101
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
102
|
Effect of alginate-based coating charged with hydroxyapatite and quercetin on colour, firmness, sugars and volatile compounds of fresh cut papaya during cold storage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractActive alginate-based coatings with quercetin glycoside and complexes of hydroxyapatite/quercetin-glycoside were used to study the shelf life of fresh cut papaya stored at 6 °C. Hydroxyapatite was used as a carrier for the release of the bioactive compound. The parameters considered affecting the quality of the fruit during storage were weight loss, color, texture, sugars and volatile compounds. Active coatings with hydroxyapatite and quercetin glycoside proved a higher capacity to slow down the degradation phenomena studied, showing less weight loss, a lower reduction in glucose and fructose, as well as better firmness, than the other samples after 14 days of cold storage. Benzyl isothiocyanate, the characteristic odor compound of papaya fruit, ranged from approximately 10.0 μg/kg in fresh cut fruit to approximately 7.50 μg/kg in samples coated by alginate with hydroxyapatite/quercetin and 3.6 μg/kg in the fresh cut papaya without coating after 14 days of cold storage. The trials also indicated greater effectiveness of alginate coatings alone and with quercetin-glucoside in preserving the color of freshly cut papaya.
Collapse
|
103
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
104
|
Wang H, Hu H, Zhang X, Zheng L, Ruan J, Cao J, Zhang X. Preparation, Physicochemical Characterization, and Antioxidant Activity of Naringin–Silk Fibroin–Alginate Microspheres and Application in Yogurt. Foods 2022; 11:foods11142147. [PMID: 35885390 PMCID: PMC9318321 DOI: 10.3390/foods11142147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Naringin is the major polyphenol in bitter orange peel with antioxidant property. However, its pH sensitivity, low solubility, and bitter taste limit its application in food. In this study, naringin–sodium alginate–silk fibroin microspheres were prepared by the ionic gel method. The loading capacity and encapsulation efficiency of naringin in microspheres were 13.2% and 77.6%, respectively. The morphology of microspheres was characterized by scanning electron microscopy. The X-ray diffractometry and differential scanning calorimetry results showed naringin was amorphous after encapsulation. Fourier-transform infrared spectroscopy and molecular docking analysis confirmed the intermolecular hydrogen bonds between naringin and sodium alginate. Naringin could release from the microspheres continuously under different pH conditions. Compared with free naringin, the 2,2-diphenyl-1-picrylhydrazyl scavenging activity and the stability of naringin microspheres were significantly improved. The application of naringin microspheres in yogurt indicated the precipitation of whey could be effectively reduced and the decline rate of pH was inhibited. The study suggested that naringin encapsulated microspheres were beneficial for improving the shelf life of this bioactive product as well as providing a new idea for functional yogurt.
Collapse
|
105
|
Effect of Antimicrobial and Antioxidant Rich Pomegranate Peel Based Edible Coatings on Quality and Functional Properties of Chicken Nuggets. Molecules 2022; 27:molecules27144500. [PMID: 35889372 PMCID: PMC9323308 DOI: 10.3390/molecules27144500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
The current study evaluated the effect of pomegranate peel-based edible coating on chicken nuggets in order to develop a functional and safe product, high in nutritional value. For this purpose, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic content (TPC) assays were performed to check the potential antioxidant activity of chicken nuggets; microbial control, including total aerobic count and coliforms population, was performed for quality and safety purposes; and thiobarbituric acid reactive substances (TBARS) and peroxide value (POV) were performed to determine the oxidative stability of chicken nuggets. Different treatments were applied at different storage periods (0th, 7th, 14th and 21st day). The higher value of total aerobic count (5.09 ± 0.05 log CFU/g) and coliforms (3.91 ± 0.06 log CFU/g) were obtained for the uncoated samples, while the lower population was enumerated in the combination of sodium alginate (SA) and pomegranate peel powder (PPP). However, DPPH (64.65 ± 2.15%) and TPC (135.66 ± 3.07 GAE/100 g) values were higher in the coated chicken nuggets (SA (1.5%) and PPP (1.5%)) and lowest in the control samples. The higher value of TBARS (1.62 ± 0.03 MDA/kg) and POV (0.92 ± 0.03 meq peroxide/kg) were observed in the uncoated chicken nuggets. In the Hunter color system, L*, a*, and b* peak values were determined in the coated chicken nuggets with SA (1.5%) + PPP (1.5%) at the 21st day of storage. The uncoated chicken nuggets had different sensory characteristics (appearance, color, taste, texture, and overall acceptability) compared to the coated samples. Conclusively, coating based on the combination of SA (1.5%) and PPP (1.5%) increased the quality, safety, and nutritional properties of chicken nuggets.
