101
|
He P, Li H, Zhang Y, Lin T, Song Y, Liu C, Liang M, Nie J, Wang B, Guo H, Wang X, Huo Y, Zhang H, Xu X, Qin X. Prospective association between baseline plasma zinc concentration and development of proteinuria in Chinese hypertensive patients. J Trace Elem Med Biol 2021; 66:126755. [PMID: 33838565 DOI: 10.1016/j.jtemb.2021.126755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We aimed to evaluate the association between baseline plasma zinc and the development of proteinuria as well as possible effect modifiers in hypertensive patients. METHODS This is a subset of the China Stroke Primary Prevention Trial (CSPPT) Renal Sub-Study. In the CSPPT, participants were randomized to receive a daily oral dose of 1 tablet containing 10 mg enalapril and 0.8 mg folic acid or 1 tablet containing 10 mg enalapril only. A total of 783 participants with plasma zinc measurements and without proteinuria at baseline were included in the current study. The study outcome was the development of proteinuria during the follow-up, defined as a urine dipstick reading of trace or ≥1+ at the exit visit. RESULTS During a median follow-up duration of 4.4 years, the development of proteinuria occurred in 93 (11.9 %) participants. There was an inverse relation of baseline plasma zinc with the development of proteinuria (per SD increment; OR, 0.74, 95 % CI: 0.55-0.99), p for trend of quartiles = 0.005. CONCLUSIONS In Chinese hypertensive patients, there was a significant inverse association between baseline plasma zinc and the development of proteinuria, although plasma zinc remained in the reference range.
Collapse
Affiliation(s)
- Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China
| | - Huan Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China
| | - Tengfei Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Chengzhang Liu
- Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Min Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China; Shenzhen Evergreen Medical Institute, Shenzhen, 518057, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiping Xu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515, China.
| |
Collapse
|
102
|
Abdelrahman KM, Hackshaw KV. Nutritional Supplements for the Treatment of Neuropathic Pain. Biomedicines 2021; 9:674. [PMID: 34199290 PMCID: PMC8231824 DOI: 10.3390/biomedicines9060674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain affects 7-10% of the population and is often ineffectively and incompletely treated. Although the gold standard for treatment of neuropathic pain includes tricyclic antidepressants (TCAs), serotonin-noradrenaline reuptake inhibitors, and anticonvulsants, patients suffering from neuropathic pain are increasingly turning to nonpharmacologic treatments, including nutritional supplements for analgesia. So-called "nutraceuticals" have garnered significant interest among patients seeking to self-treat their neuropathic pain with readily available supplements. The supplements most often used by patients include vitamins such as vitamin B and vitamin D, trace minerals zinc and magnesium, and herbal remedies such as curcumin and St. John's Wort. However, evidence surrounding the efficacy and mechanisms of these supplements in neuropathic pain is limited, and the scientific literature consists primarily of preclinical animal models, case studies, and small randomized controlled trials (RCTs). Further exploration into large randomized controlled trials is needed to fully inform patients and physicians on the utility of these supplements in neuropathic pain. In this review, we explore the basis behind using several nutritional supplements commonly used by patients with neuropathic pain seen in rheumatology clinics.
Collapse
Affiliation(s)
| | - Kevin V. Hackshaw
- Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
103
|
Bede-Ojimadu O, Orish CN, Bocca B, Ruggieri F, Frazzoli C, Orisakwe OE. Trace elements exposure and risk in age-related eye diseases: a systematic review of epidemiological evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:293-339. [PMID: 34114934 DOI: 10.1080/26896583.2021.1916331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This systematic review aimed to evaluate existing evidence on the associations between trace elements exposure and age-related eye diseases. PubMed and Google scholar databases were searched for epidemiological and postmortem studies on the relationship between exposure to trace elements and Age-related eye diseases such as age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy (DR), in population groups aged 40 years and above. Available evidence suggests that cadmium (Cd) exposure may be positively associated with the risks of AMD and cataract. There is also evidence that exposure to lead (Pb) may be positively associated with higher risk of cataract and glaucoma. There is limited number of relevant studies and lack of prospective studies for most of the investigated associations. Evidence for other trace elements is weak and inconsistent, and the number of available studies is small. Likewise, there are very few relevant studies on the role of trace elements in DR. Chemical elements that affect the distribution and absorption of other trace elements have never been investigated. The suggestive but limited evidence motivates large and quality prospective studies to fully characterize the impact of exposure to trace (toxic and essential) elements on age-related eye diseases.
Collapse
Affiliation(s)
- Onyinyechi Bede-Ojimadu
- Department of Chemical Pathology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Rivers, Nigeria
| |
Collapse
|
104
|
Duarte GBS, Callou KRDA, Almondes KGDS, Rogero MM, Pollak DF, Cozzolino SMF. Evaluation of biomarkers related to zinc nutritional status, antioxidant activity and oxidative stress in rheumatoid arthritis patients. Nutr Health 2021; 28:257-264. [PMID: 34006137 DOI: 10.1177/02601060211015594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidative stress (OS) is an important process related to the pathophysiology of rheumatoid arthritis and can be increased by the low intake of antioxidants. Zinc (Zn) is an important antioxidant trace-element for human health and the assessment of the nutritional status of this micronutrient in these patients is of relevance. AIM This study aimed to evaluate Zn nutritional status in rheumatoid arthritis patients and its relation to OS. METHODS A case-control study was carried out with 51 patients diagnosed with rheumatoid arthritis (RA group) recruited in Hospital São Paulo (São Paulo, Brazil) and 55 healthy women (CO group) from the campus of the University of São Paulo. Blood and 24-hour urine collection were used for biochemical parameters related to Zn status and OS. The assessment of dietary Zn was performed by three 24-hour dietary recalls. RESULTS The RA group presented significative low Zn intake (p < 0.001) and plasma concentration (p = 0.040) of this mineral compared to the CO group. However, both groups were Zn deficient and the disease activity (DAS28 score) for RA patients did not influence Zn biomarkers. In addition, the antioxidant enzymes (superoxide dismutase and glutathione peroxidase) activity and the urinary 8-isoprostanes were reduced in RA patients. CONCLUSION The evaluation of dietary intake and biochemical biomarkers indicates that rheumatoid arthritis patients are zinc deficient and have increased OS.
