101
|
Petit C, Batool F, Stutz C, Anton N, Klymchenko A, Vandamme T, Benkirane-Jessel N, Huck O. Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. Int J Pharm 2020; 586:119534. [PMID: 32531451 DOI: 10.1016/j.ijpharm.2020.119534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
Statins have been proposed as potential adjuvant to periodontal treatment due to their pleiotropic properties. A new thermosensitive chitosan hydrogel loaded with statins (atorvastatin and lovastatin) nanoemulsions was synthesized to allow a spatially controlled local administration of active compounds at lesion site. Spontaneous nano-emulsification method was used to synthesize statins loaded nanoemulsions. In vitro, atorvastatin and lovastatin loaded nanoemulsions were cytocompatible and were able to be uptake by oral epithelial cells. Treatment of Porphyromonas gingivalis infected oral epithelial cells and gingival fibroblasts with atorvastatin and lovastatin loaded nanoemulsions decreased significantly pro-inflammatory markers expression (TNF-α and IL-1β) and pro-osteoclastic RANKL. Nevertheless, such treatment induced the expression of Bone sialoprotein 2 (BSP2) in osteoblast emphasizing the pro-healing properties of atorvastatin and lovastatin nanoemulsions. In vivo, in a calvarial bone defect model (2 mm), treatment with the hydrogel loaded with atorvastatin and lovastatin nanoemulsions induced a significant increase of the neobone formation in comparison with systemic administration of statins. This study demonstrates the potential of this statins loaded hydrogel to improve bone regeneration and to decrease soft tissue inflammation. Its use in the specific context of periodontitis management could be considered in the future with a reduced risk of side effects.
Collapse
Affiliation(s)
- Catherine Petit
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fareeha Batool
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Céline Stutz
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, LBP UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
102
|
Vaiserman A, Koliada A, Lushchak O. Neuroinflammation in pathogenesis of Alzheimer's disease: Phytochemicals as potential therapeutics. Mech Ageing Dev 2020; 189:111259. [PMID: 32450086 DOI: 10.1016/j.mad.2020.111259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
Accumulation of neurotoxic forms of amyloid-β proteins in senile plaques and hyperphosphorylated tau proteins in neurofibrillary tangles is a well-known pathophysiological hallmark of Alzheimer's disease (AD). However, clinical trials with drugs targeting amyloid-β and tau have failed to demonstrate efficacy in treating AD. All currently FDA-approved anti-AD drugs have symptomatic effects only and are not able to cure this disease. This makes necessary to search for alternative therapeutic targets. Accumulating evidence suggests that systemic inflammation and related vascular dysfunction play important etiological roles in AD and precede its clinical manifestation. Therefore, novel therapeutic modalities targeted at these pathophysiological components of AD are intensively developed now. Phytochemicals such as resveratrol, curcumin, quercetin, genistein and catechins are promising anti-AD therapeutics due to their ability to affect major pathogenetic mechanisms of AD, including oxidative stress, neuroinflammation and mitochondrial dysfunction. The implementation of innovative approaches for phytochemical delivery, including the nanotechnology-based ones which enable to significantly enhance their oral bioavailability, would likely provide an opportunity to address many challenges of conventional anti-AD therapies. In this review, roles of inflammation and vascular dysregulation in AD are described and phytobioactive compound-based treatment strategies for AD are discussed.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| |
Collapse
|
103
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
104
|
Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
105
|
Majumdar M, Khan SA, Biswas SC, Roy DN, Panja AS, Misra TK. In vitro and in silico investigation of anti-biofilm activity of Citrus macroptera fruit extract mediated silver nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
106
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol 2020; 7:447. [PMID: 31998711 PMCID: PMC6965023 DOI: 10.3389/fbioe.2019.00447] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The aging process is known to be associated with heightened oxidative stress and related systemic inflammation. Therefore, antioxidant supplementation is regarded as a promising strategy to combat aging and associated pathological conditions. Food-grade antioxidants from plant-derived extracts are the most common ingredients of these supplements. Phyto-bioactive compounds such as curcumin, resveratrol, catechins, quercetin are among the most commonly applied natural compounds used as potential modulators of the free radical-induced cellular damages. The therapeutic potential of these compounds is, however, restricted by their low bioavailability related to poor solubility, stability, and absorbance in gastrointestinal tract. Recently, novel nanotechnology-based systems were developed for therapeutic delivery of natural antioxidants with improved bioavailability and, consequently, efficacy in clinical practice. Such systems have provided many benefits in preclinical research over the conventional preparations, including superior solubility and stability, extended half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent developments in nanodelivery of natural antioxidants and its application to combat pathological conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
107
|
Pérez-Calabuig AM, Díez P, Martínez-Ruiz P, Martínez-Máñez R, Sánchez A, Villalonga R. An enzyme-controlled Janus nanomachine for on-command dual and sequential release. Chem Commun (Camb) 2020; 56:6440-6443. [DOI: 10.1039/d0cc01234c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel multi-stimuli responsive Janus nanomachine with enzymatic control for dual and sequential release of two different payloads was developed.
