101
|
Preethi KA, Selvakumar SC, Ross K, Sekar D. Therapeutic aspect of microRNA inhibition in various types of hypertension and hypertensive complications. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
102
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
103
|
In silico and in vitro analysis of microRNAs with therapeutic potential in atherosclerosis. Sci Rep 2022; 12:20334. [PMID: 36433987 PMCID: PMC9700707 DOI: 10.1038/s41598-022-24260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which aberrant lipid metabolism plays a key role. MicroRNAs (miRNAs), micro-coordinators of gene expression, have been recently proposed as novel clinical biomarkers and potential therapeutic tools for a broad spectrum of diseases. This study aimed to identify miRNAs with therapeutic potential in atherosclerosis. Bioinformatic databases, including experimentally validated and computational prediction tools as well as a novel combination method, were used to identify miRNAs that are able to simultaneously inhibit key genes related to the pathogenesis of atherosclerosis. Further validation of genes and miRNAs was conducted using the STRING online tool, KEGG pathway analysis and DIANA-miRPath. The inhibitory effects of the identified miRNAs in HepG2 and Huh7 cells were verified by real-time PCR. The MTT assay was utilized to evaluate cell cytotoxicity effects of miRNAs. Atherosclerotic drug-targeted genes were selected as key genes. Strong interactions between genes were confirmed using STRING. These genes were shown to be integral to critical pathological processes involved in atherosclerosis. A novel combined method of validated and predicted tools for the identification of effective miRNAs was defined as the combination score (C-Score). Bioinformatic analysis showed that hsa-miR-124-3p and hsa-miR-16-5p possessed the best C-Score (0.68 and 0.62, respectively). KEGG and DIANA-miRPath analysis showed that selected genes and identified miRNAs were involved in atherosclerosis-related pathways. Compared with the controls in both HepG2 and Huh7 cell lines, miR-124 significantly reduced the expression of CETP, PCSK9, MTTP, and APOB, and miR-16 significantly reduced the expression of APOCIII, CETP, HMGCR, PCSK9, MTTP, and APOB, respectively. The cytotoxicity assay showed that miR-124 reduced cell viability, especially after 72 h; however, miR-16 did not show any significant cytotoxicity in either cell line. Our findings indicate that hsa-miR-124 and miR-16 have potential for use as therapeutic candidates in the treatment of atherosclerosis.
Collapse
|
104
|
Chaudhry T, Coxon CR, Ross K. Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discov Today 2022; 27:103337. [PMID: 35995360 DOI: 10.1016/j.drudis.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
It is well established that microRNA (miRNA) dysregulation is involved in the development and progression of various diseases, especially cancer. Emerging evidence suggests that small molecule and peptide agents can interfere with miRNA disease pathways. Despite this, very little is known about structural features that drive drug-miRNA interactions and subsequent inhibition. In this review, we highlight the advances made in the development of small molecule and peptide inhibitors of miRNA processing. Specifically, we attempt to draw attention to peptide features that may be critical for interaction with the miRNA secondary structure to regulate miRNA expression. We hope that this review will help to establish peptides as exciting miRNA expression modulators and will contribute towards the development of the first miRNA-targeting peptide therapy.
Collapse
Affiliation(s)
- Talhat Chaudhry
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH14 4AS, UK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK; Institute for Health Research, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
105
|
Gcanga L, Tamgue O, Ozturk M, Pillay S, Jacobs R, Chia JE, Mbandi SK, Davids M, Dheda K, Schmeier S, Alam T, Roy S, Suzuki H, Brombacher F, Guler R. Host-Directed Targeting of LincRNA-MIR99AHG Suppresses Intracellular Growth of Mycobacterium tuberculosis. Nucleic Acid Ther 2022; 32:421-437. [PMID: 35895506 PMCID: PMC7613730 DOI: 10.1089/nat.2022.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) kills 1.6 million people worldwide every year, and there is an urgent need for targeting host-pathogen interactions as a strategy to reduce mycobacterial resistance to current antimicrobials. Noncoding RNAs are emerging as important regulators of numerous biological processes and avenues for exploitation in host-directed therapeutics. Although long noncoding RNAs (lncRNAs) are abundantly expressed in immune cells, their functional role in gene regulation and bacterial infections remains understudied. In this study, we identify an immunoregulatory long intergenic noncoding RNA, lincRNA-MIR99AHG, which is upregulated in mouse and human macrophages upon IL-4/IL-13 stimulation and downregulated after clinical Mtb HN878 strain infection and in peripheral blood mononuclear cells from active TB patients. To evaluate the functional role of lincRNA-MIR99AHG, we used antisense locked nucleic acid (LNA) GapmeR-mediated antisense oligonucleotide (ASO) lncRNA knockdown experiments. Knockdown of lincRNA-MIR99AHG with ASOs significantly reduced intracellular Mtb growth in mouse and human macrophages and reduced pro-inflammatory cytokine production. In addition, in vivo treatment of mice with MIR99AHG ASOs reduced the mycobacterial burden in the lung and spleen. Furthermore, in macrophages, lincRNA-MIR99AHG is translocated to the nucleus and interacts with high affinity to hnRNPA2/B1 following IL-4/IL-13 stimulation and Mtb HN878 infection. Together, these findings identify lincRNA-MIR99AHG as a positive regulator of inflammation and macrophage polarization to promote Mtb growth and a possible target for adjunctive host-directed therapy against TB.
Collapse
Affiliation(s)
- Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Raygaana Jacobs
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- Division of Immunology, Department of Pathology, South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Malika Davids
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunology, UCT Lung Institute, University of Cape Town, Cape Town, South Africa.,South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunology, UCT Lung Institute, University of Cape Town, Cape Town, South Africa.,South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical medicine, London, United Kingdom
| | - Sebastian Schmeier
- College of Science, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Tanvir Alam
- Information and Computing Technology Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Cellular Function Conversion Technology Team, Yokohama, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Cellular Function Conversion Technology Team, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Address correspondence to: Frank Brombacher, PhD, International Centre for Genetic Engineering and Biotechnology (ICGEB) Department of Pathology, Cape Town Component, Cape Town 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Department of Pathology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC) University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Reto Guler, PhD, Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town 7925, South Africa
| |
Collapse
|
106
|
Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. BIOMATERIALS ADVANCES 2022; 141:213118. [PMID: 36182834 DOI: 10.1016/j.bioadv.2022.213118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Brain tumor represents the most lethal form of cancer with the highest mortality and morbidity rates irrespective of age and sex. Advancements in macromolecule-based therapy (such as nucleic acids and peptides) have shown promising roles in the treatment of brain tumor where the phenomenon of severe toxicities due to the conventional chemotherapeutic agents can be circumvented. Despite its preclinical progress, successful targeting of these macromolecules across the blood-brain barrier without altering their physical and chemical characteristics is of great challenge. With the advent of nanotechnology, nowadays targeted delivery of therapeutics is being explored extensively and these macromolecules, including peptides and nucleic acids, have shown initial success in the treatment, where dendrimer has shown its potential for optimal delivery. Dendrimers are being favored as a mode of drug delivery due to their nano-spherical size and structure, high solubilization potential, multivalent surface, and high loading capacity, where biomolecule resembling characteristics of dendritic 3D structures has shown effective delivery of various therapeutic agents to the brain. Armed with targeting ligands to these dendrimers further expedite the transportation of these multifunctional shuttles specifically to the glioblastoma cells. Thus, a focus has been made in this review on therapeutic applications of dendrimer platforms in brain tumor treatment. The future development of dendrimers as a potential platform for nucleic acid and peptide delivery and its promising clinical application could provide effective and target-specific treatment against brain tumors.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| | - Raxshanaa Mohgan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Jim Sii Jack Jong
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Roshini Nicole David
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Wan Yi Ngan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Tze Liang Chin
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Shereen Ting
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
107
|
Intranasal delivery of biotechnology-based therapeutics. Drug Discov Today 2022; 27:103371. [PMID: 36174965 DOI: 10.1016/j.drudis.2022.103371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022]
Abstract
Biotechnology-based therapeutics include a wide range of products, such as recombinant hormones, stem cells, therapeutic enzymes, monoclonal antibodies, genes, vaccines, among others. The administration of these macromolecules has been studied via various routes. The nasal route is one of the promising routes of administration for biotechnology products owing to its easy delivery, the rich vascularity of the nasal mucosa, high absorption and targeted action. Several preclinical studies have been reported for nasal delivery of these products and many are at the clinical stage. This review focuses on biotechnology-based therapeutics administered via the intranasal route for treating various diseases.
