101
|
Dassoff ES, Guo JX, Liu Y, Wang SC, Li YO. Potential development of non-synthetic food additives from orange processing by-products—a review. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Citrus is the largest fruit crop worldwide. Meanwhile, oranges account for 60 per cent of the total, with their main application in juice production. During orange juice production, only about 50 per cent of the fresh orange weight is transformed into juice, with the remaining 50 per cent comprised of residue (peel, pulp, seeds, orange leaves and whole orange fruits that do not reach the quality requirements). With the resulting tons of orange by-products, there has been an initiative to research possible ways to reutilize and revalorize citrus waste. Orange pomace, the by-product from juicing process, is currently used to extract the essential oils for fragrance and flavor, and a majority of the waste is used as cattle feed; however, these applications do not account for all of the waste or capture all of its potential value. Meanwhile, these by-products are put into landfills at the owner’s expense, and contribute to global warming through carbon emissions. On the other hand, orange by-products still contain many useful nutraceutical components, such as dietary fiber and phytochemicals, which could be utilized for value-added ingredients and new product development. Some research approaches in this area include the production of organic fertilizers and biofuels, or the extraction of essential oils, pectins, and antioxidant compounds. There is little information in the literature and in the food industry in terms of utilizing the orange pomace directly or with some simple treatments. Orange pomace may be used for food product development as a ‘clean-label’, non-synthetic preservative, which rationalizes this review.
Collapse
Affiliation(s)
- Erik S Dassoff
- Department of Nutrition & Food Science, California State Polytechnic University, Pomona, CA, USA
| | - Jonathan X Guo
- Department of Nutrition & Food Science, California State Polytechnic University, Pomona, CA, USA
| | - Yan Liu
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, CA, USA
| | - Selina C Wang
- Department of Food Science & Technology, University of California, Davis, Davis, CA, USA
| | - Yao Olive Li
- Department of Nutrition & Food Science, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
102
|
Effect of ultrasound, high-pressure processing, and enzymatic hydrolysis on carbohydrate hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon) flavedo. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
103
|
Improved Sugar Recovery from Orange Peel by Statistical Optimization of Thermo-Alkaline Pretreatment. Processes (Basel) 2021. [DOI: 10.3390/pr9030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Orange peel, which is a by-product of oranges, contains carbohydrates that can be converted into sugars and used in the fermentation process. In this study, the thermal alkaline pretreatment process was chosen because of its simplicity and lesser reaction time. In addition, the reaction factors were optimized using response surface methodology. The determined optimal conditions were as follows: 60.1 g/L orange peels loading, 3% KOH and 30 min. Under the optimal conditions, glucan content (GC) and enzymatic digestibility (ED) were found to be 32.8% and 87.8%, respectively. Enzymatic hydrolysis was performed with pretreated and non-pretreated orange peels using three types of enzyme complex (cellulase, cellobiase and xylanase). The minimum concentrations of enzyme complex required to obtain maximum ED were 30 FPU (filter paper unit), 15 CBU (cellobiase unit), and 30 XNU (xylanase unit) based on 1 g-biomass. Additionally, ED of the treated group was approximately 3.7-fold higher than that of the control group. In conclusion, the use of orange peel as a feedstock for biorefinery can be a strategic solution to reduce wastage of resources and produce sustainable bioproducts.
Collapse
|
104
|
Teigiserova DA, Tiruta-Barna L, Ahmadi A, Hamelin L, Thomsen M. A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111832. [PMID: 33360259 DOI: 10.1016/j.jenvman.2020.111832] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
This study presents a critical overview of reported essential oil (EO) extractions from citrus peel wastes (CPW), including harmonized data on the various citrus species and cultivars. Harmonization is vital to enable sustainable management practices. The review only includes eco-efficient extraction techniques. In total, the review contains 66 quantified examples using i) mechanical cold press ii) thermal extraction with water or steam media iii) thermal microwave-assisted extraction iv) other innovative methods (such as ultrasound). The technologies were assessed for their potential use in cascading production to achieve economies of scope, particularly considering the use of extraction residues for subsequent fermentation to produce various products from energy carriers to enzymes. Two techniques were found insufficient for direct use in fermentation. Cold press extracts an inadequate amount of EO (average yield 2.85% DW) to ensure suitable fermentation, while solvent extraction contaminates the residues for its subsequent use. Extractions using water media, such as hydrodistillation and microwave-assisted hydrodistillation (average EO yield 2.87% DW), are feasible for the liquid-based fermentation processes, such as submerged fermentation. Steam extraction is feasible for any type of fermentation. Our review highlighted solvent-free microwave extraction (average EO yield 5.29% DW) as the most effective method, which provides a high yield in a short extraction time. We also uncovered and discussed several inconsistencies in existing yields and energy consumption published data.