Collapse
|
106
|
Wang H, Xue T, Wang S, Jia X, Cao S, Niu B, Guo R, Yan H. Preparation, characterization and food packaging application of nano ZnO@Xylan/quaternized xylan/polyvinyl alcohol composite films. Int J Biol Macromol 2022; 215:635-645. [PMID: 35777507 DOI: 10.1016/j.ijbiomac.2022.06.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Xylan could be considered as a good potential candidate for food packaging film because of the vast source and biodegradability, however, its application was restricted by the drawbacks of poor film-forming property, humidity sensitivity, weak mechanical strength and poor antibacterial property. In this paper, xylan was firstly modified by quaternization to improve the film-forming property, then ZnO nanoparticles encapsulated by xylan (nano ZnO@Xylan) was prepared by nanoprecipitation method, finally a series of biodegradable composite films were prepared using quaternized xylan and polyvinyl alcohol with incorporation of nano ZnO@Xylan. The surface morphology, molecular structure and crystallography structure of the films were characterized. The addition of nano ZnO@Xylan decreased water vapor permeability and solubility, meanwhile obviously increased the ultraviolet shielding performance as well as the antibacterial properties of the films. The bacteriostasis rate of the films against E. coli and S. aureus reached up to 99 %. Furthermore, the preservation time of cherry tomatoes covered with ZnO@Xylan/QX/PVA films was extended to at least 21 days. In conclusion, all the results ensure that the fabricated composite films have considerable promising application in the food packaging industry.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Tianren Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shuo Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaoli Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shenghui Cao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruijie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hong Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
107
|
Błaszczyk U, Wyrzykowska S, Gąstoł M. Application of Bioactive Coatings with Killer Yeasts to Control Post-Harvest Apple Decay Caused by Botrytis cinerea and Penicillium italicum. Foods 2022; 11:1868. [PMID: 35804682 PMCID: PMC9266268 DOI: 10.3390/foods11131868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
A new method was proposed to produce alginate bio-films containing Pichia membranifaciens and Wickerhamomyces anomalus killer yeast to control the post-harvest fungal decay in organic apples caused by Botrytis cinerea and Penicillium italicum. Coatings with W. anomalus killer yeast effectively controlled the growth of P. italicum during storage at 22 °C. W. anomalus killer yeast incorporated in alginate reduced the P. italicum incidence from 90% (control) to 35% after 14 days of storage at 22 °C. Alginate biofilms with W. anomalus or P. membranifaciens also limited the incidence of the fungal decay of apples inoculated with B. cinerea compared with the control fruits, although the antagonistic capability against B. cinerea was lower than against P. italicum. The survival of W. anomalus cells in alginate coating was higher than P. membranifaciens. The incorporation of killer yeasts into alginate had no significant effect on the mechanical properties (tensile strength, percent elongation at break) of alginate coating, however, they increased the thickness of the biofilm. The bioactive coating reduced the fruit weight loss and had no significant effects on the fruit firmness during storage at 2 °C. As organic apples, produced without any synthetic fungicides, are especially prone to fungal decay during storage, the proposed alginate biofilms containing killer yeast seem to be a very promising solution by offering non-chemical, biological control of post-harvest pathogens.
Collapse
Affiliation(s)
- Urszula Błaszczyk
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120 Krakow, Poland;
| | - Sylwia Wyrzykowska
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120 Krakow, Poland;
| | - Maciej Gąstoł
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
108
|
Nandhini Suresh S, Puspharaj C, Natarajan A, Subramani R. Gum acacia/Pectin/Pullulan based edible film for food packaging application to improve the shelf life of Ivy gourd. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siva Nandhini Suresh
- Department of Chemistry PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Charumathi Puspharaj
- Department of Zoology PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Arunadevi Natarajan
- Department of Chemistry PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Ramesh Subramani
- Department of Food Processing Technology and Management PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| |
Collapse
|
109
|
Montone AMI, Malvano F, Pham PL, Cinquanta L, Capparelli R, Capuano F, Albanese D. Alginate‐based coatings charged with hydroxyapatite and quercetin for fresh‐cut papaya shelf life. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Francesca Malvano
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Phuong Ly Pham
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Luciano Cinquanta
- Department of Agricultural, Food and Forest Sciences University of Palermo Palermo Italy
| | - Rosanna Capparelli
- Department of Agriculture University of Naples “Federico II” Portici (Naples) Italy
| | - Federico Capuano
- Department of Food Inspection Istituto Zooprofilattico Sperimentale del Mezzogiorno Portici (Naples) Italy
| | - Donatella Albanese
- Department of Industrial Engineering University of Salerno Fisciano Italy
| |
Collapse
|
110
|
Energy-efficient Membranes for Microalgae Dewatering: Fouling Challenges and Mitigation Strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
111
|
Malvano F, Montone AMI, Capuano F, Colletti C, Roveri N, Albanese D, Capparelli R. Effects of active alginate edible coating enriched with hydroxyapatite-quercetin complexes during the cold storage of fresh chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
112
|
Kumar N, Daniloski D, Pratibha, Neeraj, D'Cunha NM, Naumovski N, Petkoska AT. Pomegranate peel extract – A natural bioactive addition to novel active edible packaging. Food Res Int 2022; 156:111378. [DOI: 10.1016/j.foodres.2022.111378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
|
113
|
Keshari D, Tripathi AD, Agarwal A, Rai S, Srivastava SK, Kumar P. Effect of α-dl tocopherol acetate (antioxidant) enriched edible coating on the physicochemical, functional properties and shelf life of minimally processed carrots (Daucus carota subsp. sativus). FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
114
|
Amariei S, Ursachi F, Petraru A. Development of New Biodegradable Agar-Alginate Membranes for Food Packaging. MEMBRANES 2022; 12:576. [PMID: 35736285 PMCID: PMC9229533 DOI: 10.3390/membranes12060576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
The paper analyzes the possibility of replacing the polyethylene packaging from food products with biodegradable packaging obtained from biopolymers. The proposed packaging materials were obtained from polysaccharides (alginate, agar), glycerol as plasticizer. To improve the properties necessary for the coating materials, two groups of membranes were made, one with ascorbic acid (AA, 0.1-0.45 g) in 150 mL filmogenic solution and the other with calcium chloride (CaCl2, 0.02-0.1 g) in 150 mL filmogenic solution. The membranes were analyzed for mechanical properties, light transmission, transparency and barrier properties (water vapor, oxygen, or fatty substances). The results demonstrated that the addition of AA (0.1 g), increases tensile strength, transparency, oxygen and water barrier properties. On the other hand, the addition of calcium chloride (0.08 g) increased the hardness, tensile strength and opacity of the membranes. Moreover, it ensured a uniform distribution of the mixture components. The uniformization of the mixture components in the presence of AA and CACl2 was observed by SEM and roughness analysis. Hydrogen bonding interactions between the biopolymers and the additives used were highlighted by FTIR analysis. All membranes have shown very good UV absorption. The results suggest that agar/alginate/glycerol membranes with AA and CaCl2 have the potential to be used in an active food packaging system.