Collapse
|
108
|
De Mey W, Esprit A, Thielemans K, Breckpot K, Franceschini L. RNA in Cancer Immunotherapy: Unlocking the Potential of the Immune System. Clin Cancer Res 2022; 28:3929-3939. [PMID: 35583609 PMCID: PMC9475240 DOI: 10.1158/1078-0432.ccr-21-3304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 01/07/2023]
Abstract
Recent advances in the manufacturing, modification, purification, and cellular delivery of ribonucleic acid (RNA) have enabled the development of RNA-based therapeutics for a broad array of applications. The approval of two SARS-CoV-2-targeting mRNA-based vaccines has highlighted the advances of this technology. Offering rapid and straightforward manufacturing, clinical safety, and versatility, this paves the way for RNA therapeutics to expand into cancer immunotherapy. Together with ongoing trials on RNA cancer vaccination and cellular therapy, RNA therapeutics could be introduced into clinical practice, possibly stewarding future personalized approaches. In the present review, we discuss recent advances in RNA-based immuno-oncology together with an update on ongoing clinical applications and their current challenges.
Collapse
Affiliation(s)
- Wout De Mey
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Arthur Esprit
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Author: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium. Phone: 32-2-477-45-66; E-mail:
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
109
|
Shaabani E, Sharifiaghdam M, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Gene therapy to enhance angiogenesis in chronic wounds. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:871-899. [PMID: 36159590 PMCID: PMC9464651 DOI: 10.1016/j.omtn.2022.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Skin injuries and chronic non-healing wounds are one of the major global burdens on the healthcare systems worldwide due to their difficult-to-treat nature, associated co-morbidities, and high health care costs. Angiogenesis has a pivotal role in the wound-healing process, which becomes impaired in many chronic non-healing wounds, leading to several healing disorders and complications. Therefore, induction or promotion of angiogenesis can be considered a promising approach for healing of chronic wounds. Gene therapy is one of the most promising upcoming strategies for the treatment of chronic wounds. It can be classified into three main approaches: gene augmentation, gene silencing, and gene editing. Despite the increasing number of encouraging results obtained using nucleic acids (NAs) as active pharmaceutical ingredients of gene therapy, efficient delivery of NAs to their site of action (cytoplasm or nucleus) remains a key challenge. Selection of the right therapeutic cargo and delivery methods is crucial for a favorable prognosis of the healing process. This article presents an overview of gene therapy and non-viral delivery methods for angiogenesis induction in chronic wounds.
Collapse
|
110
|
Cadoni E, Pennati F, Muangkaew P, Elskens J, Madder A, Manicardi A. Synthesis and structure-activity relationship of peptide nucleic acid probes with improved interstrand-crosslinking abilities: application to biotin-mediated RNA-pulldown. RSC Chem Biol 2022; 3:1129-1143. [PMID: 36128507 PMCID: PMC9428673 DOI: 10.1039/d2cb00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The development of interstrand-crosslinking (ICL) probes for the covalent targeting of DNA and RNA sequences of interest has been extensively reported in the past decade. However, most of the reactions reported so far induce the formation of a stable adduct that cannot be reverted, thus rendering these chemistries less useful in applications where the reversibility of the reaction is needed for further downstream processing of the targeted and isolated sequences, such as enzymatic amplification steps. In this work, we report on the reversibility of the furan-mediated ICL reaction. ICL formation can be conveniently triggered by either chemical (N-bromo succinimide, NBS) or luminous stimuli (visible light irradiation in presence of a photosensitizer) and quantitative reversion can be achieved by heating the crosslinked sample at 95 °C, while maintaining the structure of the DNA/RNA targets intact. As a proof-of-concept and showing the benefits of the ICL reversibility, we apply furan-mediated ICL to the pulldown of a target RNA strand from cell lysate.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Francesca Pennati
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Patumwan 10330 Bangkok Thailand
| | - Joke Elskens
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| |
Collapse
|
111
|
Yan XY, Yao JP, Li YQ, Zhang W, Xi MH, Chen M, Li Y. Global trends in research on miRNA-microbiome interaction from 2011 to 2021: A bibliometric analysis. Front Pharmacol 2022; 13:974741. [PMID: 36110534 PMCID: PMC9468484 DOI: 10.3389/fphar.2022.974741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
An increasing number of research suggests that the microRNA (miRNA)-microbiome interaction plays an essential role in host health and diseases. This bibliometric analysis aimed to identify the status of global scientific output, research hotspots, and frontiers regarding the study of miRNA-microbiome interaction over the past decade. We retrieved miRNA-microbiome-related studies published from 2011 to 2021 from the Web of Science Core Collection database; the R package bibliometrix was used to analyze bibliometric indicators, and VOSviewer was used to visualize the field status, hotspots, and research trends of miRNA-microbiome interplay. In total, 590 articles and reviews were collected. A visual analysis of the results showed that significant increase in the number of publications over time. China produced the most papers, and the United States contributed the highest number of citations. Shanghai Jiaotong University and the University of California Davis were the most active institutions in the field. Most publications were published in the areas of biochemistry and molecular biology. Yu Aiming was the most prolific writer, as indicated by the h-index and m-index, and Liu Shirong was the most commonly co-cited author. A paper published in the International Journal of Molecular Sciences in 2017 had the highest number of citations. The keywords "expression" and "gut microbiota" appeared most frequently, and the top three groups of diseases that appeared among keywords were cancer (colorectal, et al.), inflammatory bowel disease (Crohn's disease and ulcerative colitis), and neurological disorders (anxiety, Parkinson's disease, et al.). This bibliometric study revealed that most studies have focused on miRNAs (e.g., miR-21, miR-155, and miR-146a), gut microbes (e.g., Escherichia coli, Bifidobacterium, and Fusobacterium nucleatum), and gut bacteria metabolites (e.g., butyric acid), which have the potential to improve the diagnosis, treatment, and prognosis of diseases. We found that therapeutic strategies targeting the miRNA-microbiome axis focus on miRNA drugs produced in vitro; however, some studies suggest that in vivo fermentation can greatly increase the stability and reduce the degradation of miRNA. Therefore, this method is worthy of further research.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Han Xi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Clinical Medicine School, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
