using relevant keywords. Scientific reports on the modification of biomaterials using curcumin, vitamins, and essential oils were mainly considered.
Collapse
|
114
|
Wojcik M, Kazimierczak P, Benko A, Palka K, Vivcharenko V, Przekora A. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112068. [PMID: 33947561 DOI: 10.1016/j.msec.2021.112068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
Effective management of chronic wounds with excessive exudate may be challenging for medical doctors. Over the years, there has been an increasing interest in the engineering of biomaterials, focusing on the development of polymer-based wound dressings to accelerate the healing of exuding wounds. The aim of this study was to use curdlan, which is known to support wound healing, as a base for the production of superabsorbent hybrid biomaterials (curdlan/agarose and curdlan/chitosan) with the intended use as wound dressings for highly exuding wound management. To evaluate the biomedical potential of the fabricated curdlan-based biomaterials, they were subjected to a comprehensive assessment of their microstructural, physicochemical, and biological properties. The obtained results showed that foam-like biomaterials with highly porous structure (66-77%) transform into soft gel after contact with the wound fluid, acting as typical hydrocolloid dressings. Novel biomaterials have the superabsorbent ability (1 g of the biomaterial absorbs approx. 15 ml of exudate) with horizontal wicking direction while keeping dry edges, and show water vapor transmission rate of approx. 1700-1800 g/m2/day which is recommended for optimal wound healing. Moreover, they are stable in the presence of collagenases, but prone to biodegradation in lysozyme solution (simulated infected wound environment). Importantly, the developed biomaterials are non-toxic and their surface hinders fibroblast attachment, which is essential during dressing changes to avoid damage to newly formed tissues in the wound bed. All mentioned features make the developed biomaterials promising candidates to be used as the wound dressings for the management of chronic wounds with moderate to high exudate.
Collapse
Affiliation(s)
- Michal Wojcik
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Paulina Kazimierczak
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Aleksandra Benko
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Krzysztof Palka
- Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36 Street, 20-618 Lublin, Poland
| | - Vladyslav Vivcharenko
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Agata Przekora
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
115
|
Qianqian O, Songzhi K, Yongmei H, Xianghong J, Sidong L, Puwang L, Hui L. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment. Int J Biol Macromol 2021; 181:369-377. [PMID: 33737190 DOI: 10.1016/j.ijbiomac.2021.03.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
There is an urgent need for wound dressings to treat partial-thickness burns. Hydrogels are a promising material that can maintain hydration to promote necrotic tissue removal. Tilapia peptides (TP) and hydroxyapatite (HA) were incorporated into chitosan system to prepare new types of hydrogels. The hydrogels were cross-linking by tannin (TA), which were developed to promote rapid wound healing in a New Zealand rabbit partial-thickness burn model. Nanohydroxyapatite (NHA) was synthesized by coprecipitation method, which made hydrogels have a highly porous structure comprised of interconnected pores, excellent water absorption and low hemolysis. Besides, the hydrogels showed excellent antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as the cytocompatibility on endothelial cells. Moreover, the hydrogels promoted epithelial and dermal regeneration, reduce the expression of TNF-α and IL-6 and promote the skin regeneration by enhancing expression of collagen, STAT3, and VEGF.
Collapse
Affiliation(s)
- Ouyang Qianqian
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Kong Songzhi
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Huang Yongmei
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Ju Xianghong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Sidong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Puwang
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Luo Hui
- Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
116
|
Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041713] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.
Collapse
|
117
|
Zhang MX, Zhao WY, Fang QQ, Wang XF, Chen CY, Shi BH, Zheng B, Wang SJ, Tan WQ, Wu LH. Effects of chitosan-collagen dressing on wound healing in vitro and in vivo assays. J Appl Biomater Funct Mater 2021; 19:2280800021989698. [PMID: 33560909 DOI: 10.1177/2280800021989698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.