Collapse
Affiliation(s)
- Graziela Biude Silva Duarte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Butantã, São Paulo, Brazil
| | - Kátia Rau de Almeida Callou
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Butantã, São Paulo, Brazil.,Department of Nutrition, 123204Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Marcelo Macedo Rogero
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Butantã, São Paulo, Brazil.,Department of Nutrition, 123204Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daniel Feldman Pollak
- Department of Rheumatology, Faculty of Medicine, 123204Federal University of São Paulo, Vila Clementino, São Paulo, Brazil
| | | |
Collapse
|
105
|
Association of Zinc Deficiency with Development of CVD Events in Patients with CKD. Nutrients 2021; 13:nu13051680. [PMID: 34063377 PMCID: PMC8156917 DOI: 10.3390/nu13051680] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Deficiency of the micronutrient zinc is common in patients with chronic kidney disease (CKD). The aim of this review is to summarize evidence presented in literature for consolidation of current knowledge regarding zinc status in CKD patients, including those undergoing hemodialysis. Zinc deficiency is known to be associated with various risk factors for cardiovascular disease (CVD), such as increased blood pressure, dyslipidemia, type 2 diabetes mellitus, inflammation, and oxidative stress. Zinc may protect against phosphate-induced arterial calcification by suppressing activation of nuclear factor kappa light chain enhancer of activated B. Serum zinc levels have been shown to be positively correlated with T50 (shorter T50 indicates higher calcification propensity) in patients with type 2 diabetes mellitus as well as those with CKD. Additionally, higher intake of dietary zinc was associated with a lower risk of severe abdominal aortic calcification. In hemodialysis patients, the beneficial effects of zinc supplementation in relation to serum zinc and oxidative stress levels was demonstrated in a meta-analysis of 15 randomized controlled trials. Thus, evidence presented supports important roles of zinc regarding antioxidative stress and suppression of calcification and indicates that zinc intake/supplementation may help to ameliorate CVD risk factors in CKD patients.
Collapse
|
106
|
Concurrent Heavy Metal Exposures and Idiopathic Dilated Cardiomyopathy: A Case-Control Study from the Katanga Mining Area of the Democratic Republic of Congo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094956. [PMID: 34066615 PMCID: PMC8124897 DOI: 10.3390/ijerph18094956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Blood and/or urine levels of 27 heavy metals were determined by ICPMS in 41 patients with dilated cardiomyopathy (DCM) and 29 presumably healthy subjects from the Katanga Copperbelt (KC), in the Democratic Republic of Congo (DRC). After adjusting for age, gender, education level, and renal function, DCM probability was almost maximal for blood concentrations above 0.75 and 150 µg/dL for arsenic and copper, respectively. Urinary concentrations above 1 for chromium, 20 for copper, 600 for zinc, 30 for selenium, 2 for cadmium, 0.2 for antimony, 0.5 for thallium, and 0.05 for uranium, all in μg/g of creatinine, were also associated with increased DCM probability. Concurrent and multiple exposures to heavy metals, well beyond permissible levels, are associated with increased probability for DCM. Study findings warrant screening for metal toxicity in case of DCM and prompt public health measures to reduce exposures in the KC, DRC.
Collapse
|
107
|
Hoppe C, Kutschan S, Dörfler J, Büntzel J, Büntzel J, Huebner J. Zinc as a complementary treatment for cancer patients: a systematic review. Clin Exp Med 2021; 21:297-313. [PMID: 33496846 PMCID: PMC8053661 DOI: 10.1007/s10238-020-00677-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Zinc is a trace element that plays an important role in the immune system and cell growth. The role of zinc in cancer treatment has been discussed for some time, however without reaching an evidenced-based consensus. Therefore, we aim to critically examine and review existing evidence on the role of zinc during cancer treatment. In January 2019, a systematic search was conducted searching five electronic databases (Embase, Cochrane, PsychINFO, CINAHL and PubMed) to find studies concerning the use, effectiveness and potential harm of zinc therapy on cancer patients. Out of initial 5244 search results, 19 publications concerning 23 studies with 1230 patients were included in this systematic review. The patients treated with zinc were mainly diagnosed with head and neck cancer and underwent chemo-, radio- or concurrent radio-chemotherapy. Interventions included the intake of different amounts of zinc supplements and oral zinc rinses. Outcomes (primary endpoints) investigated were mucositis, xerostomia, dysgeusia, pain, weight, dermatitis and oral intake of nutrients. Secondary endpoints were survival data, quality of life assessments and aspects of fatigue, immune responses and toxicities of zinc. The studies were of moderate quality reporting heterogeneous results. Studies have shown a positive impact on the mucositis after radiotherapy. No protection was seen against mucositis after chemotherapy. There was a trend to reduced loss of taste, less dry mouth and oral pain after zinc substitution. No impact was seen on weight, QoL measurements, fatigue, and survival. The risk of side effects from zinc appears to be relatively small. Zinc could be useful in the prevention of oral toxicities during irradiation. It does not help in chemotherapy-induced side effects.
Collapse
Affiliation(s)
- C Hoppe
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - S Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - J Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - J Büntzel
- Klinik für HNO-Erkrankungen, Kopf-Hals-Chirurgie, Südharz-Klinikum Nordhausen, Dr.-Robert-Koch-Str. 39, 99734, Nordhausen, Germany
| | - J Büntzel
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
108
|
Karandish M, Mozaffari-Khosravi H, Mohammadi SM, Cheraghian B, Azhdari M. The effect of curcumin and zinc co-supplementation on glycemic parameters in overweight or obese prediabetic subjects: A phase 2 randomized, placebo-controlled trial with a multi-arm, parallel-group design. Phytother Res 2021; 35:4377-4387. [PMID: 33893671 DOI: 10.1002/ptr.7136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/09/2022]
Abstract
Management of prediabetes is a critical step to prevent type-2 diabetes. Curcumin and zinc have been studied as an antioxidant, antiinflammatory, and antidiabetic agents. In this clinical trial, 84 subjects were randomized into curcumin (500 mg), zinc (30 mg), zinc and curcumin, and placebo groups for 90 days. At the baseline and the end of the study, the outcomes (fasting plasma glucose (FPG), 2-hour postprandial glucose (2hpp), HbA1 C, insulin, insulin sensitivity (IS), insulin resistance (IR), β-cell function (BCF), weight, body mass index (BMI), dietary intake, and physical activity (PA)) were measured. A hypocaloric diet and PA were recommended for all subjects. In total, 82 subjects completed the study. After the intervention, dietary intake, PA, weight, and BCF% did not show a significant difference among the groups. However, subjects taking only zinc and zinc and curcumin groups experienced decreased BMI compared to the placebo (p = .01 and .007, respectively). The three treated groups had improved FPG (p = .01), 2hpp (p = .003), HbA1C (p = .004), insulin (p = .001), IS% (p = .001), and IR (p < .001) compared to the placebo. Based on these results, zinc and curcumin supplementation exerted a beneficial effect on several key glycemic parameters.