112
|
Chen F, Liu Q, Xiong Y, Xu L. Nucleic acid strategies for infectious disease treatments: The nanoparticle-based oral delivery route. Front Pharmacol 2022; 13:984981. [PMID: 36105233 PMCID: PMC9465296 DOI: 10.3389/fphar.2022.984981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Therapies based on orally administrated nucleic acids have significant potential for the treatment of infectious diseases, including chronic inflammatory diseases such as inflammatory bowel disease (IBD)-associated with the gastrointestinal (GI) tract, and infectious and acute contagious diseases like coronavirus disease 2019 (COVID-19). This is because nucleic acids could precisely regulate susceptibility genes in regulating the pro- and anti-inflammatory cytokines expression related to the infections. Unfortunately, gene delivery remains a major hurdle due to multiple intracellular and extracellular barriers. This review thoroughly discusses the challenges of nanoparticle-based nucleic acid gene deliveries and strategies for overcoming delivery barriers to the inflammatory sites. Oral nucleic acid delivery case studies were also present as vital examples of applications in infectious diseases such as IBD and COVID-19.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- Department of Anorectal Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Li Xu,
| |
Collapse
|
113
|
Bano N, Ehlinger C, Yang TY, Swanson M, Allen S. Considerations in the Immunogenicity Assessment Strategy for Oligonucleotide Therapeutics (ONTs). AAPS J 2022; 24:93. [DOI: 10.1208/s12248-022-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
|
114
|
Chien JY, Huang SP. Gene therapy in hereditary retinal dystrophy. Tzu Chi Med J 2022; 34:367-372. [PMID: 36578644 PMCID: PMC9791861 DOI: 10.4103/tcmj.tcmj_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs), such as retinitis pigmentosa, Leber's congenital amaurosis (LCA), Usher syndrome, and retinoschisis, are a group of genetic retinal disorders exhibiting both genetic and phenotypic heterogeneity. Symptoms include progressive retinal degeneration and constricted visual field. Some patients will be legal or completely blind. Advanced sequencing technologies improve the genetic diagnosis of HRD and lead to a new era of research into gene-targeted therapies. Following the first Food and Drug Administration approval of gene augmentation therapy for LCA caused by RPE65 mutations, multiple clinical trials are currently underway applying different techniques. In this review, we provide an overview of gene therapy for HRD and emphasize four distinct approaches to gene-targeted therapy that have the potential to slow or even reverse retinal degeneration: (1) viral vector-based and nonviral gene delivery, (2) RNA-based antisense oligonucleotide, (3) genome editing by the Clustered Regularly Interspaced Short Palindromic Repeat/cas9 system, and (4) optogenetics gene therapy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Department of Ophthalmology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,Address for correspondence: Dr. Shun-Ping Huang, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
115
|
MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022; 65:101581. [PMID: 36028120 PMCID: PMC9464960 DOI: 10.1016/j.molmet.2022.101581] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.
Collapse
|
116
|
Sharma P, Kumar A, Agarwal T, Dey AD, Moghaddam FD, Rahimmanesh I, Ghovvati M, Yousefiasl S, Borzacchiello A, Mohammadi A, Yella VR, Moradi O, Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol 2022; 220:920-933. [PMID: 35987365 DOI: 10.1016/j.ijbiomac.2022.08.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 02/06/2023]
Abstract
Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, 374-37515 Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran.
| |
Collapse
|
117
|
Cornelius VA, Naderi-Meshkin H, Kelaini S, Margariti A. RNA-Binding Proteins: Emerging Therapeutics for Vascular Dysfunction. Cells 2022; 11:2494. [PMID: 36010571 PMCID: PMC9407011 DOI: 10.3390/cells11162494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular diseases account for a significant number of deaths worldwide, with cardiovascular diseases remaining the leading cause of mortality. This ongoing, ever-increasing burden has made the need for an effective treatment strategy a global priority. Recent advances in regenerative medicine, largely the derivation and use of induced pluripotent stem cell (iPSC) technologies as disease models, have provided powerful tools to study the different cell types that comprise the vascular system, allowing for a greater understanding of the molecular mechanisms behind vascular health. iPSC disease models consequently offer an exciting strategy to deepen our understanding of disease as well as develop new therapeutic avenues with clinical translation. Both transcriptional and post-transcriptional mechanisms are widely accepted to have fundamental roles in orchestrating responses to vascular damage. Recently, iPSC technologies have increased our understanding of RNA-binding proteins (RBPs) in controlling gene expression and cellular functions, providing an insight into the onset and progression of vascular dysfunction. Revelations of such roles within vascular disease states have therefore allowed for a greater clarification of disease mechanisms, aiding the development of novel therapeutic interventions. Here, we discuss newly discovered roles of RBPs within the cardio-vasculature aided by iPSC technologies, as well as examine their therapeutic potential, with a particular focus on the Quaking family of isoforms.
Collapse
Affiliation(s)
| | | | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
118
|
Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022; 10:biomedicines10081865. [PMID: 36009412 PMCID: PMC9405587 DOI: 10.3390/biomedicines10081865] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Many conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES trans-acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment. The relationship between IRESs and ITAFs with tumorigenesis and resistance to therapy has been studied in recent years, proposing new therapeutic targets and treatments. In addition, IRES-dependent translation initiation dysregulation is also related to neurological and cardiovascular diseases, muscular atrophies, or other syndromes. The participation of these structures in the development of such pathologies has been studied, yet to a far lesser extent than in cancer. Strategies involving the disruption of IRES–ITAF interactions or the modification of ITAF expression levels may be used with great impact in the development of new therapeutics. In this review, we aim to comprehend the current data on groups of human pathologies associated with IRES and/or ITAF dysregulation and their application in the designing of new therapeutic approaches using them as targets or tools. Thus, we wish to summarise the evidence in the field hoping to open new promising lines of investigation toward personalised treatments.
