101
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
102
|
Sarti AC, Vultaggio-Poma V, Di Virgilio F. P2X7: a receptor with a split personality that raises new hopes for anti-cancer therapy. Purinergic Signal 2021; 17:175-178. [PMID: 33818742 PMCID: PMC8155152 DOI: 10.1007/s11302-021-09783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Alba Clara Sarti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
103
|
Sagar S, Kapoor H, Chaudhary N, Roy SS. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021; 58:184-199. [PMID: 33766748 DOI: 10.1016/j.mito.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) signalling is well known to dictate cellular functioning and fate. In recent years, the accumulation of Ca2+ in the mitochondria has emerged as an important factor in Chronic Respiratory Diseases (CRD) such as Asthma and Chronic Obstructive Pulmonary Disease (COPD). Various reports underline an aberrant increase in the intracellular Ca2+, leading to mitochondrial ROS generation, and further activation of the apoptotic pathway in these diseases. Mitochondria contribute to Ca2+ buffering which in turn regulates mitochondrial metabolism and ATP production. Disruption of this Ca2+ balance leads to impaired cellular processes like apoptosis or necrosis and thus contributes to the pathophysiology of airway diseases. This review highlights the key role of cytoplasmic and mitochondrial Ca2+ signalling in regulating CRD, such as asthma and COPD. A better understanding of the dysregulation of mitochondrial Ca2+ homeostasis in these diseases could provide cues for the development of advanced therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Nisha Chaudhary
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
104
|
Lombardi M, Gabrielli M, Adinolfi E, Verderio C. Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Front Pharmacol 2021; 12:654023. [PMID: 33790800 PMCID: PMC8006391 DOI: 10.3389/fphar.2021.654023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is among the molecules involved in the immune response. It acts as danger signal that promotes inflammation by activating both P2X and P2Y purinergic receptors expressed in immune cells, including microglia, and tumor cells. One of the most important receptors implicated in ATP-induced inflammation is P2X7 receptor (P2X7R). The stimulation of P2X7R by high concentration of ATP results in cell proliferation, inflammasome activation and shedding of extracellular vesicles (EVs). EVs are membrane structures released by all cells, which contain a selection of donor cell components, including proteins, lipids, RNA and ATP itself, and are able to transfer these molecules to target cells. ATP stimulation not only promotes EV production from microglia but also influences EV composition and signaling to the environment. In the present review, we will discuss the current knowledge on the role of ATP in the biogenesis and dynamics of EVs, which exert important functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Marta Lombardi
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Gabrielli
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
105
|
De Marchi E, Pegoraro A, Adinolfi E. P2X7 Receptor in Hematological Malignancies. Front Cell Dev Biol 2021; 9:645605. [PMID: 33763425 PMCID: PMC7982859 DOI: 10.3389/fcell.2021.645605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor is an ion channel gated by the nucleotide ATP, known for its role in immune responses and recently emerging as a critical onco-promoting factor. Lymphocytes, myeloid cells, and their precursors were among the first cells proved to express a functional P2X7 receptor; therefore, it is not surprising that lymphoproliferative and myeloproliferative diseases, also known as hematological malignancies, were shown to be related in their insurgence and progression to P2X7 alterations. Here, we overview established and recent literature relating P2X7 with the biological mechanisms underlying leukemias, lymphomas, and multiple myeloma development. Particular attention is paid to studies published in the very recent past correlating P2X7 with ATP concentration in the leukemic microenvironment and P2X7 overexpression to acute myeloid leukemia aggressiveness and response to chemotherapy. The described literature strongly suggests that P2X7 and its genetic variants could be regarded as potential new biomarkers in hematological malignancies and that both P2X7 antagonists and agonists could emerge as new therapeutic tools alone or in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
106
|
Di Virgilio F. P2X7 is a cytotoxic receptor….maybe not: implications for cancer. Purinergic Signal 2021; 17:55-61. [PMID: 33011962 PMCID: PMC7955003 DOI: 10.1007/s11302-020-09735-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is rich in extracellular ATP. This nucleotide affects both cancer and infiltrating immune cell responses by acting at P2 receptors, chiefly P2X7. ATP is then degraded to generate adenosine, a very powerful immunosuppressant. The purinergic hypothesis put forward by Geoff Burnstock prompted innovative investigation in this field and provided the intellectual framework to interpret a myriad of experimental findings. This is a short appraisal of how Geoff's inspiration influenced cancer studies and my own investigation highlighting the key role of the P2X7 receptor.