Collapse
Affiliation(s)
- Majid Karandish
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Mohammadi
- Endocrinology & Metabolism, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Health Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Azhdari
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
109
|
Zinc and/or Selenium Enriched Spirulina as Antioxidants in Growing Rabbit Diets to Alleviate the Deleterious Impacts of Heat Stress during Summer Season. Animals (Basel) 2021; 11:ani11030756. [PMID: 33801803 PMCID: PMC8001169 DOI: 10.3390/ani11030756] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Heat stress in summer season impairs growth and causes heat-induced physiological stress in rabbits. Zinc acts as an antioxidant stress agent by inhibition of oxidation of macromolecules such as DNA as well as inhibition of inflammatory response, eventually resulting in the down-regulation of reactive oxygen species production. Selenium is a powerful biological anti-oxidant mineral. Spirulina is comparatively confined extreme protein (55–65%) and comprised all important amino acids, has wellbeing assistances, immuno-stimulatory influences and antiviral activity and ensured the capability to diminish heat stress impacts. In the current work, effects of dietary supplemental zinc and/ or selenium enriched spirulina (100 mg Zn-Sp/kg diet, 0.5 mg Se-Sp/kg diet or 100 mg Zn-Sp+ 0.5 mg Se-Sp, respectively) as antioxidants on growth performance, nutrient digestibility, plasma biochemicals and antioxidant status of New Zealand White growing rabbits under summer conditions were evaluated. The findings showed that the supplemented diets enhanced growth performance of rabbits at marketing, hot carcass weight, dressing percentage, high density lipoprotein cholesterol and total antioxidant capacity and reduced thio-barbituric acid reactive substances. Finally, dietary supplementation of 100 mg Zn-Sp, 0.5 mg Se-Sp or their combination could improve growth performance, nutrients digestibility and antioxidant status of heat stressed growing rabbits. Abstract Effects of dietary supplemental zinc and/ or selenium enriched spirulina (Zn-Sp, Se-Sp and Zn-Se-Sp, respectively) as antioxidants on growth performance, nutrient digestibility, plasma biochemicals and antioxidant status of growing rabbits under summer conditions were evaluated. A total of 160 New Zealand White male rabbits at six-weeks-old were randomly assigned to four groups. The first group received untreated diet (control). The other groups received diet supplemented with 100 mg Zn-Sp/kg diet, 0.5 mg Se-Sp/kg diet or 100 mg Zn-Sp+ 0.5 mg Se-Sp, respectively. The findings showed that the supplemented diets enhanced growth performance of rabbits at marketing. Rabbits fed Zn-Sp exhibited high dry and organic matter digestibilities while those fed Zn-Sp and Zn-Se-Sp diet supplemented achieved high crude protein digestibility. Rabbits fed diet supplemented with Zn-Se-Sp gave the highest hot carcass weight when competed with their counterparts. Zn-Sp and Zn-Se-Sp supplemented diets tended to promote dressing percentage. Low concentrations of plasma total cholesterol, LDL-cholesterol and VLDL-cholesterol were recorded by Se-Sp and Zn-Se-Sp groups. Rabbits fed Se-Sp, Zn-Se-Sp had the greatest HDL, plasma TAC and catalase and the lowest TBARs. Conclusively, dietary supplementation of 100 mg Zn-Sp, 0.5 mg Se-Sp or their combination could improve growth performance, nutrients digestibility and antioxidant status of heat stressed growing rabbits.
Collapse
|
110
|
Zinc Preconditioning Provides Cytoprotection following Iodinated Contrast Media Exposure in In Vitro Models. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6686803. [PMID: 33679268 PMCID: PMC7904368 DOI: 10.1155/2021/6686803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Methods Normal human proximal renal kidney cells (HK-2) were preconditioned with either increasing doses of ZnCl2 or control. Following this preconditioning, cells were exposed to increasing concentrations of Iohexol 300 mg I2/ml for four hours. Key outcome measures included cell survival (MTT colorimetric assay) and ROS generation (H2DCFDA fluorescence assay). Results Contrast media induced a dose-dependent reduction in survival of HK-2 cells. Compared to control, contrast media at 150, 225, and 300 mg I2/ml resulted in 69.5% (SD 8.8%), 37.3% (SD 4.8%), and 4.8% (SD 6.6%) cell survival, respectively (p < 0.001). Preconditioning with 37.5 μM and 50 μM ZnCl2 increased cell survival by 173% (SD 27.8%) (p < 0.001) and 219% (SD 32.2%) (p < 0.001), respectively, compared to control preconditioning. Zinc preconditioning resulted in a reduction of ROS generation. Zinc pre-conditioning with 37.5 μM μM ZnCl2 reduced ROS generation by 46% (p < 0.001) compared to control pre-conditioning. Conclusions Zinc preconditioning reduces oxidative stress following exposure to radiographic contrast media which in turn results in increased survival of renal cells. Translation of this in vitro finding in animal models will lay the foundation for future use of zinc preconditioning against contrast induced nephropathy.