Collapse
|
119
|
Gan J, Liu S, Zhang Y, He L, Bai L, Liao R, Zhao J, Guo M, Jiang W, Li J, Li Q, Mu G, Wu Y, Wang X, Zhang X, Zhou D, Lv H, Wang Z, Zhang Y, Qian C, Feng M, Chen H, Meng Q, Huang X. MicroRNA-375 is a therapeutic target for castration-resistant prostate cancer through the PTPN4/STAT3 axis. Exp Mol Med 2022; 54:1290-1305. [PMID: 36042375 PMCID: PMC9440249 DOI: 10.1038/s12276-022-00837-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 04/08/2023] Open
Abstract
The functional role of microRNA-375 (miR-375) in the development of prostate cancer (PCa) remains controversial. Previously, we found that plasma exosomal miR-375 is significantly elevated in castration-resistant PCa (CRPC) patients compared with castration-sensitive PCa patients. Here, we aimed to determine how miR-375 modulates CRPC progression and thereafter to evaluate the therapeutic potential of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes loaded with miR-375 antisense oligonucleotides (e-375i). We used miRNA in situ hybridization technique to evaluate miR-375 expression in PCa tissues, gain- and loss-of-function experiments to determine miR-375 function, and bioinformatic methods, dual-luciferase reporter assay, qPCR, IHC and western blotting to determine and validate the target as well as the effects of miR-375 at the molecular level. Then, e-375i complexes were assessed for their antagonizing effects against miR-375. We found that the expression of miR-375 was elevated in PCa tissues and cancer exosomes, correlating with the Gleason score. Forced expression of miR-375 enhanced the expression of EMT markers and AR but suppressed apoptosis markers, leading to enhanced proliferation, migration, invasion, and enzalutamide resistance and decreased apoptosis of PCa cells. These effects could be reversed by miR-375 silencing. Mechanistically, miR-375 directly interfered with the expression of phosphatase nonreceptor type 4 (PTPN4), which in turn stabilized phosphorylated STAT3. Application of e-375i could inhibit miR-375, upregulate PTPN4 and downregulate p-STAT3, eventually repressing the growth of PCa. Collectively, we identified a novel miR-375 target, PTPN4, that functions upstream of STAT3, and targeting miR-375 may be an alternative therapeutic for PCa, especially for CRPC with high AR levels.
Collapse
Affiliation(s)
- Junqing Gan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Shan Liu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yu Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Liangzi He
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Lu Bai
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Ran Liao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Madi Guo
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Wei Jiang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Jiade Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Qi Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Guannan Mu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yangjiazi Wu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xinling Wang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xingli Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Dan Zhou
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Huimin Lv
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Zhengfeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Cheng Qian
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - MeiYan Feng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Hui Chen
- Department of Urologic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
120
|
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym 2022; 290:119489. [DOI: 10.1016/j.carbpol.2022.119489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
121
|
Lee JY, Yang Q, Chang X, Wisniewski H, Olivera TR, Saji M, Kim S, Perumal D, Zhang F. Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications. J Mater Chem B 2022; 10:7460-7472. [PMID: 35912570 DOI: 10.1039/d2tb00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
Collapse
Affiliation(s)
- Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Henry Wisniewski
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | | - Minu Saji
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Suchan Kim
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
122
|
Coaxial Synthesis of PEI-Based Nanocarriers of Encapsulated RNA-Therapeutics to Specifically Target Muscle Cells. Biomolecules 2022; 12:biom12081012. [PMID: 35892322 PMCID: PMC9332584 DOI: 10.3390/biom12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we performed a methodological comparative analysis to synthesize polyethyleneimine (PEI) nanoparticles using (i) conventional nanoprecipitation (NP), (ii) electrospraying (ES), and (iii) coaxial electrospraying (CA). The nanoparticles transported antisense oligonucleotides (ASOs), either encapsulated (CA nanocomplexes) or electrostatically bound externally (NP and ES nanocomplexes). After synthesis, the PEI/ASO nanoconjugates were functionalized with a muscle-specific RNA aptamer. Using this combinatorial formulation methodology, we obtained nanocomplexes that were further used as nanocarriers for the delivery of RNA therapeutics (ASO), specifically into muscle cells. In particular, we performed a detailed confocal microscopy-based comparative study to analyze the overall transfection efficiency, the cell-to-cell homogeneity, and the mean fluorescence intensity per cell of micron-sized domains enriched with the nanocomplexes. Furthermore, using high-magnification electron microscopy, we were able to describe, in detail, the ultrastructural basis of the cellular uptake and intracellular trafficking of nanocomplexes by the clathrin-independent endocytic pathway. Our results are a clear demonstration that coaxial electrospraying is a promising methodology for the synthesis of therapeutic nanoparticle-based carriers. Some of the principal features that the nanoparticles synthesized by coaxial electrospraying exhibit are efficient RNA-based drug encapsulation, increased nanoparticle surface availability for aptamer functionalization, a high transfection efficiency, and hyperactivation of the endocytosis and early/late endosome route as the main intracellular uptake mechanism.
Collapse
|
123
|
Role of p53 in Regulating Radiation Responses. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071099. [PMID: 35888186 PMCID: PMC9319710 DOI: 10.3390/life12071099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022]
Abstract
p53 is known as the guardian of the genome and plays various roles in DNA damage and cancer suppression. The p53 gene was found to express multiple p53 splice variants (isoforms) in a physiological, tissue-dependent manner. The various genes that up- and down-regulated p53 are involved in cell viability, senescence, inflammation, and carcinogenesis. Moreover, p53 affects the radioadaptive response. Given that several studies have already been published on p53, this review presents its role in the response to gamma irradiation by interacting with MDM2, NF-κB, and miRNA, as well as in the inflammation processes, senescence, carcinogenesis, and radiation adaptive responses. Finally, the potential of p53 as a biomarker is discussed.
Collapse
|
124
|
Pontarelli A, Liu JT, Movasat H, Ménard S, Oh JK, Wilds CJ. Synthesis of a Convertible Linker Containing a Disulfide Group for Oligonucleotide Functionalization. Org Lett 2022; 24:5579-5583. [PMID: 35863757 DOI: 10.1021/acs.orglett.2c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and incorporation of a tosylated phosphoramidite linker containing a disulfide bond is described. Incorporation of the linker into short DNA and RNA oligomers proceeded efficiently using automated solid phase synthesis. Treatment of the support bound oligonucleotide followed by cleavage from the solid support provided a variety of common functional handles, expanding the strategies of bifunctional modification of synthetic oligonucleotides for conjugation applications.
Collapse
Affiliation(s)
- Alexander Pontarelli
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, Québec H4B 1R6, Canada
| | - Jiang Tian Liu
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, Québec H4B 1R6, Canada
| | - Hourieh Movasat
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, Québec H4B 1R6, Canada
| | - Sarah Ménard
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, Québec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, Québec H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
125
|
Targeting oncogenic KRAS with molecular brush-conjugated antisense oligonucleotides. Proc Natl Acad Sci U S A 2022; 119:e2113180119. [PMID: 35858356 PMCID: PMC9304022 DOI: 10.1073/pnas.2113180119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making KRASMUT cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)-conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA-protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake. Systemic delivery to mice bearing human non-small-cell lung carcinoma xenografts results in a significant reduction in both KRAS levels and tumor growth, and the antitumor performance well exceeds that of current popular ASO paradigms, such as chemically modified oligonucleotides and PEGylation using linear or slightly branched PEG. Importantly, these conjugates relax the requirement on the ASO chemistry, allowing unmodified, natural phosphodiester ASOs to achieve efficacy comparable to that of chemically modified ones. Both the bottlebrush polymer and its ASO conjugates appear to be safe and well tolerated in mice. Together, these data indicate that the molecular brush-ASO conjugate is a promising therapeutic platform for the treatment of KRAS-driven human cancers and warrant further preclinical and clinical development.