Collapse
Affiliation(s)
- Min-Xia Zhang
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Xiao-Feng Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Chun-Ye Chen
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Bang-Hui Shi
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Bin Zheng
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Shou-Jie Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Li-Hong Wu
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| |
Collapse
|
118
|
Nunes SB, Hodel KVS, Sacramento GDC, Melo PDS, Pessoa FLP, Barbosa JDV, Badaró R, Machado BAS. Development of Bacterial Cellulose Biocomposites Combined with Starch and Collagen and Evaluation of Their Properties. MATERIALS 2021; 14:ma14020458. [PMID: 33477891 PMCID: PMC7833372 DOI: 10.3390/ma14020458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
One of the major benefits of biomedicine is the use of biocomposites as wound dressings to help improve the treatment of injuries. Therefore, the main objective of this study was to develop and characterize biocomposites based on bacterial cellulose (BC) with different concentrations of collagen and starch and characterize their thermal, morphological, mechanical, physical, and barrier properties. In total, nine samples were produced with fixed amounts of glycerol and BC and variations in the amount of collagen and starch. The water activity (0.400–0.480), water solubility (12.94–69.7%), moisture (10.75–20.60%), thickness (0.04–0.11 mm), water vapor permeability (5.59–14.06 × 10−8 g·mm/m2·h·Pa), grammage (8.91–39.58 g·cm−2), opacity (8.37–36.67 Abs 600 nm·mm−1), elongation (4.81–169.54%), and tensile strength (0.99–16.32 MPa) were evaluated and defined. In addition, scanning electron microscopy showed that adding biopolymers in the cellulose matrix made the surface compact, which also influenced the visual appearance. Thus, the performance of the biocomposites was directly influenced by their composition. The performance of the different samples obtained resulted in them having different potentials for application considering the injury type. This provides a solution for the ineffectiveness of traditional dressings, which is one of the great problems of the biomedical sector.
Collapse
Affiliation(s)
- Silmar Baptista Nunes
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Giulia da Costa Sacramento
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Pollyana da Silva Melo
- Department of Materials, University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil;
| | - Fernando Luiz Pellegrini Pessoa
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
| | - Josiane Dantas Viana Barbosa
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Roberto Badaró
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Bruna Aparecida Souza Machado
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| |
Collapse
|
119
|
Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology 2021; 19:1. [PMID: 33397416 PMCID: PMC7784275 DOI: 10.1186/s12951-020-00755-7] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022] Open
Abstract
Skin is the body's first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | | | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
120
|
Abstract
In the past decade, the frequency of chronic wounds in older population has increased, and their impact on quality of life is substantial. Chronic wounds are a public health problem associated with very high economic and psychosocial costs. These wounds result from various pathologies and comorbidities, such arterial and venous insufficiency, diabetes mellitus and continuous skin pressure. Recently, the role of infection and biofilms in the healing of chronic wounds has been the subject of considerable research. This paper presents an overview of various methods and products used to manage chronic wounds and discusses recent advances in wound care. To decide on the best treatment for any wound, it is crucial to holistically assess the patient and the wound. Additionally, multiple strategies could be used to prevent or treat chronic wounds.
Collapse
Affiliation(s)
- Maria Azevedo
- Researcher, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Lecturer and Researcher in Medical Microbiology, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Lecturer and Researcher in Medical Microbiology, Faculty of Medicine, Porto; Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Portugal
| |
Collapse
|
121
|
Las Heras K, Igartua M, Santos-Vizcaino E, Hernandez RM. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J Control Release 2020; 328:532-550. [DOI: 10.1016/j.jconrel.2020.09.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
122
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
123
|
Pavel TI, Chircov C, Rădulescu M, Grumezescu AM. Regenerative Wound Dressings for Skin Cancer. Cancers (Basel) 2020; 12:cancers12102954. [PMID: 33066077 PMCID: PMC7601961 DOI: 10.3390/cancers12102954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.