Collapse
|
111
|
de Andrade Freire FL, Dantas-Komatsu RCS, de Lira NRD, Diniz RVZ, Lima SCVC, Barbosa F, Pedrosa LFC, Sena-Evangelista KCM. Biomarkers of Zinc and Copper Status and Associated Factors in Outpatients with Ischemic and Non-Ischemic Heart Failure. J Am Coll Nutr 2021; 41:231-239. [PMID: 33570472 DOI: 10.1080/07315724.2021.1878069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Few studies have explored the impact of ischemic and non-ischemic etiologies of heart failure and other factors associated with heart failure on zinc and copper status. This study examined zinc and copper status in 80 outpatients with ischemic (n = 36) and non-ischemic (n = 44) heart failure and associations with biodemographic, clinical, biochemical, and nutritional parameters.Materials: Biomarkers of plasma zinc and copper, copper-zinc ratio, 24-h urinary zinc excretion, ceruloplasmin, and dietary intake of zinc and copper were assessed. Plasma zinc and copper and urinary zinc were measured by inductively coupled plasma mass spectrometry (ICP-MS).Results: Patients with ischemic heart failure showed lower dietary zinc intake and higher dietary copper intake (both p = 0.02). Zinc and copper in plasma, copper-zinc ratio, ceruloplasmin, and 24-h urinary zinc excretion showed no statistical differences between the groups (all p ≥ 0.05). An inverse association was found between age (β =-0.001; p = 0.005) and the use of diuretics (β = -0.047; p = 0.013) and plasma zinc. Copper levels in plasma (β = 0.001; p < 0.001), and albumin (β = 0.090; p<0.001) were directly associated with plasma zinc. A positive association was found between ceruloplasmin (β = 0.011; p < 0.001), gamma-glutamyl transferase (β = 0.001; p < 0.001), albumin (β = 0.077; p = 0.001), and high-sensitivity c-reactive protein (β = 0.001; p = 0.024) and plasma copper.Conclusion: Zinc and copper biomarkers in clinically stable patients with heart failure did not seem to be responsive to the differences in zinc and copper intake observed in this study, regardless of heart failure etiology. The predictors of plasma zinc and copper levels related to oxidative stress and inflammation should be monitored in heart failure clinical practice.
Collapse
Affiliation(s)
- Fernanda Lambert de Andrade Freire
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raquel Costa Silva Dantas-Komatsu
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Niethia Regina Dantas de Lira
- Brazilian Hospital Services Company, Onofre Lopes University Hospital, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rosiane Viana Zuza Diniz
- Department of Clinical Medicine, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Severina Carla Vieira Cunha Lima
- Postgraduate Program in Nutrition, Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | |
Collapse
|
112
|
Ramalingam V, Hwang I. Zero valent zinc regulates adipocyte differentiation through calpain family protein and peroxisome proliferator-activated receptor gamma signaling in mouse 3T3-L1 cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
113
|
Erfani Majd N, Hajirahimi A, Tabandeh MR, Molaei R. Protective effects of green and chemical zinc oxide nanoparticles on testis histology, sperm parameters, oxidative stress markers and androgen production in rats treated with cisplatin. Cell Tissue Res 2021; 384:561-575. [PMID: 33433689 DOI: 10.1007/s00441-020-03350-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
Cancer treatment with cisplatin (CP) is associated with adverse side effects on male reproductive tissues. Although beneficial effects of zinc oxide nanoparticles (ZnO NPs) in cancer therapy have received considerable attention, data related to the protective effects of green ZnO NPs against CP-induced male reproductive dysfunctions are limited. Forty-five rats were divided into 9 groups including G1 (control), G2 (sham), G3 (ZnO bulk), G4 (green ZnO NPs), G5 (chemical ZnO NPs), G6 (CP), G7 (CP + ZnO bulk), G8 (CP + green ZnO NPs), and G9 (CP + chemical ZnO NPs). CP was administrated (5 mg/kg/week) for 4 weeks, and animals were simultaneously treated with different forms of ZnO (5 mg/kg/day). Testis histology, sperm parameters, oxidative stress markers, testosterone concentration, and expression of genes related in steroidogenesis were analyzed in different experimental groups. Testis tissue damage and epididymal sperm disorders induced by CP attenuated when animals were treated with different forms of ZnO, especially green ZnO NPs. Decreased testosterone concentration and increased MDA level in CP-treated rats were reversed following administration different forms of ZnO, especially green and chemical ZnO NPs. Co-administration of ZnO NPs to CP-treated rats restored the suppressive effects of CP on activities of antioxidant enzymes (SOD, GPX, CAT) and the transcription of the STAR gene. None of the ZnO forms had a significant regulatory effect on the expression of CYP11A1 in CP-treated rats. The results showed that in most of the evaluated factors, green ZnO NPs showed a greater protective effect than other forms of ZnO.
Collapse
Affiliation(s)
- Naeem Erfani Majd
- Department of Basic Sciences, Faculty of Veterinary Medicine, Division of Histology , Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Akram Hajirahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Division of Histology , Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
114
|
Ugwu N, Okike C, Ugwu C, Ezeonu C, Iyare F, Alo C. Assessment of zinc level and its relationship with some hematological parameters among patients with sickle cell anemia in Abakaliki, Nigeria. NIGERIAN JOURNAL OF MEDICINE 2021. [DOI: 10.4103/njm.njm_178_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
115
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
116
|
Structure and Properties of Biodegradable PLLA/ZnO Composite Membrane Produced via Electrospinning. MATERIALS 2020; 14:ma14010002. [PMID: 33374987 PMCID: PMC7792573 DOI: 10.3390/ma14010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
These days, composite materials based on polymers and inorganic nanoparticles (NPs) are widely used in optoelectronics and biomedicine. In this work, composite membranes of polylactic acid and ZnO NPs containing 5–40 wt.% of the latter NPs were produced by means of electrospinning. For the first time, polymer material loaded with up to 40 wt.% of ZnO NPs (produced via laser ablation in air and having non-modified surface) was used to prepare fiber-based composite membranes. The morphology, phase composition, mechanical, spectral and antibacterial properties of the membranes were tested by a set of analytical techniques including SEM, XRD, FTIR, UV-vis, and photoluminescence spectroscopy. Antibacterial activity of the materials was evaluated following standard procedures (ISO 20743:2013) and using S. aureus and E. coli bacteria. It is shown that incorporation of 5–10 wt.% of NPs led to improved mechanical properties of the composite membranes, while further increase of ZnO content up to 20 wt.% and above resulted in their noticeable deterioration. At the same time, the antibacterial properties of ZnO-rich membranes were more pronounced, which is explained by a larger number of surface-exposed ZnO NPs, in addition to those embedded into the bulk of fiber material.