Collapse
|
126
|
Urbańska K, Stępień PW, Nowakowska KN, Stefaniak M, Osial N, Chorągiewicz T, Toro MD, Nowomiejska K, Rejdak R. The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:ijms23147761. [PMID: 35887109 PMCID: PMC9319652 DOI: 10.3390/ijms23147761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease causing damage to the macular region of the retina where most of the photoreceptors responsible for central visual acuity are located. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by silent post-transcriptional gene expressions. Previous studies have shown that changes in specific miRNAs are involved in the pathogenesis of eye diseases, including AMD. Altered expressions of miRNAs are related to disturbances of regulating oxidative stress, inflammation, angiogenesis, apoptosis and phagocytosis, which are known factors in the pathogenesis of AMD. Moreover, dysregulation of miRNA is involved in drusen formation. Thus, miRNAs may be used as potential molecular biomarkers for the disease and, furthermore, tailoring therapeutics to particular disturbances in miRNAs may, in the future, offer hope to prevent irreversible vision loss. In this review, we clarify the current state of knowledge about the influence of miRNA on the pathogenesis, diagnosis and treatment of AMD. Our study material consisted of publications, which were found in PubMed, Google Scholar and Embase databases using “Age-related macular degeneration”, “miRNA”, “AMD biomarkers”, “miRNA therapeutics” and “AMD pathogenesis” as keywords. Paper search was limited to articles published from 2011 to date. In the section “Retinal, circulating and vitreous body miRNAs found in human studies”, we limited the search to studies with patients published in 2016–2021.
Collapse
Affiliation(s)
- Karolina Urbańska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Piotr Witold Stępień
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Katarzyna Natalia Nowakowska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Martyna Stefaniak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Natalia Osial
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Tomasz Chorągiewicz
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Correspondence:
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Eye Clinic, Public Health Department, University of Naples Federico II, 80131 Naples, Italy
| | - Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| |
Collapse
|
127
|
Bartolucci D, Pession A, Hrelia P, Tonelli R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics 2022; 14:pharmaceutics14071453. [PMID: 35890348 PMCID: PMC9315662 DOI: 10.3390/pharmaceutics14071453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer incidence and mortality continue to increase, while the conventional chemotherapeutic drugs confer limited efficacy and relevant toxic side effects. Novel strategies are urgently needed for more effective and safe therapeutics in oncology. However, a large number of proteins are considered undruggable by conventional drugs, such as the small molecules. Moreover, the mRNA itself retains oncological functions, and its targeting offers the double advantage of blocking the tumorigenic activities of the mRNA and the translation into protein. Finally, a large family of non-coding RNAs (ncRNAs) has recently emerged that are also dysregulated in cancer, but they could not be targeted by drugs directed against the proteins. In this context, this review describes how the oligonucleotide therapeutics targeting RNA or DNA sequences, are emerging as a new class of drugs, able to tackle the limitations described above. Numerous clinical trials are evaluating oligonucleotides for tumor treatment, and in the next few years some of them are expected to reach the market. We describe the oligonucleotide therapeutics targeting undruggable proteins (focusing on the most relevant, such as those originating from the MYC and RAS gene families), and for ncRNAs, in particular on those that are under clinical trial evaluation in oncology. We highlight the challenges and solutions for the clinical success of oligonucleotide therapeutics, with particular emphasis on the peculiar challenges that render it arduous to treat tumors, such as heterogeneity and the high mutation rate. In the review are presented these and other advantages offered by the oligonucleotide as an emerging class of biotherapeutics for a new era of precision anti-cancer medicine.
Collapse
Affiliation(s)
| | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
- Correspondence:
| |
Collapse
|
128
|
Next RNA Therapeutics: The Mine of Non-Coding. Int J Mol Sci 2022; 23:ijms23137471. [PMID: 35806476 PMCID: PMC9267739 DOI: 10.3390/ijms23137471] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
The growing knowledge on several classes of non-coding RNAs (ncRNAs) and their different functional roles has aroused great interest in the scientific community. Beyond the Central Dogma of Biology, it is clearly known that not all RNAs code for protein products, and they exert a broader repertoire of biological functions. As described in this review, ncRNAs participate in gene expression regulation both at transcriptional and post-transcriptional levels and represent critical elements driving and controlling pathophysiological processes in multicellular organisms. For this reason, in recent years, a great boost was given to ncRNA-based strategies with potential therapeutic abilities, and nowadays, the use of RNA molecules is experimentally validated and actually exploited in clinics to counteract several diseases. In this review, we summarize the principal classes of therapeutic ncRNA molecules that are potentially implied in disease onset and progression, which are already used in clinics or under clinical trials, highlighting the advantages and the need for a targeted therapeutic strategy design. Furthermore, we discuss the benefits and the limits of RNA therapeutics and the ongoing development of delivery strategies to limit the off-target effects and to increase the translational application.
Collapse
|
129
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Karimazar M, Muro A, Nguewa P, Manzano-Román R. miRNAs in the regulation of mTOR signaling and host immune responses: The case of Leishmania infections. Acta Trop 2022; 231:106431. [PMID: 35367408 DOI: 10.1016/j.actatropica.2022.106431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/01/2022]
Abstract
Micro RNAs (miRNAs), as regulators of gene expression at the post-transcriptional level, can respond to/or interact with cell signaling and affect the pathogenesis of different diseases/infections. The interaction/crosstalk of miRNAs with various cellular signaling networks including mTOR (as a master regulator of signaling relevant to different cellular mechanisms) might lead to the initiation, progression or restriction of certain disease processes. There are numerous studies that have identified the crosstalk between regulatory miRNA expression and the mTOR pathway (or mTOR signaling regulated by miRNAs) in different diseases which has a dual function in pathogenesis. However, the corresponding information in parasitic infections remains scarce. miRNAs have been suggested as specific targets for therapeutic strategies in several disorders such as parasitic infections. Thus, the targeting of miRNAs (as the modulators/regulators of mTOR) by small molecules and RNA-based therapeutics and consequently managing and modulating mTOR signaling and the downstream/related cell signaling/pathways might shed some light on the design of new therapeutic strategies against parasitic diseases, including Leishmaniasis. Accordingly, the present study attempts to highlight the importance of the crosstalk between regulatory miRNAs and mTOR signaling, and to review the relevant insights into parasitic infections by focusing specifically on Leishmania.
