101
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
102
|
Greig NH, Lecca D, Hsueh SC, Nogueras-Ortiz C, Kapogiannis D, Tweedie D, Glotfelty EJ, Becker RE, Chiang YH, Hoffer BJ. (-)-Phenserine tartrate (PhenT) as a treatment for traumatic brain injury. CNS Neurosci Ther 2019; 26:636-649. [PMID: 31828969 PMCID: PMC7248544 DOI: 10.1111/cns.13274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Aim Traumatic brain injury (TBI) is one of the most common causes of morbidity and mortality of both young adults and the elderly, and is a key contributing factor in about 30% of all injury‐associated deaths occurring within the United States of America. Albeit substantial impact has been made to improve our comprehension of the mechanisms that underpin the primary and secondary injury stages initiated by a TBI incident, this knowledge has yet to successfully translate into the development of an effective TBI pharmacological treatment. Developing consent suggests that a TBI can concomitantly trigger multiple TBI‐linked cascades that then progress in parallel and, if correct, the multifactorial nature of TBI would make the discovery of a single effective mechanism‐targeted drug unlikely. Discussion We review recent data indicating that the small molecular weight drug (−)‐phenserine tartrate (PhenT), originally developed for Alzheimer's disease (AD), effectively inhibits a broad range of mechanisms pertinent to mild (m) and moderate (mod)TBI, which in combination underpin the ensuing cognitive and motor impairments. In cellular and animal models at clinically translatable doses, PhenT mitigated mTBI‐ and modTBI‐induced programmed neuronal cell death (PNCD), oxidative stress, glutamate excitotoxicity, neuroinflammation, and effectively reversed injury‐induced gene pathways leading to chronic neurodegeneration. In addition to proving efficacious in well‐characterized animal TBI models, significantly mitigating cognitive and motor impairments, the drug also has demonstrated neuroprotective actions against ischemic stroke and the organophosphorus nerve agent and chemical weapon, soman. Conclusion In the light of its tolerability in AD clinical trials, PhenT is an agent that can be fast‐tracked for evaluation in not only civilian TBI, but also as a potentially protective agent in battlefield conditions where TBI and chemical weapon exposure are increasingly jointly occurring.
Collapse
Affiliation(s)
- Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Daniela Lecca
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shih-Chang Hsueh
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Carlos Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elliot J Glotfelty
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Robert E Becker
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,Aristea Translational Medicine Corporation, Park City, UT, USA
| | - Yung-Hsiao Chiang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
103
|
Venturini A, Passalacqua M, Pelassa S, Pastorino F, Tedesco M, Cortese K, Gagliani MC, Leo G, Maura G, Guidolin D, Agnati LF, Marcoli M, Cervetto C. Exosomes From Astrocyte Processes: Signaling to Neurons. Front Pharmacol 2019; 10:1452. [PMID: 31849688 PMCID: PMC6901013 DOI: 10.3389/fphar.2019.01452] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022] Open
Abstract
It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or long-distance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.