Collapse
Affiliation(s)
- Dominika Alexa Teigiserova
- Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Postboks 358, DK-4000, Roskilde, Denmark; Aarhus University Centre for Circular Bioeconomy, Denmark.
| | - Ligia Tiruta-Barna
- Toulouse Biotechnology Institute (TBI), INSA, INRAE UMR792, and CNRS UMR5504, Federal University of Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.
| | - Aras Ahmadi
- Toulouse Biotechnology Institute (TBI), INSA, INRAE UMR792, and CNRS UMR5504, Federal University of Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.
| | - Lorie Hamelin
- Toulouse Biotechnology Institute (TBI), INSA, INRAE UMR792, and CNRS UMR5504, Federal University of Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France.
| | - Marianne Thomsen
- Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Postboks 358, DK-4000, Roskilde, Denmark; Aarhus University Centre for Circular Bioeconomy, Denmark.
| |
Collapse
|
105
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
106
|
Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation. Processes (Basel) 2021. [DOI: 10.3390/pr9020220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Citrus is the largest grown fruit crop on the globe with an annual production of ~110–124 million tons. Approximately, 45–55% of the whole fruit post-processing is generally discarded as waste by the food processing industries. The waste is a huge problem to the environment in terms of land and water pollution along with displeasure from aesthetic viewpoint and spread of diseases owing to its huge content of fermentable sugars. The waste can be utilized as a raw material feedstock for producing a number of valuable chemicals and products, such as bioethanol, biogas, bio-oil, organic acids, enzymes, and so on. The production of these chemicals from waste biomass gives an inexpensive alternative to the harsh chemicals used during industrial synthesis processes as well as the possibility of controlling pollution from the waste discarded to the environment. The derived chemicals can be further utilized in the production of industrially important chemicals, as solvents and building blocks of newer chemicals. Furthermore, organic acids, pectin, enzymes, prebiotics, etc., derived from citrus wastes have an edge over their synthetic counterparts in practical applications in the food processing and pharmaceutical industries.
Collapse
|
107
|
Ishfaq M, Akhtar B, Muhammad F, Sharif A, Akhtar MF, Hamid I, Sohail K, Muhammad H. Antioxidant and Wound Healing Potential of Essential Oil from Citrus reticulata Peel and Its Chemical Characterization. Curr Pharm Biotechnol 2021; 22:1114-1121. [PMID: 32957881 DOI: 10.2174/1389201021999200918102123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fruit peels are considered as waste and contribute to a major proportion of the biomass. They can be a good source of various therapeutic benefits. Peels biomass of citrus fruits is usually considered as garbage. Such peels may have many important and valuable medicinal components with pharmacological activities. Citrus reticulata, (Rutaceae family, local name tangerine) is a local seasonal fruit in Pakistan, a very good example of wastage of its peels. OBJECTIVE The study is based on the exploration of a citrus fruit peel derived essential oil, its chemical characterization, identification of various bioactive components and the exploration of pharmacological potentials (antibacterial and wound healing activity). METHODS Essential oil was recovered by hydro-distillation of freshly collected peels. Chemical constituents of oil were determined by Gas Chromatography-Mass Spectroscopy (GC-MS) analysis. Antioxidant activities were evaluated by total phenolic contents, total flavonoid content, DPPH scavenging activity and reducing power assay. Antibacterial activity was determined using disc diffusion assay. In vivo wound healing potential was determined in rabbits after topical administration of oil. Wound scoring was calculated followed by histological study. RESULTS GC-MS analysis showed the presence of various components with the greatest proportion of D-Limonene (89.31%). Total flavonoid and phenolic contents were found to be 14.63 ± 0.95 mg CE/g and 17.03 ± 3.24 mg GAE/g respectively, while DPPH activity was found to be 73.32%. A better antibacterial activity was shown against E. coli. In vivo studies showed significant reduction in wound diameter in essential oil treatment groups. Further, the essential oil was found non-irritant in draize scoring. CONCLUSION The study concluded that essential oil of this fruit peel might be used for antibacterial and wound healing purposes.