Collapse
Affiliation(s)
| | - Florin Ursachi
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.A.); (A.P.)
| | | |
Collapse
|
115
|
Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, Properties and Applications of Alginates. Mar Drugs 2022; 20:364. [PMID: 35736167 PMCID: PMC9225620 DOI: 10.3390/md20060364] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.
Collapse
Affiliation(s)
- Roya Abka-khajouei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84154, Iran;
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Latifa Tounsi
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Nasim Shahabi
- Department of Food Hygiene and Quality, College of Veterinary Medicine, Shahrekord 88186, Chahar Mahal Bakhtiari, Iran;
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
116
|
Engin MS, Zamahay F, Kalkan S, Otağ MR. Physical, mechanical, and bioactive properties of edible film based on sodium alginate enriched with
Lythrum salicaria
L. extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Fatmanur Zamahay
- Department of Food Engineering Giresun University Giresun Turkey
| | - Selin Kalkan
- Department of Food Engineering Giresun University Giresun Turkey
| | | |
Collapse
|
117
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
118
|
Viscusi G, Lamberti E, D’Amico F, Tammaro L, Gorrasi G. Fabrication and Characterization of Bio-Nanocomposites Based on Halloysite-Encapsulating Grapefruit Seed Oil in a Pectin Matrix as a Novel Bio-Coating for Strawberry Protection. NANOMATERIALS 2022; 12:nano12081265. [PMID: 35457984 PMCID: PMC9025479 DOI: 10.3390/nano12081265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
In the framework of designing a novel bio-coating for the preservation of fresh fruits, this paper reports the design, preparation, and characterization of novel bio-nanocomposites based on pectin loaded with grapefruit seed oil (GO), a natural compound with antimicrobial properties, encapsulated into halloysite nanotubes (HNTs). The vacuum-based methodology was used for the encapsulation of the oil into the hollow area of the nanotubes, obtaining nano-hybrids (HNT-GO) with oil concentrations equal to 20, 30, and 50 wt%. Physical properties (thermal, mechanical, barrier, optical) were analyzed. Thermal properties were not significantly (p < 0.05) affected by the filler, while an improvement in mechanical performance (increase in elastic modulus, stress at breaking, and deformation at breaking up to 200%, 48%, and 39%, respectively, compared to pure pectin film) and barrier properties (increase in water permeability up to 480% with respect to pure pectin film) was observed. A slight increase in opacity was detected without significantly compromising the transparency of the films. The release of linoleic acid, the main component of GO, was followed for 21 days and was correlated with the amount of the hybrid filler, demonstrating the possibility of tailoring the release kinetic of active molecules. In order to evaluate the effectiveness of the prepared bio-composites as an active coating, fresh strawberries were coated and compared to uncoated fruit. Qualitative results showed that the fabricated novel bio-coating efficiently extended the preservation of fresh fruit.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (G.V.); (E.L.); (F.D.)
| | - Elena Lamberti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (G.V.); (E.L.); (F.D.)
| | - Francesca D’Amico
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (G.V.); (E.L.); (F.D.)
| | - Loredana Tammaro
- Nanomaterials and Devices Laboratory (SSPT-PROMAS-NANO), ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Piazzale E. Fermi, 1, 80055 Portici, NA, Italy;
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (G.V.); (E.L.); (F.D.)
- Correspondence:
| |
Collapse
|
119
|
Faheem F, Liu ZW, Rabail R, Haq IU, Gul M, Bryła M, Roszko M, Kieliszek M, Din A, Aadil RM. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants (Basel) 2022; 11:720. [PMID: 35453405 PMCID: PMC9031912 DOI: 10.3390/antiox11040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
The food industry is growing vastly, with an increasing number of food products and the demand of consumers to have safe and pathogen-free food with an extended shelf life for consumption. It is critical to have food safe from pathogenic bacteria, fungi, and unpleasant odors or tastes so that the food may not cause any health risks to consumers. Currently, the direction of food industry has been shifting from synthetically produced preservatives to natural preservatives to lower the unnecessary chemical burden on health. Many new technologies are working on natural prevention tools against food degradation. Lemongrass is one such natural preservative that possesses significant antimicrobial and antioxidant activity. The essential oil of lemongrass contains a series of terpenes that are responsible for these activities. These properties make lemongrass acceptable in the food industry and may fulfill consumer demands. This article provides detailed information about the role of lemongrass and its essential oil in food preservation. The outcomes of the research on lemongrass offer room for its new technological applications in food preservation.