Collapse
|
117
|
Time- and Zinc-Related Changes in Biomechanical Properties of Human Colorectal Cancer Cells Examined by Atomic Force Microscopy. BIOLOGY 2020; 9:biology9120468. [PMID: 33327597 PMCID: PMC7765036 DOI: 10.3390/biology9120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
Simple Summary We aimed to study how cellular zinc status (adequate vs. deficiency), closely related to colorectal cancer, does affect the nanomechanical properties of cell lines HT-29 and HT-29-MTX during their early proliferation (24–96 h). These properties and their variations can be characterized by means of Atomic Force Microscopy (AFM), a technique that allows perpendicular indentation of cells with a sharp nanometric tip, under controlled speed and load, while recording the real time variation of tip-to-cell interacting forces on approach, contact, and retraction segments. From each of these sections, complete information about the respective elastic modulus, relaxation behavior, and adhesion is extracted, thus identifying cell line- and zinc-related nanomechanical fingerprints. Our results show how the impact of zinc deficiency on the mechanical response of the cells underlines the relevance of monitoring the nutritional zinc status of tumor samples when analyzing cancerous tissues or single cells with AFM, particularly regarding the development and validation of biomechanical fingerprints as diagnostic markers for cancer. Abstract Monitoring biomechanics of cells or tissue biopsies employing atomic force microscopy (AFM) offers great potential to identify diagnostic biomarkers for diseases, such as colorectal cancer (CRC). Data on the mechanical properties of CRC cells, however, are still scarce. There is strong evidence that the individual zinc status is related to CRC risk. Thus, this study investigates the impact of differing zinc supply on the mechanical response of the in vitro CRC cell lines HT-29 and HT-29-MTX during their early proliferation (24–96 h) by measuring elastic modulus, relaxation behavior, and adhesion factors using AFM. The differing zinc supply severely altered the proliferation of these cells and markedly affected their mechanical properties. Accordingly, zinc deficiency led to softer cells, quantitatively described by 20–30% lower Young’s modulus, which was also reflected by relevant changes in adhesion and rupture event distribution compared to those measured for the respective zinc-adequate cultured cells. These results demonstrate that the nutritional zinc supply severely affects the nanomechanical response of CRC cell lines and highlights the relevance of monitoring the zinc content of cancerous cells or biopsies when studying their biomechanics with AFM in the future.
Collapse
|
118
|
Aly J, Engmann O. The Way to a Human's Brain Goes Through Their Stomach: Dietary Factors in Major Depressive Disorder. Front Neurosci 2020; 14:582853. [PMID: 33364919 PMCID: PMC7750481 DOI: 10.3389/fnins.2020.582853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, more than 250 million people are affected by depression (major depressive disorder; MDD), a serious and debilitating mental disorder. Currently available treatment options can have substantial side effects and take weeks to be fully effective. Therefore, it is important to find safe alternatives, which act more rapidly and in a larger number of patients. While much research on MDD focuses on chronic stress as a main risk factor, we here make a point of exploring dietary factors as a somewhat overlooked, yet highly promising approach towards novel antidepressant pathways. Deficiencies in various groups of nutrients often occur in patients with mental disorders. These include vitamins, especially members of the B-complex (B6, B9, B12). Moreover, an imbalance of fatty acids, such as omega-3 and omega-6, or an insufficient supply with minerals, including magnesium and zinc, are related to MDD. While some of them are relevant for the synthesis of monoamines, others play a crucial role in inflammation, neuroprotection and the synthesis of growth factors. Evidence suggests that when deficiencies return to normal, changes in mood and behavior can be, at least in some cases, achieved. Furthermore, supplementation with dietary factors (so called "nutraceuticals") may improve MDD symptoms even in the absence of a deficiency. Non-vital dietary factors may affect MDD symptoms as well. For instance, the most commonly consumed psychostimulant caffeine may improve behavioral and molecular markers of MDD. The molecular structure of most dietary factors is well known. Hence, dietary factors may provide important molecular tools to study and potentially help treat MDD symptoms. Within this review, we will discuss the role of dietary factors in MDD risk and symptomology, and critically discuss how they might serve as auxiliary treatments or preventative options for MDD.
Collapse
Affiliation(s)
- Janine Aly
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
119
|
Čobanová K, Váradyová Z, Grešáková Ľ, Kucková K, Mravčáková D, Várady M. Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection? Antioxidants (Basel) 2020; 9:E1172. [PMID: 33255492 PMCID: PMC7761366 DOI: 10.3390/antiox9121172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to evaluate the effect of feed supplementation with a medicinal herbs mixture (Hmix) and organic zinc (Zn), alone or in combination, on the antioxidant responses and mineral status of lambs infected with the gastrointestinal nematode parasite Haemonchus contortus. A total of 24 experimentally infected lambs were randomly allocated to 1 of 4 dietary treatments (n = 6). The diets included an unsupplemented control diet (CON) and the CON further supplemented with Hmix, Zn, or both Hmix + Zn. Antioxidant enzymes activities, lipid peroxidation, total antioxidant capacity (TAC) and microelement (Zn, Cu, Fe, Mn) concentrations were analyzed in serum, liver, kidney, and intestinal mucosa. Zinc treatment elevated the superoxide dismutase activities in the duodenal mucosa and ileal TAC. Intake of Hmix resulted in higher kidney and ileal catalase activity and also influenced the TAC of the liver and intestinal mucosa. The inclusion of Hmix or Zn alone into the diet increased glutathione peroxidase activity in the blood, liver and duodenal mucosa. Tissue mineral uptake was not affected by herbal supplementation. Organic Zn intake increased the serum and liver Zn levels and influenced the Cu concentration in duodenal mucosa. Dietary supplementation with Hmix and/or Zn might promote the antioxidant status of lambs infected with Haemonchus spp.
Collapse
Affiliation(s)
- Klaudia Čobanová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Zora Váradyová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Ľubomíra Grešáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Katarína Kucková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Dominika Mravčáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Marián Várady
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
120
|
The role of labile Zn 2+ and Zn 2+-transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Mol Cell Biochem 2020; 476:971-989. [PMID: 33225416 DOI: 10.1007/s11010-020-03964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demonstrated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn2+, those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from cellular Zn2+-homeostasis and responsible Zn2+-transporters associated with the Zn2+-homeostasis and Zn2+-signaling. Zn2+-signaling, controlled by cellular Zn2+-homeostatic mechanisms, is regulated with intracellular labile Zn2+ levels, which are controlled, especially, with the two Zn2+-transporter families; ZIPs and ZnTs. Our experimental studies in mammalian cardiomyocytes and human heart tissue showed that Zn2+-transporters localizes to mitochondria besides sarco(endo)plasmic reticulum and Golgi under physiological condition. The protein levels as well as functions of those transporters can re-distribute under pathological conditions, therefore, they can interplay among organelles in cardiomyocytes to adjust a proper intracellular labile Zn2+ level. In the present review, we aimed to summarize the already known Zn2+-transporters localize to mitochondria and function to stabilize not only the cellular Zn2+ level but also cellular oxidative stress status. In conclusion, one can propose that a detailed understanding of cellular Zn2+-homeostasis and Zn2+-signaling through mitochondria may emphasize the importance of new mitochondria-targeting agents for prevention and/or therapy of cardiovascular dysfunction in humans.