Collapse
Affiliation(s)
- Teodor Iulian Pavel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| |
Collapse
|
124
|
Benskin LL. Commentary: First-Line Interactive Wound Dressing Update: A Comprehensive Review of the Evidence. Front Pharmacol 2020; 11:1272. [PMID: 33013362 PMCID: PMC7510500 DOI: 10.3389/fphar.2020.01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Linda L Benskin
- Independent Research for Wound Care in Developing Countries, Austin, TX, United States.,Ferris Mfg. Corp., Fort Worth, TX, United States
| |
Collapse
|
125
|
Andryukov BG, Besednova NN, Kuznetsova TA, Zaporozhets TS, Ermakova SP, Zvyagintseva TN, Chingizova EA, Gazha AK, Smolina TP. Sulfated Polysaccharides from Marine Algae as a Basis of Modern Biotechnologies for Creating Wound Dressings: Current Achievements and Future Prospects. Biomedicines 2020; 8:E301. [PMID: 32842682 PMCID: PMC7554790 DOI: 10.3390/biomedicines8090301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.
Collapse
Affiliation(s)
- Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russian
| | - Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Ekaterina A. Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Anna K. Gazha
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana P. Smolina
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| |
Collapse
|
126
|
Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 2020; 162:1414-1428. [PMID: 32777428 DOI: 10.1016/j.ijbiomac.2020.07.311] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
Wound healing is a complicated and continuous process affected by several factors, and it needs an appropriate surrounding to achieve accelerated healing. At present, various wound dressings are used for wound management, such as fiber, sponge, hydrogel, foam, hydrocolloid and so on. Hydrogels can provide mechanical support and moist environment for wounds, and are widely used in biomedical field. Alginate is a natural linear polysaccharide derived from brown algae or bacteria, consisting of repeating units of β-1,4-linked D-mannuronic acid (M) and L-guluronic acid (G) in different ratios. It is widely used in biomedical and engineering fields due to its good biocompatibility and liquid absorption capacity. Alginate-based hydrogels have been used in wound dressing, tissue engineering, and drug delivery applications for decades. In this review, we summarize the recent approaches in the chemical and physical preparation and the application of alginate hydrogels in wound dressings.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
127
|
Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. Bioconjug Chem 2020; 31:1708-1723. [PMID: 32538089 DOI: 10.1021/acs.bioconjchem.0c00297] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infections in wounds often delay the healing process, and may seriously threaten human life. It is urgent to develop wound dressings to effectively detect and treat bacterial infections. Nanoparticles have been extensively used in wound dressings because of their specific properties. This review highlights the recent progress on nanoparticle-based wound dressings for bacterial detection and therapy. Specifically, nanoparticles have been applied as intrinsic antibacterial agents or drug delivery vehicles to treat bacteria in wounds. Moreover, nanoparticles with photothermal or photodynamic property have also been explored to endow wound dressings with significant optical properties to further enhance their bactericidal effect. More interestingly, nanoparticle-based smart dressings have been recently explored for bacteria detection and treatment, which enables an accurate assessment of bacterial infection and a more precise control of on-demand therapy.
Collapse
Affiliation(s)
- Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China.,Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, the People's Republic of China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| |
Collapse
|
128
|
Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules 2020; 25:E2699. [PMID: 32532089 PMCID: PMC7321109 DOI: 10.3390/molecules25112699] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
As wound healing continues to be a challenge for the medical field, wound management has become an essential factor for healthcare systems. Nanotechnology is a domain that could provide different new approaches concerning regenerative medicine. It is worth mentioning the importance of nanoparticles, which, when embedded in biomaterials, can induce specific properties that make them of interest in applications as materials for wound dressings. In the last years, nano research has taken steps to develop molecular engineering strategies for different self-assembling biocompatible nanoparticles. It is well-known that nanomaterials can improve burn treatment and also the delayed wound healing process. In this review, the first-line of bioactive nanomaterials-based dressing categories frequently applied in clinical practice, including semi-permeable films, semipermeable foam dressings, hydrogel dressings, hydrocolloid dressings, alginate dressings, non-adherent contact layer dressings, and multilayer dressings will be discussed. Additionally, this review will highlight the lack of high-quality evidence and the necessity for future advanced trials because current wound healing therapies generally fail to provide an excellent clinical outcome, either structurally or functionally. The use of nanomaterials in wound management represents a unique tool that can be specifically designed to closely reflect the underlying physiological processes in tissue repair.
Collapse
Affiliation(s)
| | | | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (C.C.)
| |
Collapse
|