Collapse
|
107
|
Kennedy C. That was then, this is now: the development of our knowledge and understanding of P2 receptor subtypes. Purinergic Signal 2021; 17:9-23. [PMID: 33527235 PMCID: PMC7954963 DOI: 10.1007/s11302-021-09763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
P2 receptors are present in virtually all tissues and cell types in the human body, and they mediate the physiological and pharmacological actions of extracellular purine and pyrimidine nucleotides. They were first characterised and named by Geoff Burnstock in 1978, then subdivided into P2X and P2Y purinoceptors in 1985 on the basis of pharmacological criteria in functional studies on native receptors. Molecular cloning of receptors in the 1990s revealed P2X receptors to comprise seven different subunits that interact to produce functional homo- and heterotrimeric ligand-gated cation channels. A family of eight P2Y G protein-coupled receptors were also cloned, which can form homo- and heterodimers. Deep insight into the molecular mechanisms of agonist and antagonist action has been provided by more recent determination of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes. Agonists and antagonists that are highly selective for individual subtypes are now available and some are in clinical use. This has all come about because of the intelligence, insight and drive of the force of nature that was Geoff Burnstock.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
108
|
Sarti AC, Vultaggio-Poma V, Falzoni S, Missiroli S, Giuliani AL, Boldrini P, Bonora M, Faita F, Di Lascio N, Kusmic C, Solini A, Novello S, Morari M, Rossato M, Wieckowski MR, Giorgi C, Pinton P, Di Virgilio F. Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab005. [PMID: 35330818 PMCID: PMC8788778 DOI: 10.1093/function/zqab005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Basal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, Adenosine 5'-triphosphate (ATP) synthesis, and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia, and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack (1) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca2+ level, (2) modifies expression pattern of oxidative phosphorylation enzymes, and (3) severely affects cardiac performance. Hearts from P2rx7-deleted versus wild-type mice are larger, heart mitochondria smaller, and stroke volume, ejection fraction, fractional shortening, and cardiac output, are significantly decreased. Accordingly, the physical fitness of P2X7R-null mice is severely reduced. Thus, the P2X7R is a key modulator of mitochondrial energy metabolism and a determinant of physical fitness.
Collapse
Affiliation(s)
- Alba Clara Sarti
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Paola Boldrini
- Center of Electronic Microscopy, University of
Ferrara, Ferrara 44121, Italy
| | - Massimo Bonora
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research
Council, Pisa 56124, Italy
| | - Nicole Di Lascio
- Institute of Clinical Physiology, National Research
Council, Pisa 56124, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research
Council, Pisa 56124, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular, and
Critical Area Pathology, University of Pisa, Pisa 56124, Italy
| | - Salvatore Novello
- Department of Biomedical and Specialty Surgical
Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Michele Morari
- Department of Biomedical and Specialty Surgical
Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Marco Rossato
- Department of Medicine, University of
Padova, Padova 35128, Italy
| | | | - Carlotta Giorgi
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy
| | - Francesco Di Virgilio
- Department of Medical Sciences, University of
Ferrara, Ferrara 44121, Italy,Address correspondence to F.D.V. (e-mail:
)
| |
Collapse
|
109
|