Collapse
|
121
|
Do VQ, Seo YS, Park JM, Yu J, Duong MTH, Nakai J, Kim SK, Ahn HC, Lee MY. A mixture of chloromethylisothiazolinone and methylisothiazolinone impairs rat vascular smooth muscle by depleting thiols and thereby elevating cytosolic Zn 2+ and generating reactive oxygen species. Arch Toxicol 2020; 95:541-556. [PMID: 33074372 DOI: 10.1007/s00204-020-02930-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022]
Abstract
Chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) are biocidal preservatives and the active ingredients in Kathon CG, which contains ca. 1.5% mixture of CMIT and MIT at a ratio of 3:1 (CMIT/MIT). CMIT/MIT was misused as humidifier disinfectant products, which caused serious health problems in Korea. Here, the vascular effects of CMIT/MIT were investigated to evaluate claims of putative cardiovascular toxicity observed in humidifier disinfectant users. CMIT/MIT did not affect the basal tension of the rat thoracic aorta up to 2.5 μg/mL in myograph experiments. Instead, pretreatment with CMIT/MIT impaired phenylephrine- or 5-hydroxytryptamine-induced vasoconstriction in a range of 0.5-2.5 μg/mL, which was largely irreversible and not recovered by washing out the CMIT/MIT. Similarly, the application of CMIT/MIT to pre-contracted aorta caused a gradual loss of tension. In primary cultured vascular smooth muscle cells (VSMCs), CMIT/MIT caused thiol depletion, which in turn led to cytosolic Zn2+ elevation and reactive oxygen species (ROS) formation. CMIT/MIT-induced shrinkage, detachment, and lysis of VSMCs depending on the concentration and the treatment time. All events induced by CMIT/MIT were prevented by a thiol donor N-acetylcysteine (NAC). Cytolysis could be inhibited by a Zn2+ chelator TPEN and a superoxide scavenger TEMPOL, whereas they did not affect shrinkage and detachment. In accordance with these results, CMIT/MIT-exposed aortas exhibited dissociation and collapse of tissue in histology analysis. Taken together, CMIT/MIT causes functional impairment and tissue damage to blood vessels by depleting thiol and thereby elevating cytosolic Zn2+ and generating ROS. Therefore, exposure to CMIT/MIT in consumer products may be a risk factor for cardiovascular disorders.
Collapse
Affiliation(s)
- Van Quan Do
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yoon-Seok Seo
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Men Thi Hoai Duong
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Junichi Nakai
- Graduate School of Dentistry, Tohoku University, Miyagi, 980-8575, Japan
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hee-Chul Ahn
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
122
|
Toida T, Toida R, Ebihara S, Takahashi R, Komatsu H, Uezono S, Sato Y, Fujimoto S. Association between Serum Zinc Levels and Clinical Index or the Body Composition in Incident Hemodialysis Patients. Nutrients 2020; 12:nu12103187. [PMID: 33086501 PMCID: PMC7603268 DOI: 10.3390/nu12103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The relationships between serum zinc levels and body composition or clinical outcomes of incident hemodialysis (HD) patients remain unclear. Methods: This prospective observational study examined the relationships between serum zinc levels and clinical indexes, including body composition, in 142 incident HD patients using a bioelectrical impedance analysis. Patients were divided into three groups according to baseline serum zinc levels: tertile, <45, 45–59, and ≥60 µg/dL. The reference group was set as ≥60 µg/dL. Cox’s regression analysis was performed to investigate the relationships between serum zinc categories and cardiovascular events and all-cause mortality after adjustments for potential confounders. Results: Serum zinc levels positively correlated with the nutritional index and negatively correlated with fluid volume markers. In a mean follow-up of 2.5 years, there were 20 cases of cardiovascular events and 15 of all-cause mortality. In the Cox’s regression analysis for cardiovascular events and all-cause mortality, the hazard ratio increased with a decrease in serum zinc levels, but was not significant. Conclusion: Serum zinc levels were associated with nutritional and fluid volume markers in incident HD patients. To clarify the relationship between serum zinc levels and cardiovascular events or mortality, further studies with a larger number of cases will be necessary.
Collapse
Affiliation(s)
- Tatsunori Toida
- Department of Hemovascular Medicine and Artificial Organs, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
- Department of Internal Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka 882-0835, Japan;
- Correspondence: ; Tel.: +83-985-85-1510
| | - Reiko Toida
- Department of Internal Medicine, Chiyoda Hospital, Hyuga 883-0064, Japan; (R.T.); (S.U.)
| | - Shou Ebihara
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Risa Takahashi
- Department of Internal Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka 882-0835, Japan;
| | - Hiroyuki Komatsu
- Center for Medical Education and Career Development, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Shigehiro Uezono
- Department of Internal Medicine, Chiyoda Hospital, Hyuga 883-0064, Japan; (R.T.); (S.U.)