Collapse
Affiliation(s)
- Fatima Faheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Zhi Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Iahtisham-Ul Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan;
| | - Maryam Gul
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| |
Collapse
|
120
|
Yalçın Melikoğlu A, Hayatioğlu N, Hendekçi MC, Tekin İ, Ersus S. Development and Characterization of Edible Films Based on Carboxymethyl Cellulose Enriched with Pomegranate Seed Oil and the Coating of Strawberries. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - İdil Tekin
- Ege University Food Engineering Department, 35100 Izmir Turkey
| | - Seda Ersus
- Ege University Food Engineering Department, 35100 Izmir Turkey
| |
Collapse
|
121
|
|
122
|
Babich O, Sukhikh S, Larina V, Kalashnikova O, Kashirskikh E, Prosekov A, Noskova S, Ivanova S, Fendri I, Smaoui S, Abdelkafi S, Michaud P, Dolganyuk V. Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060780. [PMID: 35336662 PMCID: PMC8949465 DOI: 10.3390/plants11060780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1-2 h at the extraction temperature of 25-40 °C. A 30-50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Egor Kashirskikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
123
|
Eltaweil AS, Abd El-Monaem EM, Elshishini HM, El-Aqapa HG, Hosny M, Abdelfatah AM, Ahmed MS, Hammad EN, El-Subruiti GM, Fawzy M, Omer AM. Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Adv 2022; 12:8228-8248. [PMID: 35424751 PMCID: PMC8982349 DOI: 10.1039/d1ra09193j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
The huge development of the industrial sector has resulted in the release of large quantities of phosphate anions which adversely affect the environment, human health, and aquatic ecosystems. Naturally occurring biopolymers have attracted considerable attention as efficient adsorbents for phosphate anions due to their biocompatibility, biodegradability, environmentally-friendly nature, low-cost production, availability in nature, and ease of modification. Amongst them, alginate-based adsorbents are considered one of the most effective adsorbents for removing various types of pollutants from industrial wastewater. The presence of active COOH and OH- groups along the alginate backbone facilitate its physical and chemical modifications and participate in various possible adsorption mechanisms of phosphate anions. Herein, we focus our attention on presenting a comprehensive overview of recent advances in phosphate removal by alginate-based adsorbents. Modification of alginate by various materials, including clays, magnetic materials, layered double hydroxides, carbon materials, and multivalent metals, is addressed. The adsorption potentials of these modified forms for removing phosphate anions, in addition to their adsorption mechanisms are clearly discussed. It is concluded that ion exchange, complexation, precipitation, Lewis acid-base interaction and electrostatic interaction are the most common adsorption mechanisms of phosphate removal by alginate-based adsorbents. Pseudo-2nd order and Freundlich isotherms were figured out to be the major kinetic and isotherm models for the removal process of phosphate. The research findings revealed that some issues, including the high cost of production, leaching, and low efficiency of recyclability of alginate-based adsorbents still need to be resolved. Future trends that could inspire further studies to find the best solutions for removing phosphate anions from aquatic systems are also elaborated, such as the synthesis of magnetic-based alginate and various-shaped alginate nanocomposites that are capable of preventing the leaching of the active materials.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University 163, Horrya Avenue Alexandria Egypt
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Abdelfatah
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Maha S Ahmed
- Higher Institute of Science and Technology-King Mariout Egypt
| | - Eman Nasr Hammad
- Chemistry Department, Faculty of Science, Menoufia University Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) P. O. Box: 21934 New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
124
|
Gupta P, Toksha B, Rahaman M. A Review on Biodegradable Packaging Films from Vegetative and Food Waste. CHEM REC 2022; 22:e202100326. [PMID: 35253984 DOI: 10.1002/tcr.202100326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/19/2022] [Indexed: 01/11/2023]
Abstract
Plastics around the globe have been a matter of grave concern due to the unavoidable habits of human mankind. Taking waste statistics in India for the year 2019-20 into account, the data of 60 major cities show that the generation of plastic waste stands tall at around 26,000 tonnes/day, of which only about 60 % is recycled. A majority of the non-recycled plastic waste is petrochemical-based packaging materials that are non-biodegradable in nature. Vegetative/food waste is another global issue, evidenced by vastly populated countries such as China and India accounting for 91 and 69 tonnes of food wastage, respectively in 2019. The mitigation of plastic packaging issues has led to key scientific developments, one of which is biodegradable materials. However, there is a way that these two waste-related issues can be fronted as the analogy of "taking two shots with the same arrow". The presence of various bio-compounds such as proteins, cellulose, starch, lipids, and waxes, etc., in food and vegetative waste, creates an opportunity for the development of biodegradable packaging films. Although these flexible packaging films have limitations in terms of mechanical, permeation, and moisture absorption characteristics, they can be fine-tuned in order to convert the biobased raw material into a realizable packaging product. These strategies could work in replacing petrochemical-based non-biodegradable packaging plastics which are used in enormous quantities for various household and commercial packaging applications to combat the ever-increasing pollution in highly populated countries. This paper presents a systematic review based on modern scientific tools of the literature available with a major emphasis on the past decade and aims to serve as a standard resource for the development of biodegradable packaging films from food/vegetative waste.