Collapse
|
130
|
Chen R, Yuan W, Zheng Y, Zhu X, Jin B, Yang T, Yan Y, Xu W, Chen H, Gao J, Li G, Gokulnath P, Vulugundam G, Li J, Xiao J. Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy. J Nanobiotechnology 2022; 20:304. [PMID: 35761332 PMCID: PMC9235146 DOI: 10.1186/s12951-022-01508-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Muscle atrophy is a frequently observed complication, characterized by the loss of muscle mass and strength, which diminishes the quality of life and survival. No effective therapy except exercise is currently available. In our previous study, repressing miR-29b has been shown to reduce muscle atrophy. In our current study, we have constructed artificially engineered extracellular vesicles for the delivery of CRISPR/Cas9 to target miR-29b (EVs-Cas9-29b). EVs-Cas9-29b has shown a favorable functional effect with respect to miR-29b repression in a specific and rapid manner by gene editing. In in vitro conditions, EVs-Cas9-29b could protect against muscle atrophy induced by dexamethasone (Dex), angiotensin II (AngII), and tumor necrosis factor-alpha (TNF-α). And EVs-Cas9-29b introduced in vivo preserved muscle function in the well-established immobilization and denervation-induced muscle atrophy mice model. Our work demonstrates an engineered extracellular vesicles delivery of the miR-29b editing system, which could be potentially used for muscle atrophy therapy.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Weilin Yuan
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yongjun Zheng
- Division of Pain Management, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Xiaolan Zhu
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Bing Jin
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Tingting Yang
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yuwei Yan
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Wanru Xu
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Hongjian Chen
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Juan Gao
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, 80131, Italy
| | - Jin Li
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics, The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
131
|
Qi H, Zhao Z, Xu L, Zhang Y, Li Y, Xiao L, Li Y, Zhao Z, Fang J. Antisense Oligonucleotide-Based Therapy on miR-181a-5p Alleviates Cartilage Degradation of Temporomandibular Joint Osteoarthritis via Promoting SIRT1. Front Pharmacol 2022; 13:898334. [PMID: 35784690 PMCID: PMC9240346 DOI: 10.3389/fphar.2022.898334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) condylar cartilage degeneration and abnormal subchondral bone pathological remodeling induce pain and joint dysfunction, and cartilage degeneration is considered irreversible. Very few therapeutic approaches are administrated in practice. Nucleotides have demonstrated considerable potential as a next-generation medication, and they have been applied in several models of osteoarthritis. There is a need to establish an effective protocol for TMJOA gene therapy. In the current study unilateral anterior crossbite (UAC) surgery was used to simulate mechanical stress-induced TMJOA in mice. Degeneration of condylar cartilage and destruction of subchondral bone were observed in damaged joints, and miR-181a-5p was elevated in chondrocytes. Intra-articular injection of miR-181a-5p antisense oligonucleotide (ASO) could reduce the cartilage damage and alleviate UAC-induced TMJOA progression, but it did not restore injured subchondral bone. Mechanically, miR-181a-5p evidently targeted the 3’ untranslated region of Sirt1 directly, resulting in inhibition of silent information regulator 1 expression and promoting apoptosis by elevating p53-dependent signaling, indicating that miR181a-5p ASO promoted chondrocyte survival. The present study suggests that ASO-based gene therapy may be an effective TMJOA treatment.
Collapse
Affiliation(s)
- Hexu Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Lin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
132
|
Alsing S, Doktor TK, Askou AL, Jensen EG, Ahmadov U, Kristensen LS, Andresen BS, Aagaard L, Corydon TJ. VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:58-76. [PMID: 35356684 PMCID: PMC8933642 DOI: 10.1016/j.omtn.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.
Collapse
|
133
|
Modern therapeutic approaches to liver-related disorders. J Hepatol 2022; 76:1392-1409. [PMID: 35589258 DOI: 10.1016/j.jhep.2021.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The liver is a key production and processing site that is essential for health. Liver dysfunction can result in both systemic and liver-specific diseases. To combat these diseases, genetic approaches have been developed that have high liver tropism and are based on gene addition/editing or gene silencing. The gene addition/editing approach has yielded encouraging clinical data on the use of viral vectors in patients with haemophilia, as well as neuromuscular diseases, and has led to trials for liver-related disorders. However, the immune response and the long-term stability of exogenous expression remain important challenges. Gene editing and mRNA therapy have yielded first in-human proof-of-concept therapeutics and vaccines, but the road to the treatment of liver-related disorders remains long. Gene silencing is accomplished primarily via antisense oligonucleotides and small-interfering RNAs (siRNAs). siRNA modification with N-acetyl galactosamine results in hepatocellular-specific targeting and catapulted the liver to the centre of siRNA research. Several siRNA drugs for liver-related disorders have recently been approved, and the pipeline of drugs under investigation is crowded. Loss-of-function mutations might also be treated with enzyme substitution therapy. This review summarises current genetic approaches as well as key enzyme substitution therapies, focusing on recently approved compounds, potential adverse effects, and future challenges. Collectively, these recent advances place the liver at the forefront of precision medicine for metabolic and genetic diseases and are expected to transform the care and treatment of patients with both liver-specific and systemic diseases.
Collapse
|
134
|
Huge N, Reinkens T, Buurman R, Sandbothe M, Bergmann A, Wallaschek H, Vajen B, Stalke A, Decker M, Eilers M, Schäffer V, Dittrich-Breiholz O, Gürlevik E, Kühnel F, Schlegelberger B, Illig T, Skawran B. MiR-129-5p exerts Wnt signaling-dependent tumor-suppressive functions in hepatocellular carcinoma by directly targeting hepatoma-derived growth factor HDGF. Cancer Cell Int 2022; 22:192. [PMID: 35578240 PMCID: PMC9109340 DOI: 10.1186/s12935-022-02582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In hepatocellular carcinoma (HCC), histone deacetylases (HDACs) are frequently overexpressed. This results in chromatin compaction and silencing of tumor-relevant genes and microRNAs. Modulation of microRNA expression is a potential treatment option for HCC. Therefore, we aimed to characterize the epigenetically regulated miR-129-5p regarding its functional effects and target genes to understand its relevance for HCC tumorigenesis. METHODS Global miRNA expression of HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B) and normal liver cell lines (THLE-2, THLE-3) was analyzed after HDAC inhibition by miRNA sequencing. An in vivo xenograft mouse model and in vitro assays were used to investigate tumor-relevant functional effects following miR-129-5p transfection of HCC cells. To validate hepatoma-derived growth factor (HDGF) as a direct target gene of miR-129-5p, luciferase reporter assays were performed. Survival data and HDGF expression were analyzed in public HCC datasets. After siRNA-mediated knockdown of HDGF, its cancer-related functions were examined. RESULTS HDAC inhibition induced the expression of miR-129-5p. Transfection of miR-129-5p increased the apoptosis of HCC cells, decreased proliferation, migration and ERK signaling in vitro and inhibited tumor growth in vivo. Direct binding of miR-129-5p to the 3'UTR of HDGF via a noncanonical binding site was validated by luciferase reporter assays. HDGF knockdown reduced cell viability and migration and increased apoptosis in Wnt-inactive HCC cells. These in vitro results were in line with the analysis of public HCC datasets showing that HDGF overexpression correlated with a worse survival prognosis, primarily in Wnt-inactive HCCs. CONCLUSIONS This study provides detailed insights into the regulatory network of the tumor-suppressive, epigenetically regulated miR-129-5p in HCC. Our results reveal for the first time that the therapeutic application of mir-129-5p may have significant implications for the personalized treatment of patients with Wnt-inactive, advanced HCC by directly regulating HDGF. Therefore, miR-129-5p is a promising candidate for a microRNA replacement therapy to prevent HCC progression and tumor metastasis.