| | - Yuji Sato
- Division of Nephrology, Department of Internal Medicine, National Health Insurance Takachiho Town Hospital, Takachiho 882-1101, Japan;
| | - Shouichi Fujimoto
- Department of Hemovascular Medicine and Artificial Organs, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| |
Collapse
|
123
|
Barman S, Srinivasan K. Diabetes and zinc dyshomeostasis: Can zinc supplementation mitigate diabetic complications? Crit Rev Food Sci Nutr 2020; 62:1046-1061. [PMID: 33938330 DOI: 10.1080/10408398.2020.1833178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc present in the islet cells of the pancreas is crucial for the synthesis, storage, and secretion of insulin. The excretion of large amounts of zinc from the body is reported in diabetic situations. Zinc depletion and increased oxidative stress have a major impact on the pathogenesis of diabetic complications. It would be most relevant to ascertain if intervention with supplemental zinc compensating for its depletion would beneficially mitigate hyperglycemia and the attendant metabolic abnormalities, and secondary complications in diabetes. An exhaustive literature search on this issue indicates: (1) Concurrent hypozincemia and decreased tissue zinc stores in diabetes as a result of its increased urinary excretion and/or decreased intestinal absorption, (2) Several recent experimental studies have documented that supplemental zinc has a potential hypoglycemic effect in the diabetic situation, and also beneficially modulate the attendant metabolic abnormalities and compromised antioxidant status, and (3) Supplemental zinc also alleviates renal lesions, cataract and the risk of cardiovascular disease accompanying diabetes mellitus, and help restore gastrointestinal health in experimental diabetes. These studies have also attempted to identify the precise mechanisms responsible for zinc-mediated beneficial effects in diabetic situation. The evidence discussed in this review highlights that supplemental zinc may significantly contribute to its clinical application in the management of diabetic hyperglycemia and related metabolic abnormalities, and in the alleviation of secondary complications resulting from diabetic oxidative stress.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, India
| | - Krishnapura Srinivasan
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
124
|
Cardozo LFMF, Mafra D. Don't forget the zinc. Nephrol Dial Transplant 2020; 35:1094-1098. [PMID: 32417896 DOI: 10.1093/ndt/gfaa045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ludmila F M F Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | - Denise Mafra
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil.,Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro, Brazil
| |
Collapse
|
125
|
Pandiella-Alonso A, Díaz-Rodríguez E, Sanz E. Antitumoral Properties of the Nutritional Supplement Ocoxin Oral Solution: A Comprehensive Review. Nutrients 2020; 12:nu12092661. [PMID: 32878230 PMCID: PMC7551453 DOI: 10.3390/nu12092661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Ocoxin Oral Solution (OOS) is a nutritional supplement whose formulation includes several plant extracts and natural products with demonstrated antitumoral properties. This review summarizes the antitumoral action of the different constituents of OOS. The action of this formulation on different preclinical models as well as clinical trials is reviewed, paying special attention to the mechanism of action and quality of life improvement properties of this nutritional supplement. Molecularly, its mode of action includes a double edge role on tumor biology, that involves a slowdown in cell proliferation accompanied by cell death induction. Given the safety and good tolerability of OOS, and its potentiation of the antitumoral effect of other standard of care drugs, OOS may be used in the oncology clinic in combination with conventional therapies.
Collapse
Affiliation(s)
- Atanasio Pandiella-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain;
- Correspondence:
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain;
| | | |
Collapse
|
126
|
Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020; 94:1443-1460. [PMID: 32394086 DOI: 10.1007/s00204-020-02702-9] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
Zinc (Zn) is one of the most important essential nutrients of great public health significance. It is involved in numerous biological functions and it is considered as a multipurpose trace element, due to its capacity to bind to more than 300 enzymes and more than 2000 transcriptional factors. Its role in biochemical pathways and cellular functions, such as the response to oxidative stress, homeostasis, immune responses, DNA replication, DNA damage repair, cell cycle progression, apoptosis and aging is significant. Zn is required for the synthesis of protein and collagen, thus contributing to wound healing and a healthy skin. Metallothioneins are metal-binding proteins and they are potent scavengers of heavy metals, including Zn, and protect the organism against stress. Zn deficiency is observed almost in 17% of the global population and affects many organ systems, leading to dysfunction of both humoral and cell-mediated immunity, thus increasing the susceptibility to infection. This review gives a thorough insight into the most recent evidence on the association between Zn biochemistry and human pathologies, epigenetic processes, gut microbial composition, drug targets and nanomedicine.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Panagoula-Stamatina A Ntoupa
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece.
| |
Collapse
|
127
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
128
|
Cho BO, Che DN, Kim JS, Kim JH, Shin JY, Kang HJ, Jang SI. In vitro Anti-Inflammatory and Anti-Oxidative Stress Activities of Kushenol C Isolated from the Roots of Sophora flavescens. Molecules 2020; 25:molecules25081768. [PMID: 32290603 PMCID: PMC7221590 DOI: 10.3390/molecules25081768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/10/2023] Open
Abstract
Kushenol C (KC) is a prenylated flavonoid isolated from the roots of Sophoraflavescens aiton. Little is known about its anti-inflammatory and anti-oxidative stress activities. Here, we investigated the anti-inflammatory and anti-oxidative stress effects of KC in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, and tert-butyl hydroperoxide (tBHP)-induced oxidative stress in HaCaT cells. The results demonstrated that KC dose-dependently suppressed the production of inflammatory mediators, including NO, PGE2, IL-6, IL1β, MCP-1, and IFN-β in LPS-stimulated RAW264.7 macrophages. The study demonstrated that the inhibition of STAT1, STAT6, and NF-κB activations by KC might have been responsible for the inhibition of NO, PGE2, IL-6, IL1β, MCP-1, and IFN-β in the LPS-stimulated RAW264.7 macrophages. KC also upregulated the expression of HO-1 and its activities in the LPS-stimulated RAW264.7 macrophages. The upregulation of Nrf2 transcription activities by KC in the LPS-stimulated RAW264.7 macrophages was demonstrated to be responsible for the upregulation of HO-1 expression and its activity in LPS-stimulated RAW264.7 macrophages. In HaCaT cells, KC prevented DNA damage and cell death by upregulating the endogenous antioxidant defense system involving glutathione, superoxide dismutase, and catalase, which prevented reactive oxygen species production from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in HaCaT cells. The upregulated activation of Nrf2 and Akt in the PI3K-Akt signaling pathway by KC was demonstrated to be responsible for the anti-oxidative stress activity of KC in HaCaT cells. Collectively, the study suggests that KC can be further investigated as a potential anti-inflammatory candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Byoung Ok Cho
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
- Correspondence: (B.O.C.); (S.I.J.); Tel.: +82-63-221-8005 (B.O.C.); +82-63-220-3124 (S.I.J.); Fax: +82-63-221-8035 (B.O.C.); +82-63-220-2054 (S.I.J.)
| | - Denis Nchang Che
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea
| | - Ji-Su Kim
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
| | - Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do 56212, Korea;
| | - Jae Young Shin
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
| | - Seon Il Jang
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
- Correspondence: (B.O.C.); (S.I.J.); Tel.: +82-63-221-8005 (B.O.C.); +82-63-220-3124 (S.I.J.); Fax: +82-63-221-8035 (B.O.C.); +82-63-220-2054 (S.I.J.)