Collapse
Affiliation(s)
- Prashant Gupta
- MIT - Centre for Advanced Materials Research and Technology, Department of Plastic and Polymer Engineering, Maharashtra Institute of Technology, Aurangabad, 431010
| | - Bhagwan Toksha
- MIT - Centre for Advanced Materials Research and Technology, Department of Electronics and Telecommunication Engineering, Maharashtra Institute of Technology, Aurangabad, 431010
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
125
|
Biodegradable Silver Nanoparticles Gel and Its Impact on Tomato Seed Germination Rate in In Vitro Cultures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nanotechnology plays an important role in many fields of science and the economy. A special example of nanostructures is silver nanoparticles (AgNPs) created following the principles of green chemistry, i.e., without the use of toxic reducing compounds. The common tomato (Solanum lycopersicum) is a popular vegetable whose germination and growth process are studied by using, e.g., in vitro cultures. The aim of the experiment was to evaluate the inhibitory effect of the biodegradable gels containing silver nanoparticles on the development of microbial infection and to evaluate their influence on the germination degree of Tomato (Solanum lycopersicum) seeds in in vitro plant cultures. Based on macroscopic and microscopic observations, all experimental samples showed the presence of Gram-positive bacilli as well as mould fungi of the genus Rhizopus, Alternaria and Aspergillus. The study showed that the biocomponents containing silver nanoparticles obtained by using xylose as a reducing agent limit the development of microbial infection and stimulate the germination rate of tomato seeds. They could find their application as biodegradable raw materials in the production of modern disinfecting preparations for research in in vitro cultures. This study allowed to identify new research directions, especially to evaluate the metabolic regulation of seedlings treated with biodegradable silver nanoparticles.
Collapse
|
126
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
127
|
Huang X, Jing H, Du X, Wang L, Kou X, Liu Z, Wu S, Wang H. Electrostatically self-assembled filamentous sodium alginate/ε-polylysine fiber with antibacterial, bioadhesion and biocompatible in suturing wound. Int J Biol Macromol 2022; 200:1-11. [PMID: 34968544 DOI: 10.1016/j.ijbiomac.2021.12.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023]
Abstract
In the work, a novel filamentou sodium alginate (SA) /ε-polylysine (PL) fiber with excellent mechanical properties and controllable sizes is prepared in an efficient and environmentally friendly manner via continuous pulling of an electrostatically assembled SA/PL composites at the contact interface of aqueous solutions of cationic polyelectrolyte ε-PL and anionic natural polysaccharide SA. The SA/PL fiber exhibits good antibacterial activity, low cytotoxicity, anti-hemolysis, bioadhesion, and environmental friendliness due to its natural raw materials and green preparation process. In vivo experiments have shown that the SA/PL fiber can promote the healing and repair of skin wounds on the backs of mice via resistance to pathogen infection, reduction of inflammation, and anti-allogeneic allergy of the wound. In summary, these results demonstrate that the SA/PL fiber is a green and biosafe multifunctional natural polymer material, with potential applications in suturing wound.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Perfume and Aroma Technology, Shanghai Insititue of Technology, Shanghai 201418, China
| | - Huijuan Jing
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Insititue of Technology, Shanghai 201418, China
| | - Zhonghua Liu
- College of Horticulture, Hu'nan Agricultural University, Changsha, Hunan 410128, China
| | - Shijia Wu
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
128
|
Zhang W, Rhim JW. Functional edible films/coatings integrated with lactoperoxidase and lysozyme and their application in food preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
129
|
Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, Fal S, El Arroussi H, Peng W, Tabatabaei M, Aghbashlo M, Almomani F, Lam SS, Sillanpää M. Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. CHEMOSPHERE 2022; 291:133036. [PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China; Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Malaysia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco.
| | - Jawhar Hafsa
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco
| | - Reda Ben Mrid
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco
| | - Soufiane Fal
- Green Biotechnology laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR). Madinat Al Irfane, Rabat 10100 Morocco; Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University of Rabat, 10000, Morocco
| | - Hicham El Arroussi
- Green Biotechnology laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR). Madinat Al Irfane, Rabat 10100 Morocco
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Malaysia Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
130
|
Duguma HT. Potential applications and limitations of edible coatings for maintaining tomato quality and shelf life. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haile Tesfaye Duguma
- School of Packaging Michigan State University East Lansing Michigan USA
- Department of Post‐Harvest Management Jimma University Jimma Ethiopia
| |
Collapse
|
131
|
Niño-Vásquez IA, Muñiz-Márquez D, Ascacio-Valdés JA, Contreras-Esquivel JC, Aguilar CN, Rodríguez-Herrera R, Flores-Gallegos AC. Co-microencapsulation: a promising multi-approach technique for enhancement of functional properties. Bioengineered 2022; 13:5168-5189. [PMID: 35172666 PMCID: PMC8973973 DOI: 10.1080/21655979.2022.2037363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/02/2022] Open
Abstract
Co-microencapsulation is a growing technique in the food industry because it is a technique that, under the same fundamentals of microencapsulation, allows the generation of microcapsules with a longer shelf life, using a smaller number of encapsulating materials and a smaller amount of active compounds, while having a greater beneficial activity. This responds to consumer demand for higher quality foods that limit the use of ingredients with low nutritional content and provide beneficial health effects, such as probiotics, prebiotics, vitamins, fatty acids, and compounds with antioxidant activity. The combination of two or more active compounds that achieve a synergy between them and between the encapsulating materials offers an advantage over the well-known microencapsulation. Among the main active compounds used in this process are probiotics, prebiotics, fatty acids, and polyphenols, the main combination being that of probiotics with one of the other active compounds that enhances their benefits. The present review discusses the advantages and disadvantages of the different encapsulating materials and techniques used to obtain co-microencapsulants, where the main result is a higher survival of probiotics, higher stability of the active compounds and a more controlled release, which can lead to the generation of new foods, food supplements, or therapeutic foods for the treatment of common ailments.