Collapse
Affiliation(s)
- Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, and Italian Institute of Biostructures and Biosystems, University of Genova, Genova, Italy
| | - Simone Pelassa
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Mariateresa Tedesco
- 3BrainAG, Wädenswil, Switzerland.,Department of Informatics, Bioengineering, Robotics and System Engineering DIBRIS, University of Genova, Genova, Italy
| | - Katia Cortese
- Section of Anatomy, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Maria Cristina Gagliani
- Section of Anatomy, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Giuseppina Leo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Diego Guidolin
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Luigi F Agnati
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Genova, Italy
| | - Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| |
Collapse
|
104
|
Exosomes Mediate Hippocampal and Cortical Neuronal Injury Induced by Hepatic Ischemia-Reperfusion Injury through Activating Pyroptosis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3753485. [PMID: 31814872 PMCID: PMC6878784 DOI: 10.1155/2019/3753485] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
Background The neuronal injury and cognitive dysfunction after liver transplantation have severe effects on the prognosis and life quality of patients. Accumulating evidence suggests that both exosomes and pyroptosis could participate in hepatic ischemia-reperfusion injury (HIRI) and play key roles in neuronal death. However, the link between exosomes and neuronal pyroptosis in HIRI awaits further investigation. Methods After establishing the HIRI rat models, we primarily studied the role of pyroptosis in hippocampal and cortical neuron injury through detecting NOD-like receptor protein 3 (NLRP3), pro-caspase-1, cleaved-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), gasdermin D (GSDMD), interleukin-1beta (IL-1β), and interleukin-18 (IL-18) expressions with western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Then, we intravenously injected normal male rats with exosomes isolated from the sera of HIRI-challenged rats and pretreated rats with MCC950, a specific inhibitor of NLRP3, and carried out the same assay. We also detected the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampal and cortical tissues. Results The results indicated that NLRP3 inflammasome and caspase-1-dependent pyroptosis were activated in the hippocampus and cortex of HIRI rats. Furthermore, serum-derived exosomes from HIRI-challenged rats not only had the ability to cross the blood-brain barrier (BBB) but also had the similar effects on neuronal pyroptosis. Moreover, ROS and MDA productions were induced in the HIRI and exosome-challenged groups. In addition, to some degree, MCC950 could alleviate HIRI-mediated hippocampal and cortical neuronal pyroptosis. Conclusion This study experimentally demonstrated that circulating exosomes play a critical role in HIRI-mediated hippocampal and cortical injury through regulating neuronal pyroptosis.
Collapse
|
105
|
Emerging Role of Genetic Alterations Affecting Exosome Biology in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20174113. [PMID: 31450727 PMCID: PMC6747137 DOI: 10.3390/ijms20174113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The abnormal deposition of proteins in brain tissue is a common feature of neurodegenerative diseases (NDs) often accompanied by the spread of mutated proteins, causing neuronal toxicity. Exosomes play a fundamental role on their releasing in extracellular space after endosomal pathway activation, allowing to remove protein aggregates by lysosomal degradation or their inclusion into multivesicular bodies (MVBs), besides promoting cellular cross-talk. The emerging evidence of pathogenic mutations associated to ND susceptibility, leading to impairment of exosome production and secretion, opens a new perspective on the mechanisms involved in neurodegeneration. Recent findings suggest to investigate the genetic mechanisms regulating the different exosome functions in central nervous system (CNS), to understand their role in the pathogenesis of NDs, addressing the identification of diagnostic and pharmacological targets. This review aims to summarize the mechanisms underlying exosome biogenesis, their molecular composition and functions in CNS, with a specific focus on the recent findings invoking a defective exosome biogenesis as a common biological feature of the major NDs, caused by genetic alterations. Further definition of the consequences of specific genetic mutations on exosome biogenesis and release will improve diagnostic and pharmacological studies in NDs.
Collapse
|
106
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
107
|
Standardized human bone marrow-derived stem cells infusion improves survival and recovery in a rat model of spinal cord injury. J Neurol Sci 2019; 402:16-29. [DOI: 10.1016/j.jns.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023]
|
108
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
109
|
Kalita-de Croft P, Straube J, Lim M, Al-Ejeh F, Lakhani SR, Saunus JM. Proteomic Analysis of the Breast Cancer Brain Metastasis Microenvironment. Int J Mol Sci 2019; 20:ijms20102524. [PMID: 31121957 PMCID: PMC6567270 DOI: 10.3390/ijms20102524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022] Open
Abstract