Sharma S, Kalra H, Akundi RS. Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2. Front Pharmacol 2021; 11:617211. [PMID: 33584298 PMCID: PMC7873692 DOI: 10.3389/fphar.2020.617211] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays a major role in the ability of the tumor cells to undergo metastasis. A major player of tumors gaining metastatic property is the inflammatory protein, cyclooxygenase 2 (COX-2). Several tumors show upregulation of this protein, which has been implicated in mediating metastasis in various cancer types such as of colon, breast and lung. In this report, we show that the concentration of extracellular ATP (eATP) is increased in response to cell death mediated by chemotherapeutic agents such as doxorubicin. By using three different cell-lines-HeLa (cervical), IMR-32 (neuronal) and MCF-7 (breast)-we show that this eATP goes on to act on purinergic (P2) receptors. Among the various P2 receptors expressed in these cells we identified P2X7, in IMR-32 and MCF-7 cells, and P2Y12, in HeLa cells, as important in modulating cell migration and invasion. Downstream of the P2 receptor activation, both p42/44 mitogen-activated protein kinase (MAPK) and the p38 MAPK are activated in these cells. These result in an increase in the expression of COX-2 mRNA and protein. We also observe an increase in the activity of matrix metalloproteinase 2 (MMP-2) enzyme in these cells. Blocking the P2 receptors not only blocks migration and invasion, but also COX-2 synthesis and MMP-2 activity. Our results show the link between purinergic receptors and COX-2 expression. Increased levels of ATP in the tumor microenvironment, therefore, leads to increased COX-2 expression, which, in turn, affords migratory and invasive properties to the tumor. This provides P2 receptor-based anti-inflammatory drugs (PBAIDs) a potential opportunity to be explored as cancer therapeutics.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Harshit Kalra
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
110
|
Abstract
The P2X7 receptor for extracellular ATP is a well-established mediator of tumoral development and progression both in solid cancers and hematological malignancies. The human P2X7 gene is highly polymorphic, and several splice variants of the receptor have been identified in time. P2X7 single-nucleotide polymorphisms (SNPs) have been broadly analyzed by studies relating them to pathologies as different as infectious, inflammatory, nervous, and bone diseases, among which cancer is included. Moreover, in the last years, an increasing number of reports concentrated on P2X7 splice variants’ different roles and their implications in pathological conditions, including oncogenesis. Here, we give an overview of established and recent literature demonstrating a role for human P2X7 gene products in oncological conditions, mainly focusing on current data emerging on P2X7 isoform B and nfP2X7. We explored the role of these and other genetic variants of P2X7 in cancer insurgence, dissemination, and progression, as well as the effect of chemotherapy on isoforms expression. The described literature strongly suggests that P2X7 variants are potential new biomarkers and therapeutical targets in oncological conditions and that their study in carcinogenesis deserves to be further pursued.
Collapse
|
111
|
Kennedy C. The P2Y/P2X divide: How it began. Biochem Pharmacol 2021; 187:114408. [PMID: 33444568 DOI: 10.1016/j.bcp.2021.114408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Extracellular purine and pyrimidine nucleotides produce their pharmacological effects through P2 receptors. These were first named by Geoff Burnstock in an extensive review in 1978. They were then subdivided into P2X and P2Y purinoceptors by Burnstock and Kennedy in 1985, based on applying pharmacological criteria to data generated by functional studies in smooth muscle tissues. Several other P2 subtypes, P2T, P2Z, P2U and P2D were subsequently identified in the following years, again using pharmacological criteria. The number and identity of subtypes were clarified and simplified by the cloning of seven ATP-sensitive ligand-gated ion channel subunits and eight adenine and/or uracil nucleotide-sensitive G protein-coupled receptors from 1993 onwards. The former were all classified as members of the P2X receptor family and the latter as members of the P2Y receptor family. More recently, high resolution imaging of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes has provided a much greater understanding of how and where agonists and antagonists bind to the receptors and how this leads to changes in receptor conformation and activity. In addition, medicinal chemistry has produced a variety of subtype-selective agonists and antagonists, some of which are now in clinical use. This progress and success is a testimony to the foresight, intelligence, enthusiasm and drive of Geoff Burnstock, who led the field forward throughout his scientific life.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral St, Glasgow G4 0RE, Scotland.