Collapse
Affiliation(s)
- Iván A. Niño-Vásquez
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Diana Muñiz-Márquez
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles. Ciudad Valles, Slp, México, Ciudad Valles, México
| | - Juan A. Ascacio-Valdés
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Juan Carlos Contreras-Esquivel
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Cristóbal N. Aguilar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Raúl Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Adriana C. Flores-Gallegos
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| |
Collapse
|
132
|
Tran TT, McCullum R, Vuong Q. Incorporation of fruit by-products on edible seaweed based films: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2042556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Thuy T.B. Tran
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
- Faculty of Food Technology, Nha Trang University, Khanh Hoa, Vietnam
| | - Rebecca McCullum
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| | - Quan Vuong
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| |
Collapse
|
133
|
Single and Combined Effect of Mild-Heat Treatment and Alginate Coatings on Quality Preservation of Minimally Processed Bunching Green Onions. Foods 2022; 11:foods11050641. [PMID: 35267274 PMCID: PMC8909205 DOI: 10.3390/foods11050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
Bunching green onion is an Allium species that has been widely used in food flavorings and seasonings. This vegetable experiences a rapid loss of quality during storage due to physiological changes and microbial spoilage. In the current work, the single and combined effect of mild-heat treatment (55 °C for 60 s) and alginate edible coatings on the quality preservation of minimally processed bunching green onions was studied. Control and treated samples were stored at 4 °C for 15 days and examined periodically in terms of their respiration rate, weight loss, pH, soluble solids content, firmness, total polyphenol content, antioxidant activity, microbial count, decay ratio, and overall visual quality. The results showed that the combination of mild heat and alginate edible coatings was the most effective approach to slow down the respiration rate and the incidence of decay in the minimally processed bunching green onions. In addition, the treatments with alginate coating alone or combined with mild-heat treatment showed the best performance for maintaining the overall visual quality of the products during the storage.
Collapse
|
134
|
Aydin G, Zorlu EB. Characterisation and Antibacterial Properties of Novel Biodegradable Films Based on Alginate and Roselle ( Hibiscus sabdariffa L.) Extract. WASTE AND BIOMASS VALORIZATION 2022; 13:2991-3002. [PMID: 35222746 PMCID: PMC8856933 DOI: 10.1007/s12649-022-01710-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
Composite films were prepared with alginate and roselle extract (HE) at different concentrations (1%, 3%, and 5% w/v) via solvent casting technique and analyzed in terms of physical, mechanical, and antibacterial properties. The incorporation of HE into alginate films resulted in rough and heterogeneous surface characteristics with increasing concentrations of HE. The thickness and water vapor permeability of alginate-HE composite films were significantly higher (p < 0.05) compared to pure alginate films. Moreover, water content, solubility, swelling, tensile strength, and elongation at break value of the composite films decreased (p < 0.05) with increasing concentrations of the extract. FTIR spectra revealed shifts and intensity variations in the composite films and the formation of new peaks suggesting a possible interaction between alginate and HE. Alginate-HE films exhibited good antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antibacterial effect of the films, more pronounced against Gram-positive bacteria, increased with higher amounts of HE. The resulting films may be utilised as new biodegradable, antibacterial films in the food packaging industry to prolong shelf life and preserve food safety. Graphical Abstract Supplementary Information The online version of this article (10.1007/s12649-022-01710-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gulsum Aydin
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| | - Elif Busra Zorlu
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
135
|
Martínez-Molina EC, Freile-Pelegrín Y, Ovando-Chacón SL, Gutiérrez-Miceli FA, Ruiz-Cabrera MÁ, Grajales-Lagunes A, Luján-Hidalgo MC, Abud-Archila M. Development and characterization of alginate-based edible film from Sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01156-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
|
137
|
Jayakody MM, Vanniarachchy MPG, Wijesekara I. Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01277-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
138
|
Cloete L, Picot-Allain C, Ramasawmy B, Neetoo H, Ramful-Baboolall D, Emmambux MN. Drivers and Barriers for Commercial Uptake of Edible Coatings for Fresh Fruits and Vegetables Industry- A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Liza Cloete
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Carene Picot-Allain
- Agricultural Production and Systems Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Agricultural Production and Systems Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Hudaa Neetoo
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Deena Ramful-Baboolall
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
139
|
|
140
|
Characterization of biodegradable films based on extracellular polymeric substances extracted from the thermophilic microalga Graesiella sp. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
141
|
Pereira NRL, Lopes B, Fagundes IV, de Moraes FM, Morisso FDP, Parma GOC, Zepon KM, Magnago RF. Bio-packaging based on cellulose acetate from banana pseudostem and containing Butia catarinensis extracts. Int J Biol Macromol 2022; 194:32-41. [PMID: 34863831 DOI: 10.1016/j.ijbiomac.2021.11.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 01/10/2023]
Abstract
Banana (Musa acuminata) pseudostem cellulose was extracted and acetylated (CA) to prepare membranes with potential use as bio-packages. The CA membrane was embedded by Butia seed (CA-BS) or Butia pulp (CA-BP) extracts obtained from Butia catarinenses (Butia). The produced CA, CA-BS, and CA-BP membranes were evaluated for their physical-chemical, mechanical, thermal, and antibacterial properties. The process for obtaining the cellulose yielded a material with about 92.17% cellulose (DS = 2.85). The purity, cellulose degree acetylation, and the incorporation of Butia extracts into the membranes were confirmed by FTIR. The CA-BS and CA-BP membranes showed a smaller contact angle and higher swelling ratio than the CA membrane. Furthermore, Butia seed or pulp extracts reduced the elastic modulus and deformation at break compared to the CA membrane. The DSC analysis suggested the compatibility between sections and the CA matrix, whereas the TGA analysis confirmed the thermal stability of the membranes. Moreover, less than 1% of the Butia seed and pulp extracts were put into a food simulant media from the membrane. Finally, the CA-BS and CA-BP membranes could inhibit the growth of Staphylococcus aureus and Escherichia coli on their surface, confirming the potential use of these membranes as bio-packaging for food preservation.