Patients with brain-metastatic breast cancer face a bleak prognosis marked by morbidity and premature death. A deeper understanding of molecular interactions in the metastatic brain tumour microenvironment may inform the development of new therapeutic strategies. In this study, triple-negative MDA-MB-231 breast cancer cells or PBS (modelling traumatic brain injury) were stereotactically injected into the cerebral cortex of NOD/SCID mice to model metastatic colonization. Brain cells were isolated from five tumour-associated samples and five controls (pooled uninvolved and injured tissue) by immunoaffinity chromatography, and proteomic profiles were compared using the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) discovery platform. Ontology and cell type biomarker enrichment analysis of the 125 differentially abundant proteins (p < 0.05) showed the changes largely represent cellular components involved in metabolic reprogramming and cell migration (min q = 4.59 × 10-5), with high-throughput PubMed text mining indicating they have been most frequently studied in the contexts of mitochondrial dysfunction, oxidative stress and autophagy. Analysis of mouse brain cell type-specific biomarkers suggested the changes were paralleled by increased proportions of microglia, mural cells and interneurons. Finally, we orthogonally validated three of the proteins in an independent xenograft cohort, and investigated their expression in craniotomy specimens from triple-negative metastatic breast cancer patients, using a combination of standard and fluorescent multiplex immunohistochemistry. This included 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), which is integral for gluconeogenic valine catabolism in the brain, and was strongly induced in both graft-associated brain tissue (13.5-fold by SWATH-MS; p = 7.2 × 10-4), and areas of tumour-associated, reactive gliosis in human clinical samples. HIBCH was also induced in the tumour compartment, with expression frequently localized to margins and haemorrhagic areas. These observations raise the possibility that catabolism of valine is an effective adaptation in metastatic cells able to access it, and that intermediates or products could be transferred from tumour-associated glia. Overall, our findings indicate that metabolic reprogramming dominates the proteomic landscape of graft-associated brain tissue in the intracranial MDA-MB-231 xenograft model. Brain-derived metabolic provisions could represent an exploitable dependency in breast cancer brain metastases.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| | - Malcolm Lim
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| | - Sunil R Lakhani
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
- Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston 4029, QLD, Australia.
| | - Jodi M Saunus
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| |
Collapse
|
110
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
111
|
Skalnikova HK, Bohuslavova B, Turnovcova K, Juhasova J, Juhas S, Rodinova M, Vodicka P. Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes 2019; 7:proteomes7020017. [PMID: 31027284 PMCID: PMC6630935 DOI: 10.3390/proteomes7020017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are a highly attractive subject of biomedical research as possible carriers of nucleic acid and protein biomarkers. EVs released to body fluids enable indirect access to inner organs by so-called "liquid biopsies". Obtaining a high-quality EV sample with minimum contaminants is crucial for proteomic analyses using LC-MS/MS or other techniques. However, the EV content in various body fluids largely differs, which may hamper subsequent analyses. Here, we present a comparison of extracellular vesicle yields from blood plasma, cerebrospinal fluid, and seminal plasma using an experimental pig model. Pigs are widely used in biomedical research as large animal models with anatomy and physiology close to those of humans and enable studies (e.g., of the nervous system) that are unfeasible in humans. EVs were isolated from body fluids by differential centrifugation followed by ultracentrifugation. EVs were characterized according to protein yields and to the quality of the isolated vesicles (e.g., size distribution, morphology, positivity for exosome markers). In our experimental setting, substantial differences in EV amounts were identified among body fluids, with the seminal plasma being the richest EV source. The yields of pellet proteins from ultracentrifugation of 1 mL of porcine body fluids may help to estimate body fluid input volumes to obtain sufficient samples for subsequent proteomic analyses.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Bozena Bohuslavova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Karolina Turnovcova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Marie Rodinova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12109 Prague, Czech Republic.
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
112
|
Wang X, Botchway BOA, Zhang Y, Yuan J, Liu X. Combinational Treatment of Bioscaffolds and Extracellular Vesicles in Spinal Cord Injury. Front Mol Neurosci 2019; 12:81. [PMID: 31031590 PMCID: PMC6474389 DOI: 10.3389/fnmol.2019.00081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) can result in an irreversible disability due to loss of sensorimotor function below the lesion. Presently, clinical treatments for SCI mainly include surgery, drugs and postoperative rehabilitation. The prospective roles of bioscaffolds and exosomes in several neurological diseases have been reported. Bioscaffolds can reconnect lesion gaps as well as transport cells and bioactive factors, which in turn can improve axonal and functional regeneration. Herein, we explicate the respective roles of bioscaffolds and exosomes in SCI, and elucidate on the usage of combinational therapy involving bioscaffolds and extracellular vesicles (EVs) in improving SCI.
Collapse
Affiliation(s)
- Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| |
Collapse
|