Collapse
Affiliation(s)
- Ana M. Pérez-Calabuig
- Nanosensors and Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- Madrid 28040
| | - Paula Díez
- Nanosensors and Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- Madrid 28040
| | - Paloma Martínez-Ruiz
- Nanosensors and Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- Madrid 28040
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València
- Universitat de València
- Valencia 46022
- Spain
| | - Alfredo Sánchez
- Nanosensors and Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- Madrid 28040
| | - Reynaldo Villalonga
- Nanosensors and Nanomachines Group
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- Madrid 28040
| |
Collapse
|
108
|
Walia S, Sharma C, Acharya A. Biocompatible Fluorescent Nanomaterials for Molecular Imaging Applications. NANOMATERIAL - BASED BIOMEDICAL APPLICATIONS IN MOLECULAR IMAGING, DIAGNOSTICS AND THERAPY 2020:27-53. [DOI: 10.1007/978-981-15-4280-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
109
|
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol 2019; 10:1207. [PMID: 31787892 PMCID: PMC6856223 DOI: 10.3389/fphar.2019.01207] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
As the leading cause of death worldwide, viruses significantly affect global health. Despite the rapid progress in human healthcare, there are few viricidal and antiviral therapies that are efficient enough. The rapid emergence of resistance, and high costs, as well as the related side effects of synthetic antiviral drugs, raise the need to identify novel, effective, and safe alternatives against viral diseases. Nature has been of the most exceptional help and source of inspiration for developing novel multi-target antiviral compounds, affecting several steps of the viral life cycle and host proteins. For that matter and due to safety and efficacy limitations, as well as high resistance rate of conventional therapies, hundreds of natural molecules are preferred over the synthetic drugs. Besides, natural antiviral agents have shown acceptable antiviral value in both preclinical and clinical trials.This is the first review regarding molecular and cellular pathways of the virus life cycle, treatment strategies, and therapeutic targets of several viral diseases with a particular focus on anthocyanins as promising natural compounds for significant antiviral enhancements. Clinical applications and the need to develop nano-formulation of anthocyanins in drug delivery systems are also considered.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
110
|
Adnan M, Azad MOK, Ju HS, Son JM, Park CH, Shin MH, Alle M, Cho DH. Development of biopolymer-mediated nanocomposites using hot-melt extrusion to enhance the bio-accessibility and antioxidant capacity of kenaf seed flour. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01205-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
111
|
Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. GeroScience 2019; 42:117-139. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| |
Collapse
|
112
|
Mahmoudi Saber M. Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf B Biointerfaces 2019; 183:110407. [DOI: 10.1016/j.colsurfb.2019.110407] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
|
113
|
Sutili FJ, Kreutz LC, Flores FC, da Silva CDB, Kirsten KS, Voloski APDS, Frandoloso R, Pinheiro CG, Heinzmann BM, Baldisserotto B. Effect of dietary supplementation with citral-loaded nanostructured systems on innate immune responses and gut microbiota of silver catfish (Rhamdia quelen). J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
114
|
Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan-Poly (Methacrylic Acid) Nanoparticles. Polymers (Basel) 2019; 11:polym11071226. [PMID: 31340432 PMCID: PMC6680519 DOI: 10.3390/polym11071226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The development of a nanoparticulate system for the carrier antigen is now an important tool in the vaccination process, since a smaller number of doses is necessary for effective immunization. Thus, in this work a nanoparticulate system using polymers of chitosan and poly (methacrylic acid) (CS–PMAA) to adsorb the Vi antigen of Salmonella Typhi was developed. CS–PMAA nanoparticles with different proportions of chitosan and poly (methacrylic acid) were obtained and reached sizes from 123.9 ± 2.48 to 234.9 ± 2.66 nm, and spherical shapes were seen in transmission microscopy. At pH 7.2, the nanoparticles had a cationic surface charge that contributed to the adsorption of the Vi antigen. Qualitative analyses of the isolated Vi antigen were performed using Fourier-transform infrared spectroscopy, which indicated the presence of all the characteristic bands of the capsular polysaccharide, and nuclear magnetic resonance, which showed signals for the five hydrogens and the N-acetyl and O-acetyl groups which are characteristic of the Vi antigen structure. In the adsorption kinetics study, the Vi capsular antigen, contained in a phosphate buffer solution of pH 7.2, experienced 55% adsorption on the 1–1% (CS–PMAA) nanoparticles. The adsorption kinetics results showed the ability of the nanoparticulate system to adsorb the Vi antigen.