Collapse
Affiliation(s)
- Nicole Huge
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thea Reinkens
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Reena Buurman
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maria Sandbothe
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Anke Bergmann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Melanie Decker
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | - Engin Gürlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
135
|
Yasmeen N, Datta M, Kumar V, Alshehri FS, Almalki AH, Haque S. Deciphering the Link Between ERUPR Signaling and MicroRNA in Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:880167. [PMID: 35615589 PMCID: PMC9126300 DOI: 10.3389/fnagi.2022.880167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative proteinopathic disease. The deposits of misfolded Amyloid β and Tau proteins in the brain of patients with AD suggest an imbalance in endoplasmic reticulum (ER) proteostasis. ER stress is due to accumulation of aberrant proteins in the ER lumen, which then leads to activation of three sensor protein pathways that ultimately evokes the adaptive mechanism of the unfolded protein response (UPR). The UPR mechanism operates via adaptive UPR and the apoptotic UPR. Adaptive UPR tries to restore imbalance in ER hemostasis by decreasing protein production, enhanced chaperone involvement to restore protein folding, misfolded protein decay by proteasome, and suppression of ribosomal translation ultimately relieving the excessive protein load in the ER. Subsequently, apoptotic UPR activated under severe ER stress conditions triggers cell death. MicroRNAs (miRNAs) are small non-coding protein causing dysregulated translational of mRNAs in a sequential manner. They are considered to be critical elements in the maintenance of numerous cellular activities, hemostasis, and developmental processes. Therefore, upregulation or downregulation of miRNA expression is implicated in several pathogenic processes. Evidence from scientific studies suggest a strong correlation between ERUPR signaling and miRNA dysregulation but the research done is still dormant. In this review, we summarized the cross-talk between ER stress, and the UPR signaling processes and their role in AD pathology by scrutinizing and collecting information from original research and review articles.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- *Correspondence: Vikram Kumar, ;
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
136
|
Zhang F, Isak AN, Yang S, Song Y, Ren L, Feng C, Chen G. Smartly responsive DNA-miRNA hybrids packaged in exosomes for synergistic enhancement of cancer cell apoptosis. NANOSCALE 2022; 14:6612-6619. [PMID: 35421879 DOI: 10.1039/d1nr08539e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Endogenous and exogenous tumor-related microRNAs (miRNAs) are considered promising tumor biomarkers and tumor therapeutic agents. In this work, we propose a miRNA self-responsive drug delivery system (miR-SR DDS), which enables the association between endogenous and exogenous miRNAs, so as to achieve a smart responsive and synergistic drug delivery. The miR-SR DDS consists of DNA-miRNA hybrids of let-7a and the complementary DNA of miR-155, which was packaged in exosomes. In response to the overexpressed miR-155 in breast cancer cells, the hybrids disintegrate and release let-7a and the complementary DNA of miR-155 to inhibit the expression of HMGA1 and relieve the inhibition of SOX1, respectively. Under the dual-targeted gene regulation, results show that the growth, migration and invasion of breast cancer cells can be synergistically inhibited through the Wnt/β-catenin signaling pathway. The concept and successful practice of the miR-SR DDS can be used as a reference for the development of miRNA drugs.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Albertina N Isak
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Lingjie Ren
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
137
|
Ge Y, Wang Q, Qin X, Li S, Liu Z, Lin Y, Li X, Cai X. Tetrahedral Framework Nucleic Acids Connected with MicroRNA-126 Mimics for Applications in Vascular Inflammation, Remodeling, and Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19091-19103. [PMID: 35418237 DOI: 10.1021/acsami.1c23869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The repair of damaged endothelium is crucial for vascular homeostasis maintenance, which comprises the recovery of early stage impaired endothelial cells and migration of surrounding unimpaired endothelial cells. MicroRNAs (miRNAs) play an indispensable role in balancing gene expression in organisms. For vascular tissues, miR-126 is one of the most important regulators and might have substantial application potential in maintaining vascular homeostasis. In this study, a type of sticky-end-modified tetrahedral framework nucleic acids (tFNAs-SE) was employed to successfully link the miR-126 5p mimic duplex, which was termed tFNAs-miR-126 5p mimics (tFNAs-MMs). Existing vascular endothelial growth factors (VEGF), tFNAs-MMs can improve cell viability, resist apoptosis, and recover the state and functions of LPS-induced impaired human umbilical vein endothelial cells (HUVECs). The angiogenesis ability of impaired HUVECs was recovered by tFNAs-MMs in vitro and in vivo. The mechanisms underlying these phenomena were demonstrated to be related to the downregulation of caspase3 and negative regulators of VEGF (SPRED1 and PIK3R2). Moreover, tFNAs-MMs promoted the migration and proliferation of HUVECs. Briefly, the strategy of sticky-end-modified tFNAs connecting miRNA mimics is available for miRNA gain of function, while tFNAs-MMs might be a promising agent for repairing early stage vascular damage and maintaining vascular homeostasis.