Collapse
Affiliation(s)
- Nathan Roberto Lohn Pereira
- Postgraduate program in Environmental Sciences and Chemical Engineering, Instituto Ânima, Universidade do Sul de Santa Catarina, Av. Pedra Branca, 25 - Cidade Universitária, 88137-270 Palhoça, SC, Brazil
| | - Bruna Lopes
- Postgraduate program in Environmental Sciences and Chemical Engineering, Instituto Ânima, Universidade do Sul de Santa Catarina, Av. Pedra Branca, 25 - Cidade Universitária, 88137-270 Palhoça, SC, Brazil
| | - Igor Valezan Fagundes
- Postgraduate program in Environmental Sciences and Chemical Engineering, Instituto Ânima, Universidade do Sul de Santa Catarina, Av. Pedra Branca, 25 - Cidade Universitária, 88137-270 Palhoça, SC, Brazil
| | | | - Fernando Dal Pont Morisso
- Postgraduate in Materials Technology and Industrial Processes, Universidade Feevale, 93525-075 Novo Hamburgo, RS, Brazil
| | - Gabriel Oscar Cremona Parma
- Postgraduate program in Environmental Sciences and Chemical Engineering, Instituto Ânima, Universidade do Sul de Santa Catarina, Av. Pedra Branca, 25 - Cidade Universitária, 88137-270 Palhoça, SC, Brazil
| | - Karine Modolon Zepon
- Postgraduate program in Environmental Sciences and Chemical Engineering, Instituto Ânima, Universidade do Sul de Santa Catarina, Av. Pedra Branca, 25 - Cidade Universitária, 88137-270 Palhoça, SC, Brazil
| | - Rachel Faverzani Magnago
- Postgraduate program in Environmental Sciences and Chemical Engineering, Instituto Ânima, Universidade do Sul de Santa Catarina, Av. Pedra Branca, 25 - Cidade Universitária, 88137-270 Palhoça, SC, Brazil.
| |
Collapse
|
142
|
Natural Polymers Used in Edible Food Packaging—History, Function and Application Trends as a Sustainable Alternative to Synthetic Plastic. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides3010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.
Collapse
|
143
|
Polysaccharide-Based Active Coatings Incorporated with Bioactive Compounds for Reducing Postharvest Losses of Fresh Fruits. COATINGS 2021. [DOI: 10.3390/coatings12010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review reports recently published research related to the application of polysaccharide-based biodegradable and edible coatings (BECs) fortified with bioactive compounds obtained from plant essential oils (EOs) and phenolic compounds of plant extracts. Combinations of polysaccharides such as starches, pectin, alginate, cellulose derivatives, and chitosan with active compounds obtained from clove, lemon, cinnamon, lavender, oregano, and peppermint have been documented as potential candidates for biologically active coating materials for retardation of quality changes in fresh fruits. Additionally, polysaccharide-based active coatings supplemented with plant extracts such as cashew leaves, pomegranate peel, red roselle, apple fiber, and green tea extracts rich in phenolic compounds and their derivatives have been reported to be excellent substituents to replace chemically formulated wax coatings. Moreover, EOs and plant polyphenolics including alcohols, aldehydes, ketones phenols, organic acids, terpenes, and esters contain hydroxyl functional groups that contribute bioactivity to BECs against oxidation and reduction of microbial load in fresh fruits. Therefore, BECs enriched with active compounds from EOs and plant extracts minimize physiological and microbial deterioration by reducing moisture loss, softening of flesh, ripening, and decay caused by pathogenic bacterial strains, mold, or yeast rots, respectively. As a result, shelf life of fresh fruits can be extended by employing active polysaccharide coatings supplemented with EOs and plant extracts prior to postharvest storage.