Collapse
Affiliation(s)
- Maham Ishfaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad F Akhtar
- Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Lahore campus, Pakistan
| | - Irfan Hamid
- Cadson College of Pharmacy, Kharian, Pakistan
| | - Kashif Sohail
- Akson College of Health Sciences, Mirpur, Azad Jammu Kashmir, Pakistan
| | - Hosh Muhammad
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
108
|
Venkatachalam CD, Sengottian M, Ravichandran SR. Green synthesis of nanoparticles—metals and their oxides. NANOMATERIALS 2021:79-96. [DOI: 10.1016/b978-0-12-822401-4.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
109
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
110
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
111
|
Musara C, Aladejana EB, Mudyiwa SM. Review of the nutritional composition, medicinal, phytochemical and pharmacological properties of Citrus reticulata Blanco (Rutaceae). F1000Res 2020. [DOI: 10.12688/f1000research.27208.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Citrus reticulata Blanco is a moderately-sized fruit tree widely used as herbal medicine worldwide. The nutritional composition, medicinal uses, phytochemistry and pharmacological properties of C. reticulata were critically reviewed in the current study. The literature linked to C. reticulata properties was obtained from multiple internet sources including Elsevier, Google Scholar, SciFinder, Web of Science, Pubmed, BMC, Science Direct, and Scopus. Ethnopharmacological research identified antioxidants such as vitamin C, carotenoids and phenolic compounds, also a source of sugars, organic acids, amino acids, pectins, minerals and volatile organic compounds as components of C. reticulata. As a medicinal plant, C. reticulata is used for the treatment of dyspepsia, gastro-intestinal distension, cough with profuse phlegm, hiccup and vomiting. The crude extracts of C. reticulata fruits have depicted anti-inflammatory, anticholesterolemic, analgesic, antiasthmatic, antiscorbutic, antiseptic, antitussive, carminative, expectorant, stomachic. With more people becoming nutrition-conscious, there has been an increase in the demand for the use of citrus fruits and their by-products as traditional medicines for conventional healthcare in developing countries.
Collapse
|
112
|
Martínez-Abad A, Ramos M, Hamzaoui M, Kohnen S, Jiménez A, Garrigós MC. Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods 2020; 9:E1493. [PMID: 33086617 PMCID: PMC7603390 DOI: 10.3390/foods9101493] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
In this work, a cascade approach to obtain different valuable fractions from lemon peels waste was optimised using microwave-assisted processes. Microwave-assisted hydrodistillation (MAHD) with a Clevenger apparatus was firstly used to obtain the lemon essential oil (LEO). The remaining residue was then submitted to microwave-assisted extraction (MAE) to extract the lemon pigment (LP). A Box-Behnken design was used to evaluate the influence of ethanol concentration, temperature and time in LP extraction in terms of extraction yield and colour intensity. Optimal extraction conditions for LP were 80% (v/v) ethanol, 80 °C and 50 min, with a liquid-to-solid ratio of 1:10. The obtained yields for LEO and LP were around 2 wt.% and 6 wt.%, respectively. The composition of LEO was analysed by gas chromatography with flame ionisation detection (GC-FID), and limonene (65.082 wt.%), β-pinene (14.517 wt.%) and γ-terpinene (9.743 wt.%) were mainly identified. LP was purified by using different Amberlite adsorption resins (XAD4, XAD7HP and XAD16N), showing XAD16N the best adsorption capacity. Enrichment factors of 4.3, 4.5 and 5.0 were found for eriocitrin, diosmin and hesperidin, respectively, which were detected as the main components in LP by ultra-high-performance liquid chromatography-diode array detector-tandem mass spectrometry (UPLC-DAD-MS) analysis, with final concentrations of 4.728 wt.%, 7.368 wt.% and 2.658 wt.%, respectively. Successful antimicrobial capacity against Escherichia coli and Staphylococcus aureus was obtained for LEO. The results from this work showed the potential of applying a cascading approach based on microwave-assisted processes to valorise lemon wastes, obtaining natural pigments and antimicrobials to be applied in food, cosmetic and polymer industries.