Collapse
Affiliation(s)
- Yichen Ge
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
138
|
Saito-Tarashima N, Murai A, Minakawa N. Rewriting the Central Dogma with Synthetic Genetic Polymers. Chem Pharm Bull (Tokyo) 2022; 70:310-315. [DOI: 10.1248/cpb.c21-00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Akiho Murai
- Graduate School of Pharmaceutical Science, Tokushima University
| | | |
Collapse
|
139
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
140
|
Wei J, Song R, Sabbagh A, Marisetty A, Shukla N, Fang D, Najem H, Ott M, Long J, Zhai L, Lesniak MS, James CD, Platanias L, Curran M, Heimberger AB. Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncoimmunology 2022; 11:2062827. [PMID: 35433114 PMCID: PMC9009928 DOI: 10.1080/2162402x.2022.2062827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70–90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal Shukla
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
141
|
Kupryushkin MS, Filatov AV, Mironova NL, Patutina OA, Chernikov IV, Chernolovskaya EL, Zenkova MA, Pyshnyi DV, Stetsenko DA, Altman S, Vlassov VV. Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:211-226. [PMID: 34976439 PMCID: PMC8693280 DOI: 10.1016/j.omtn.2021.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/28/2021] [Indexed: 10/26/2022]
Abstract
Antisense gapmer oligonucleotides containing phosphoryl guanidine (PG) groups, e.g., 1,3-dimethylimidazolidin-2-imine, at three to five internucleotidic positions adjacent to the 3' and 5' ends were prepared via the Staudinger chemistry, which is compatible with conditions of standard automated solid-phase phosphoramidite synthesis for phosphodiester and, notably, phosphorothioate linkages, and allows one to design a variety of gapmeric structures with alternating linkages, and deoxyribose or 2'-O-methylribose backbone. PG modifications increased nuclease resistance in serum-containing medium for more than 21 days. Replacing two internucleotidic phosphates by PG groups in phosphorothioate-modified oligonucleotides did not decrease their cellular uptake in the absence of lipid carriers. Increasing the number of PG groups from two to seven per oligonucleotide reduced their ability to enter the cells in the carrier-free mode. Cationic liposomes provided similar delivery efficiency of both partially PG-modified and unmodified oligonucleotides. PG-gapmers were designed containing three to four PG groups at both wings and a central "window" of seven deoxynucleotides with either phosphodiester or phosphorothioate linkages targeted to MDR1 mRNA providing multiple drug resistance of tumor cells. Gapmers efficiently silenced MDR1 mRNA and restored the sensitivity of tumor cells to chemotherapeutics. Thus, PG-gapmers can be considered as novel, promising types of antisense oligonucleotides for targeting biologically relevant RNAs.
Collapse
Affiliation(s)
- Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Anton V Filatov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Olga A Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Ivan V Chernikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Dmitry A Stetsenko
- Department of Physics, Novosibirsk State University, Pirogov Str. 2, Novosibirsk 630090, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Montreal Clinical Research Institute, Montreal QC H2W 1R7, Canada
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
142
|
Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:894-915. [PMID: 35141049 PMCID: PMC8803965 DOI: 10.1016/j.omtn.2022.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects. Aptamers are single-chained oligonucleotides that bind their targets with high specificity and affinity owing to their three-dimensional (3D) structures, and they are one potential way to address this need. In particular, bispecific aptamers (bsApts) have been shown to induce artificial immune synapses that promote T cell activation and subsequent tumor cell lysis in various in vitro and in vivo pre-clinical models. We discuss these advances here, along with gaps in bsApt biology at both the cellular and resident tissue levels that should be addressed to accelerate their translation into the clinic. The broad application, minimal production cost, and relative lack of immunogenicity of bsApts give them some ideal qualities for manipulating the immune system. Building upon lessons from other novel therapies, bsApts could soon provide clinicians with an immunomodulating toolbox that is not only potent and efficacious but exercises a wide therapeutic index.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
143
|
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BIOTECH 2022; 11:biotech11010006. [PMID: 35822814 PMCID: PMC9245904 DOI: 10.3390/biotech11010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
- Correspondence:
| | - Tanmay Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deep Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
144
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
145
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:ijms23052736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
|
146
|
Monaghan TM, Polytarchou C, Kao D, Alexander C, Gurnani P. Therapeutic potential of miRNAs in Clostridioides difficile infection. Future Microbiol 2022; 17:315-318. [PMID: 35172603 DOI: 10.2217/fmb-2021-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tweetable abstract Treating Clostridioides difficile infection with miRNAs alone or combined with live biotherapeutic products may augment therapeutic efficacy and help counteract drug resistance in the future.
Collapse
Affiliation(s)
- Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG7 2UH, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Centre for Health, Aging & Understanding Disease, School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Dina Kao
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
147
|
The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11030572. [PMID: 35159383 PMCID: PMC8833997 DOI: 10.3390/cells11030572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons. As there is no effective treatment for ALS, it is particularly important to screen key gene therapy targets. The identifications of microRNAs (miRNAs) have completely changed the traditional view of gene regulation. miRNAs are small noncoding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression. Recent advances also indicate that miRNAs are biomarkers in many diseases, including neurodegenerative diseases. In this review, we summarize recent advances regarding the mechanisms underlying the role of miRNAs in ALS pathogenesis and its application to gene therapy for ALS. The potential of miRNAs to target diverse pathways opens a new avenue for ALS therapy.
Collapse
|
148
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
149
|
Takegawa-Araki T, Kumagai S, Yasukawa K, Kuroda M, Sasaki T, Obika S. Structure-Activity Relationships of Anti-microRNA Oligonucleotides Containing Cationic Guanidine-Modified Nucleic Acids. J Med Chem 2022; 65:2139-2148. [PMID: 35084859 DOI: 10.1021/acs.jmedchem.1c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anti-microRNA oligonucleotides (AMOs) are valuable tools for the treatment of diseases caused by the dysregulation of microRNA expression. However, the correlation between chemical modifications in AMO sequences and the microRNA-inhibitory activity has not been fully elucidated. In this study, we synthesized a series of AMOs containing cationic guanidine-bridged nucleic acids (GuNA) and evaluated their activities using a dual luciferase assay. We also optimized the site of GuNA substitution and found an effective design for the inhibition of microRNA-21, which was partially different from that of conventional nucleic acid derivatives. This study showed that GuNA-substituted AMOs are effective in inhibiting the function of microRNA.
Collapse
Affiliation(s)
- Tomo Takegawa-Araki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinji Kumagai
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kai Yasukawa
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masataka Kuroda
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takashi Sasaki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
150
|
The HDAC2/SP1/miR-205 feedback loop contributes to tubular epithelial cell extracellular matrix production in diabetic kidney disease. Clin Sci (Lond) 2022; 136:223-238. [PMID: 35084460 DOI: 10.1042/cs20210470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Extracellular matrix (ECM) accumulation is considered an important pathological feature of diabetic kidney disease (DKD). Histone deacetylase (HDAC) inhibitors protect against kidney injury. However, the potential mechanisms of HDACs in DKD are still largely unknown. Here, we describe a novel feedback loop composed of HDAC2 and miR-205 that regulates ECM production in tubular epithelial cells in individuals with DKD. We found that HDAC2 mRNA expression in peripheral blood was markedly higher in patients with DKD than in patients with diabetes. Nuclear HDAC2 protein expression was increased in TGFβ1-stimulated tubular epithelial cells and db/db mice. We also found that miR-205 was regulated by HDAC2 and downregulated in TGFβ1-treated HK2 cells and db/db mice. In addition, HDAC2 reduced histone H3K9 acetylation in the miR-205 promoter region to inhibit its promoter activity and subsequently suppressed miR-205 expression through an SP1-mediated pathway. Furthermore, miR-205 directly targeted HDAC2 and inhibited HDAC2 expression. Intriguingly, miR-205 also regulated its own transcription by inhibiting HDAC2 and increasing histone H3K9 acetylation in its promoter, forming a feedback regulatory loop. Additionally, the miR-205 agonist attenuated ECM production in HK2 cells and renal interstitial fibrosis in db/db mice. In conclusion, the HDAC2/SP1/miR-205 feedback loop may be crucial for the pathogenesis of DKD.
Collapse
|