| |
Collapse
|
112
|
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol 2020; 187:114350. [PMID: 33253643 DOI: 10.1016/j.bcp.2020.114350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that ion channels have a crucial role in tumors, either as promoters of cancer cell growth, or modulators of immune cell functions, or both. Among ion channels, P2X receptors have a special status because they are gated by ATP, a common and abundant component of the tumor microenvironment. Furthermore, one P2X receptor, i.e. P2X7, may also function as a conduit for ATP release, thus fuelling the increased extracellular ATP level in the tumor interstitium. These findings show that P2X receptors and extracellular ATP are indissoluble partners and key regulators of tumor growth, and suggest the exploitation of the extracellular ATP-P2X partnership to develop innovative therapeutic approaches to cancer.
Collapse
|
113
|
Martínez-Cuesta MÁ, Blanch-Ruiz MA, Ortega-Luna R, Sánchez-López A, Álvarez Á. Structural and Functional Basis for Understanding the Biological Significance of P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21228454. [PMID: 33182829 PMCID: PMC7696479 DOI: 10.3390/ijms21228454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
The P2X7 receptor (P2X7R) possesses a unique structure associated to an as yet not fully understood mechanism of action that facilitates cell permeability to large ionic molecules through the receptor itself and/or nearby membrane proteins. High extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions—are required for the receptor to be triggered and contribute to its role in cell damage signaling. The inconsistent data on its activation pathways and the few studies performed in natively expressed human P2X7R have led us to review the structure, activation pathways, and specific cellular location of P2X7R in order to analyze its biological relevance. The ATP-gated P2X7R is a homo-trimeric receptor channel that is occasionally hetero-trimeric and highly polymorphic, with at least nine human splice variants. It is localized predominantly in the cellular membrane and has a characteristic plasticity due to an extended C-termini, which confers it the capacity of interacting with membrane structural compounds and/or intracellular signaling messengers to mediate flexible transduction pathways. Diverse drugs and a few endogenous molecules have been highlighted as extracellular allosteric modulators of P2X7R. Therefore, studies in human cells that constitutively express P2X7R need to investigate the precise endogenous mediator located nearby the activation/modulation domains of the receptor. Such research could help us understand the possible physiological ATP-mediated P2X7R homeostasis signaling.
Collapse
Affiliation(s)
- María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| | - María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| |
Collapse
|
114
|
Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci 2020; 21:ijms21218323. [PMID: 33171939 PMCID: PMC7664196 DOI: 10.3390/ijms21218323] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) is a major second messenger in cells and is essential for the fate and survival of all higher organisms. Different Ca2+ channels, pumps, or exchangers regulate variations in the duration and levels of intracellular Ca2+, which may be transient or sustained. These changes are then decoded by an elaborate toolkit of Ca2+-sensors, which translate Ca2+ signal to intracellular operational cell machinery, thereby regulating numerous Ca2+-dependent physiological processes. Alterations to Ca2+ homoeostasis and signaling are often deleterious and are associated with certain pathological states, including cancer. Altered Ca2+ transmission has been implicated in a variety of processes fundamental for the uncontrolled proliferation and invasiveness of tumor cells and other processes important for cancer progression, such as the development of resistance to cancer therapies. Here, we review what is known about Ca2+ signaling and how this fundamental second messenger regulates life and death decisions in the context of cancer, with particular attention directed to cell proliferation, apoptosis, and autophagy. We also explore the intersections of Ca2+ and the therapeutic targeting of cancer cells, summarizing the therapeutic opportunities for Ca2+ signal modulators to improve the effectiveness of current anticancer therapies.