Collapse
Affiliation(s)
- Antonio Martínez-Abad
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, ES-03690 San Vicente del Raspeig, Alicante, Spain; (A.M.-A.); (M.R.); (A.J.)
| | - Marina Ramos
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, ES-03690 San Vicente del Raspeig, Alicante, Spain; (A.M.-A.); (M.R.); (A.J.)
| | - Mahmoud Hamzaoui
- Biomass Valorisation Platform, Celabor scrl, Avenue du Parc 38, 4650 Herve, Belgium; (M.H.); (S.K.)
| | - Stephane Kohnen
- Biomass Valorisation Platform, Celabor scrl, Avenue du Parc 38, 4650 Herve, Belgium; (M.H.); (S.K.)
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, ES-03690 San Vicente del Raspeig, Alicante, Spain; (A.M.-A.); (M.R.); (A.J.)
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, ES-03690 San Vicente del Raspeig, Alicante, Spain; (A.M.-A.); (M.R.); (A.J.)
| |
Collapse
|
113
|
Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. SUSTAINABILITY 2020. [DOI: 10.3390/su12135401] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agri-food industries generate enormous amounts of fruit and vegetable processing wastes, which opens up an important research area aimed towards minimizing and managing them efficiently to support zero wastes and/or circular economy concept. These wastes remain underutilized owing to a lack of appropriate processing technologies vital for their efficient valorization, especially for recovery of health beneficial bioactives like dietary fibers. Dietary fiber finds wide applications in food and pharmaceutical industries and holds high promise as a potential food additive and/or as a functional food ingredient to meet the techno-functional purposes important for developing health-promoting value-added products. Based on this, the present review has been designed to support ‘zero waste’ and ‘waste to wealth’ concepts. In addition, the focus revolves around providing updated information on various sustainability challenges incurred towards valorization of fruit and vegetable wastes for extraction of health promoting dietary fibers.
Collapse
|
114
|
Differences in the composition of phenolic compounds, carotenoids, and volatiles between juice and pomace of four citrus fruits from Southern Italy. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03550-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
115
|
Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
116
|
Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E357. [PMID: 32168877 PMCID: PMC7154898 DOI: 10.3390/plants9030357] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/β-pinene, sabinene, β-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.
Collapse
Affiliation(s)
- Himashree Bora
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood, VIC 3125, Australia;
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| |
Collapse
|
117
|
Mahato N, Sharma K, Sinha M, Baral ER, Koteswararao R, Dhyani A, Hwan Cho M, Cho S. Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. J Adv Res 2020; 23:61-82. [PMID: 32082624 DOI: 10.1016/j.jare.2020.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/26/2023] Open
Abstract
Citrus waste includes peels, pulp and membrane residue and seeds, constituting approximately 40-60% of the whole fruit. This amount exceeds ~110-120 million tons annually worldwide. Recent investigations have been focused on developing newer techniques to explore various applications of the chemicals obtained from the citrus wastes. The organic acids obtained from citrus waste can be utilized in developing biodegradable polymers and functional materials for food processing, chemical and pharmaceutical industries. The peel microstructures have been investigated to create bio-inspired materials. The peel residue can be processed to produce fibers and fabrics, 3D printed materials, carbon nanodots for bio-imaging, energy storage materials and nanostructured materials for various applications so as to leave no waste at all. The article reviews recent advances in scientific investigations to produce valuable products from citrus wastes and possibilities of innovating future materials and promote zero remaining waste for a cleaner environment for future generation.
Collapse
Affiliation(s)
- Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kavita Sharma
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.,Department of Chemistry, Idaho State University, Pocatello 83209, ID, USA
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India
| | - Ek Raj Baral
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakoti Koteswararao
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India
| | - Archana Dhyani
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sunghun Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|