| |
Collapse
|
129
|
Abdel-Magied N, Shedid SM. Impact of zinc oxide nanoparticles on thioredoxin-interacting protein and asymmetric dimethylarginine as biochemical indicators of cardiovascular disorders in gamma-irradiated rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:430-442. [PMID: 31749214 DOI: 10.1002/tox.22879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticle is a microscopic particle that has been existed in a wide range of biotechnological purposes. Zinc oxide nanoparticles (ZnO-NPs) have fewer environmental hazards and have shown positive impacts in the medical field. This work aimed to observe the effects of low and high doses of ZnO-NPs on heart injury induced by ionizing radiation (IR). Animals were irradiated by 8 Gy of gamma rays and ZnO-NPs (10 and 300 mg/Kg/day) were orally delivered to rats 1 hour after irradiation. Animals were dissected on 15th day postirradiation. Data showed that the oxidative damage resulted from radiation exposure, appeared by marked increments in the malondialdehyde (MDA) content and the level and protein expression of thioredoxin-interacting protein (TXNIP) with a noticeable decline in the level and expression of thioredoxin 1 (Trx-1) and thioredoxin reductase (TrxR), as well as glutathione (GSH) level and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, radiation-induced inflammation, manifested by a noticeable elevation in the level of tumor necrotic factor-alpha (TNF-α), interleukin-18 (IL-18), and C-reactive protein (CRP). Additionally, endothelial dysfunction marked with a high level of asymmetric dimethylarginine (ADMA), total nitrite/nitrate (NOx), intercellular adhesion molecule 1 (ICAM-1), homocysteine (Hcy), creatine kinase (CK-MB), cardiac troponin-I (cTn-I), and lactate dehydrogenase (LDH). In addition, a decrease of zinc (Zn) level in the cardiac tissue was recorded. ZnO-NPs treatment (10 mg/kg) mitigated the oxidative stress and inflammation effects on the cardiovascular tissue through the positive modulations in the studied parameters. In contrast, ZnO-NPs treatment (300 mg/kg) induced cardiovascular toxicity of normal rats and elevated the deleterious effects of radiation. In conclusion, ZnO-NPs at a low dose could mitigate the adverse effects on cardiovascular tissue induced by radiation during its applications, while the high dose showed morbidity and mortality in normal and irradiated rats.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|
130
|
Hernández-Camacho JD, Vicente-García C, Parsons DS, Navas-Enamorado I. Zinc at the crossroads of exercise and proteostasis. Redox Biol 2020; 35:101529. [PMID: 32273258 PMCID: PMC7284914 DOI: 10.1016/j.redox.2020.101529] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential element for all forms of life, and one in every ten human proteins is a zinc protein. Zinc has catalytic, structural and signalling functions and its correct homeostasis affects many cellular processes. Zinc deficiency leads to detrimental consequences, especially in tissues with high demand such as skeletal muscle. Zinc cellular homeostasis is tightly regulated by different transport and buffer protein systems. Specifically, in skeletal muscle, zinc has been found to affect myogenesis and muscle regeneration due to its effects on muscle cell activation, proliferation and differentiation. In relation to skeletal muscle, exercise has been shown to modulate zinc serum and urinary levels and could directly affect cellular zinc transport. The oxidative stress induced by exercise may provide the basis for the mild zinc deficiency observed in athletes and could have severe consequences on health and sport performance. Proteostasis is induced during exercise and zinc plays an essential role in several of the associated pathways. Zinc deficiency could be a crucial issue in sport performance for athletes. Exercise could modulate zinc serum and cellular homeostasis. Zinc is part of proteostatic systems critical during exercise.
Collapse
Affiliation(s)
- Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain; CIBERER, Instituto de Salud Carlos III, Madrid, 28000, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| | | | | |
Collapse
|
131
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|
132
|
Tardy AL, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020; 12:E228. [PMID: 31963141 PMCID: PMC7019700 DOI: 10.3390/nu12010228] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamins and minerals are essential to humans as they play essential roles in a variety of basic metabolic pathways that support fundamental cellular functions. In particular, their involvement in energy-yielding metabolism, DNA synthesis, oxygen transport, and neuronal functions makes them critical for brain and muscular function. These, in turn, translate into effects on cognitive and psychological processes, including mental and physical fatigue. This review is focused on B vitamins (B1, B2, B3, B5, B6, B8, B9 and B12), vitamin C, iron, magnesium and zinc, which have recognized roles in these outcomes. It summarizes the biochemical bases and actions of these micronutrients at both the molecular and cellular levels and connects them with cognitive and psychological symptoms, as well as manifestations of fatigue that may occur when status or supplies of these micronutrients are not adequate.
Collapse
Affiliation(s)
- Anne-Laure Tardy
- Sanofi Consumer Healthcare, Global Medical Nutritionals, 94250 Gentilly, France;
| | - Etienne Pouteau
- Sanofi Consumer Healthcare, Global Medical Nutritionals, 94250 Gentilly, France;
| | | | - Cansu Yilmaz
- Sanofi Consumer Healthcare, 34394 Beşiktaş Istanbul, Turkey;
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Victoria, VIC 3122, Australia;
| |
Collapse
|
133
|
Wang J, Zhao H, Xu Z, Cheng X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol Med 2020; 17:612-625. [PMID: 32944394 PMCID: PMC7476080 DOI: 10.20892/j.issn.2095-3941.2020.0106] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is an essential element and serves as a structural or catalytic component in many proteins. Two families of transporters are involved in maintaining cellular zinc homeostasis: the ZIP (SLC39A) family that facilitates zinc influx into the cytoplasm, and the ZnT (SLC30A) family that facilitates zinc efflux from the cytoplasm. Zinc dyshomeostasis caused by the dysfunction of zinc transporters can contribute to the initiation or progression of various cancers, including prostate cancer, breast cancer, and pancreatic cancer. In addition, intracellular zinc fluctuations lead to the disturbance of certain signaling pathways involved in the malignant properties of cancer cells. This review briefly summarizes our current understanding of zinc dyshomeostasis in cancer, and discusses the potential roles of zinc or zinc transporters in cancer therapy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|