Collapse
|
115
|
Human P2X7 Receptor Causes Cycle Arrest in RPMI-8226 Myeloma Cells to Alter the Interaction with Osteoblasts and Osteoclasts. Cells 2020; 9:cells9112341. [PMID: 33105696 PMCID: PMC7690412 DOI: 10.3390/cells9112341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a malignant expansion of plasma cells and aggressively affects bone health. We show that P2X7 receptor altered myeloma growth, which affects primary bone cells in vitro. Expression on six human myeloma cell lines confirmed the heterogeneity associated with P2X7 receptor. Pharmacology with 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) as agonist showed dose-dependent membranal pores on RPMI-8226 (p = 0.0027) and blockade with P2X7 receptor antagonists. Ca2+ influx with increasing doses of BzATP (p = 0.0040) was also inhibited with antagonists. Chronic P2X7 receptor activation reduced RPMI-8226 viability (p = 0.0208). No apoptosis or RPMI-8226 death was observed by annexin V/propidium iodide (PI) labeling and caspase-3 cleavage, respectively. However, bromodeoxyuridine (BrdU) labelling showed an accumulation of RPMI-8226 in the S phase of cell cycle progression (61.5%, p = 0.0114) with significant decline in G0/G1 (5.2%, p = 0.0086) and G2/M (23.5%, p = 0.0015) phases. As myeloma pathology depends on a positive and proximal interaction with bone, we show that P2X7 receptor on RPMI-8226 inhibited the myeloma-induced suppression on mineralization (p = 0.0286) and reversed the excessive osteoclastic resorption. Our results demonstrate a view of how myeloma cell growth is halted by P2X7 receptor and the consequences on myeloma–osteoblast and myeloma–osteoclast interaction in vitro.
Collapse
|
116
|
Pegoraro A, Orioli E, De Marchi E, Salvestrini V, Milani A, Di Virgilio F, Curti A, Adinolfi E. Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death Dis 2020; 11:876. [PMID: 33071281 PMCID: PMC7569086 DOI: 10.1038/s41419-020-03058-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML) is a common adult leukemia often arising from a preexistent myelodysplastic syndrome (MDS). High mortality rates of AML are caused by relapse and chemoresistance; therefore, we analyzed the role of P2X7 receptor (P2X7R) splice variants A and B in AML progression and response to chemotherapy. The expression of P2X7RA and P2X7RB was investigated in samples obtained from MDS and AML untreated subjects or AML patients in relapse or remission after chemotherapy. Both P2X7RA and P2X7RB were overexpressed in AML versus MDS suggesting a disease-promoting function. However, in relapsing patients, P2X7RA was downmodulated, while P2X7RB was upmodulated. Treatment with daunorubicin (DNR), one of the main chemotherapeutics for AML, upregulated P2X7RB expression while reducing P2X7RA mRNA in AML blasts. Interestingly, DNR administration also caused ATP release from AML blasts suggesting that, following chemotherapy, activation of the receptor isoforms via their agonist will be responsible for the differential survival of blasts overexpressing P2X7RA versus P2X7RB. Indeed, AML blasts expressing high levels of P2X7RA were more prone to cell death if exposed to DNR, while those overexpressing P2X7RB were more vital and even protected against DNR toxicity. These data were reproducible also in HEK-293 cells separately expressing P2X7RA and B. P2X7RA facilitation of DNR toxicity was in part due to increased uptake of the drug inside the cell that was lost upon P2X7RB expression. Finally, in an AML xenograft model administration of DNR or the P2X7R antagonist, AZ10606120 significantly reduced leukemic growth and coadministration of the drugs proved more efficacious than single treatment as it reduced both P2X7RA and P2X7RB levels and downmodulated c-myc oncogene. Taken together, our data suggest P2X7RA and P2X7RB as potential prognostic markers for AML and P2X7RB as a therapeutic target to overcome chemoresistance in AML relapsing patients.
Collapse
Affiliation(s)
- Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Elisa Orioli
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valentina Salvestrini
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", 40138, Bologna, Italy
| | - Asia Milani
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Antonio Curti
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", 40138, Bologna, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
117
|
Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:186-199. [PMID: 32998520 PMCID: PMC7752223 DOI: 10.1161/atvbaha.120.315116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1β and IL-18. Increased P2X7 activation and IL-1β and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1β and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.
Collapse
Affiliation(s)
- Brandon G. Shokoples
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|