Collapse
|
115
|
García‐García MC, del Río Celestino M, Gil‐Izquierdo Á, Egea‐Gilabert C, Galano JM, Durand T, Oger C, Fernández JA, Ferreres F, Domínguez‐Perles R. The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- María C. García‐García
- Center IFAPA La Mojonera, CAPDER, Junta de AndalucíaCamino San Nicolás 104745 AlmeríaSpain
| | | | - Ángel Gil‐Izquierdo
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| | | | - Jean M. Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Juan A. Fernández
- Technical University of CartagenaPaseo Alfonso XIII 4830203 CartagenaSpain
| | - Federico Ferreres
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| | - Raúl Domínguez‐Perles
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| |
Collapse
|
116
|
Bazana MT, Codevilla CF, de Menezes CR. Nanoencapsulation of bioactive compounds: challenges and perspectives. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
117
|
Carvalho JA, da Silva Abreu A, Tedesco AC, Junior MB, Simioni AR. Functionalized photosensitive gelatin nanoparticles for drug delivery application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:508-525. [PMID: 30776983 DOI: 10.1080/09205063.2019.1580664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, zinc phthalocyanine (ZnPc) was loaded onto gelatin nanoparticles functionalized with polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride) by layer-by-layer (LbL) assembly. The process yield and the encapsulation efficiency were 76.0% ± 2.5 and 86.0% ± 1.8, respectively. The functionalized photosensitive gelatin nanoparticles (FPGN) had a mean diameter of 396.5 ± 45.8 nm, narrow distribution size with a polydispersity index of 0.106. The obvious switching of zeta potential indicates successful alternating deposition of the polyanion PSS and polycation PAH directly on the gelatin nanoparticles. The in vitro drug release investigation found that the LbL deposited polyelectrolyte bilayer is very efficient to reduce the release rate and assuage the initial burst for drugs loaded in gelatin nanoparticles. The photobiological activity of FPGN was evaluated on mouse macrophage carcinoma line J774 A-1. The cells viability decreased with the increase of the light dose in the range of 1-10.0 J.cm-2. ZnPc-loaded in functionalized gelatin nanoparticles are the release systems that promise photodynamic therapy use.
Collapse
Affiliation(s)
- Janicy Arantes Carvalho
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Alexandro da Silva Abreu
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Antonio Claudio Tedesco
- b Chemistry Department Photobiology and Photomedicine Group , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Milton Beltrame Junior
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| | - Andreza Ribeiro Simioni
- a Organic Synthesis Laboratory , Research and Development Institute - IPD Vale do Paraíba University , São José dos Campos , Brazil
| |
Collapse
|
118
|
Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1980-1989. [PMID: 30270448 DOI: 10.1002/jsfa.9396] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Quercetin is a phenolic compound occurring in many food plants and agricultural crops. It is reported to possess various health-promoting properties. However, the poor bioavailability of quercetin, due to its low aqueous solubility and its degradation during digestion, limits its nutraceutical applications. This study aimed to encapsulate quercetin in nanoliposomes using rice-bran phospholipids for its efficient delivery and controlled release, the protection of its structural stability, and enhancement of its bioactivity. RESULTS Nanoliposomal encapsulation of quercetin by thin film-sonication method yielded spherical nanoparticles (157.33 ± 23.78 nm) with high encapsulation efficiency (84.92 ± 0.78%). Storage stability studies showed that nanoliposomal quercetin was stable at 4 °C and 27 °C for 6 and 5 months, respectively, as indicated by unchanged antioxidant activity and quercetin retention. Nanoliposomal quercetin showed a slow, limited release pattern in simulated gastric fluid (SGF), and an initial burst release followed by a slow constant releasing pattern in simulated intestinal fluid (SIF). A 1004-fold increase in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity was observed in quercetin nanoliposomes (SC50 = 4.04 ± 0.01 ppm) compared to non-encapsulated quercetin (SC50 = 4053.03 ± 5.61 ppm). Similarly, the anti-angiogenic activity of quercetin, as evaluated by duck embryo chorioallantoic membrane (CAM) assay, was enhanced twofold to fivefold by nanoliposomal encapsulation. CONCLUSION This study showed that nanoliposomal encapsulation in rice-bran phospholipids enhanced the radical-scavenging and anti-angiogenic activities of quercetin. Furthermore, this study demonstrated that nanoliposomes can serve as efficient oral delivery system for quercetin. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Evelyn B Rodriguez
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Ronaniel A Almeda
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Mark Louis P Vidallon
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Charisse T Reyes
- Faculty of Education, University of the Philippines Open University, Los Baños, Philippines
| |
Collapse
|
119
|
Joye IJ, Corradini MG, Duizer LM, Bohrer BM, LaPointe G, Farber JM, Spagnuolo PA, Rogers MA. A comprehensive perspective of food nanomaterials. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:1-45. [PMID: 31151722 DOI: 10.1016/bs.afnr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanotechnology is a rapidly developing toolbox that provides solutions to numerous challenges in the food industry and meet public demands for healthier and safer food products. The diversity of nanostructures and their vast, tunable functionality drives their inclusion in food products and packaging materials to improve their nutritional quality through bioactive fortification and probiotics encapsulation, enhance their safety due to their antimicrobial and sensing capabilities and confer novel sensorial properties. In this food nanotechnology state-of-the-art communication, matrix materials with particular focus on food-grade components, existing and novel production techniques, and current and potential applications in the fields of food quality, safety and preservation, nutrient bioaccessibility and digestibility will be detailed. Additionally, a thorough analysis of potential strategies to assess the safety of these novel nanostructures is presented.