Collapse
|
144
|
Hamed I, Jakobsen AN, Lerfall J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr Rev Food Sci Food Saf 2021; 21:198-226. [PMID: 34907649 DOI: 10.1111/1541-4337.12870] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
The global food processing industries represent a challenge and a risk to the environment due to the poor handling of residues, which are often discarded as waste without being used in further sidestreams. Although some part of this biomass is utilized, large quantities are, however, still under- or unutilized despite these byproducts being a rich resource of valuable compounds. These biowastes contain biopolymers and other compounds such as proteins, polysaccharides, lipids, pigments, micronutrients, and minerals with good nutritional values and active biological properties with applications in various fields including the development of sustainable food packaging. This review offers an update on the recent advancement of food byproducts recycling and upgrading toward the production of food packaging materials, which could be edible, (bio)degradable, and act as carriers of biobased active agents such as antimicrobials, antioxidants, flavoring additives, and health-promoting compounds. This should be a global initiative to promote the well-being of humans and achieve sustainability while respecting the ecological boundaries of our planet. Edible films and coatings formulations based on biopolymers and active compounds extracted from biowastes offer great opportunities to decrease the devastating overuse of plastic-based packaging. It has become evident that a transition from a fuel-based to a circular bio-based economy is potentially beneficial. Therefore, the exploitation of food discards within the context of a zero-waste biorefinery approach would improve waste management by minimizing its generation, reduce pollution, and provide value-added compounds. Most importantly, the development of edible packaging materials from food byproducts does not compete with food resources, and it also helps decrease our dependency on petroleum-based products. Practical Application Almost 99% of current plastics are petroleum-based, and their continuous use has been devastating to the planet as plastic-derived components have been detected in all trophic levels. Besides, the increasing amounts of food by-products are a socioeconomic and environmental challenge, and halving food loss and waste and turning it into valuable products has become necessary to achieve sustainability and economic circularity. The development of new packaging systems such as edible materials could be one of the solutions to limit the use of persistent plastics. Edible films and coatings by-products-based could also enhance food packaging performance due to their compounds' bioactivities.
Collapse
Affiliation(s)
- Imen Hamed
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
145
|
Morinval A, Averous L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis Morinval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| |
Collapse
|
146
|
Use of edible alginate and limonene-liposome coatings for shelf-life improvement of blackberries. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
147
|
Marangoni Júnior L, Silva RGD, Vieira RP, Alves RMV. Water vapor sorption and permeability of sustainable alginate/collagen/SiO2 composite films. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
148
|
Abstract
Edible coatings, including green polymers are used frequently in the food industry to improve and preserve the quality of foods. Green polymers are defined as biodegradable polymers from biomass resources or synthetic routes and microbial origin that are formed by mono- or multilayer structures. They are used to improve the technological properties without compromising the food quality, even with the purpose of inhibiting lipid oxidation or reducing metmyoglobin formation in fresh meat, thereby contributing to the final sensory attributes of the food and meat products. Green polymers can also serve as nutrient-delivery carriers in meat and meat products. This review focuses on various types of bio-based biodegradable polymers and their preparation techniques and applications in meat preservation as a part of active and smart packaging. It also outlines the impact of biodegradable polymer films or coatings reinforced with fillers, either natural or synthesized, via the green route in enhancing the physicochemical, mechanical, antimicrobial, and antioxidant properties for extending shelf-life. The interaction of the package with meat contact surfaces and the advanced polymer composite sensors for meat toxicity detection are further considered and discussed. In addition, this review addresses the research gaps and challenges of the current packaging systems, including coatings where green polymers are used. Coatings from renewable resources are seen as an emerging technology that is worthy of further investigation toward sustainable packaging of food and meat products.
Collapse
|
149
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
150
|
An YH, Kim SH. Facile Fabrication of Three-Dimensional Hydrogel Film with Complex Tissue Morphology. Bioengineering (Basel) 2021; 8:bioengineering8110164. [PMID: 34821730 PMCID: PMC8614799 DOI: 10.3390/bioengineering8110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we proposed a simple and easy method for fabricating a three-dimensional (3D) structure that can recapitulate the morphology of a tissue surface and deliver biological molecules into complex-shaped target tissues. To fabricate the 3D hydrogel film structure, we utilized a direct tissue casting method that can recapitulate tissue structure in micro-/macroscale using polydimethylsiloxane (PDMS). A replica 3D negative mold was manufactured by a polyurethane acrylate (PUA)-based master mold. Then, we poured the catechol-conjugated alginate (ALG-C) solution into the mold and evaporated it to form a dried film, followed by crosslinking the film using calcium chloride. The ALG-C hydrogel film had a tensile modulus of 725.2 ± 123.4 kPa and maintained over 95% of initial weight after 1 week without significant degradation. The ALG-C film captured over 4.5 times as much macromolecule (FITC-dextran) compared to alginate film (ALG). The cardiomyoblast cells exhibited high cell viability over 95% on ALG-C film. Moreover, the ALG-C film had about 70% of surface-bound lentivirus (1% in ALG film), which finally exhibited much higher viral transfection efficiency of GFP protein to C2C12 cells on the film than ALG film. In conclusion, we demonstrated a 3D film structure of biofunctionalized hydrogel for substrate-mediated drug delivery, and this approach could be utilized to recapitulate the complex-shaped tissues.
Collapse
Affiliation(s)
- Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Korea;
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK 21 FOUR), Dong-A University, Busan 49315, Korea
- Correspondence:
| |
Collapse
|