Collapse
Affiliation(s)
- I J Joye
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M G Corradini
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| | - L M Duizer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - B M Bohrer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - G LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - J M Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - P A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
120
|
Fadholly A, Proboningrat A, Dewi Iskandar RP, Rantam FA, Sudjarwo SA. In vitro anticancer activity Annona squamosa extract nanoparticle on WiDr cells. J Adv Pharm Technol Res 2019; 10:149-154. [PMID: 31742114 PMCID: PMC6844006 DOI: 10.4103/japtr.japtr_10_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study aimed to prepare Annona squamosa leaf extract-loaded chitosan nanoparticles (nano-ASLE) against human colon cancer (WiDr) cells. Nano-ASLE was made with ionic gelation method. Four concentrations of the nano-ASLE (50, 100, 200, and 400 μg/mL) in dimethyl sulfoxide were prepared on WiDr cells to determine the IC50 value using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Then, it was divided into three groups of concentration of IC50, 2IC50, and 4IC50 and continued with analysis of caspase-3 expression and cell cycle arrest. The results of particles size were obtained 535.1 nm and showed potent cytotoxicity with IC50 292.39 μg/mL. The expression of caspase-3 increased significantly and caused cell cycle arrest at the G2/M phase and induced apoptosis on WiDr cells. Further studies are needed to obtain the loading efficiency, release of drug concentration, and in vivo study of nano-ASLE to suppress WiDr cells.
Collapse
Affiliation(s)
- Amaq Fadholly
- Doctoral Student of Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Annise Proboningrat
- Doctoral Student of Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | | | - Fedik Abdul Rantam
- Department of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Pharmacology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
121
|
Functional and Bioactive Properties of Food: The Challenges Ahead. Foods 2018; 7:foods7090139. [PMID: 30200273 PMCID: PMC6163570 DOI: 10.3390/foods7090139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022] Open
|
122
|
Achari GA, Kowshik M. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8647-8661. [PMID: 30036480 DOI: 10.1021/acs.jafc.8b00691] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant mineral nutrition is important for obtaining higher agricultural productivity to meet the future demands of the increasing global human population. It is envisaged that nanotechnology can provide sustainable solutions by replacing traditional bulk fertilizers with their nanoparticulate counterparts possessing superior properties to overcome the current challenges of bioavailability and uptake of minerals, increasing crop yield, reducing fertilizer wastage, and protecting the environment. Recent studies have shown that nanoparticles of essential minerals and nonessential elements affect plant growth, physiology, and development, depending on their size, composition, concentration, and mode of application. The current review includes the recent findings on the positive as well as negative effects that nanofertilizers exert on plants when applied via foliar and soil routes, their effects on plant associated microorganisms, and potential for controlling agricultural pests. This review suggests future research needed for the development of sustained release nanofertilizers for enhancing food production and environmental protection.
Collapse
Affiliation(s)
- Gauri A Achari
- Department of Biological Sciences , Birla Institute of Technology and Science Pilani , KK Birla Goa Campus, Zuarinagar , Goa 403726 , India
| | - Meenal Kowshik
- Department of Biological Sciences , Birla Institute of Technology and Science Pilani , KK Birla Goa Campus, Zuarinagar , Goa 403726 , India
| |
Collapse
|