101
|
Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features. Br J Cancer 2019; 121:5-14. [PMID: 31110329 PMCID: PMC6738327 DOI: 10.1038/s41416-019-0479-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/03/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is a lethal disease, with fewer than 7% of patients surviving beyond 5 years following diagnosis. Immune responses are known to influence tumour progression. The dynamic interaction between cancer cells and immune cells in the tumour microenvironment (TME) can not only result in, or be influenced by, different tumour characteristics, but it can also lead to diverse mechanisms of immune evasion. At present, there is much interest in classifying pancreatic cancer according to its morphologic, genetic and immunologic features in order to understand the significant heterogeneity of this tumour type. Such information can contribute to the identification of highly needed novel prognostic and predictive biomarkers, and can be used for accurate patient stratification and therapy guidance. This review focuses on the characteristics of the local immune contexture of pancreatic ductal adenocarcinoma and the interaction between tumour cells and immune cells within the TME, by simultaneously taking into account the histomorphologic and genetic features of the tumours. The emerging opportunities for approaches that could predict the most-effective therapeutic modalities towards more targeted, personalised treatments to improve patient care are also discussed.
Collapse
|
102
|
Bazzichetto C, Conciatori F, Falcone I, Cognetti F, Milella M, Ciuffreda L. Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:5373580. [PMID: 31191652 PMCID: PMC6525927 DOI: 10.1155/2019/5373580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Cytokines are a family of soluble factors (Growth Factors (GFs), chemokines, angiogenic factors, and interferons), which regulate a wide range of mechanisms in both physiological and pathological conditions, such as tumor cell growth and progression, angiogenesis, and metastasis. In recent years, the growing interest in developing new cancer targeted therapies has been accompanied by the effort to characterize Tumor Microenvironment (TME) and Tumor-Stroma Interactions (TSI). The connection between tumor and stroma is now well established and, in the last decade, evidence from genetic, pharmacological, and epidemiological data supported the importance of microenvironment in tumor progression. However, several of the mechanisms behind TSI and their implication in tumor progression remain still unclear and it is crucial to establish their potential in determining pharmacological response. Many studies have demonstrated that cytokines network can profoundly affect TME, thus displaying potential therapeutic efficacy in both preclinical and clinical models. The goal of this review is to give an overview of the most relevant cytokines involved in colorectal and pancreatic cancer progression and their implication in drug response.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
103
|
Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF- β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1569638. [PMID: 31143769 PMCID: PMC6501259 DOI: 10.1155/2019/1569638] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. Microarray analysis showed that a total of 568 lncRNAs are differentially expressed in primary HLECs in the presence of TGF-β2 and MALAT1 is mostly significantly dysregulated lncRNAs, which is increased by nearly 17-fold. In addition, upregulation of MALAT1 and downregulation of miR-26a were detected in human posterior capsule opacification (PCO) attached LECs and the LECs obtained from patients with anterior polar cataracts by quantitative RT-PCR (qRT-PCR). Next, our results showed that TGF-β2 induces overexpression of EMT markers in primary HLECs via a MALAT1-dependent mechanism. The mechanism is that MALAT1 negatively regulates miR-26a and miR-26a directly targets Smad4 by luciferase reporter assays and RNA-binding protein immunoprecipitation assay. In summary, TGF-β2 induces MALAT1 overexpression, which in turn MALAT1 acts as a ceRNA targeting Smad4 by binding miR-26a and promotes the progression of EMT of LECs.
Collapse
|
104
|
Awaji M, Singh RK. Cancer-Associated Fibroblasts' Functional Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11030290. [PMID: 30832219 PMCID: PMC6468677 DOI: 10.3390/cancers11030290] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths in the USA. Desmoplasia and inflammation are two major hallmarks of PDAC. Desmoplasia, composed of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), and infiltrating immune and endothelial cells, acts as a biophysical barrier to hinder chemotherapy and actively contributes to tumor progression and metastasis. CAFs represent a multifunctional subset of PDAC microenvironment and contribute to tumor initiation and progression through ECM deposition and remodeling, as well as the secretion of paracrine factors. Attempts to resolve desmoplasia by targeting CAFs can render an adverse outcome, which is likely due to CAFs heterogeneity. Recent reports describe subsets of CAFs that assume more secretory functions, in addition to the typical myofibroblast phenotype. Here, we review the literature and describe the relationship between CAFs and inflammation and the role of the secretory-CAFs in PDAC.
Collapse
Affiliation(s)
- Mohammad Awaji
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985845 UNMC, Omaha, NE 68198-5845, USA.
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam 31444, Saudi Arabia.
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985845 UNMC, Omaha, NE 68198-5845, USA.
| |
Collapse
|
105
|
Woo W, Carey ET, Choi M. Spotlight on liposomal irinotecan for metastatic pancreatic cancer: patient selection and perspectives. Onco Targets Ther 2019; 12:1455-1463. [PMID: 30863113 PMCID: PMC6391121 DOI: 10.2147/ott.s167590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease, where the mortality closely matches increasing incidence. Pancreatic ductal adenocarcinoma (PDAC) is the most common histologic type that tends to metastasize early in tumor progression. For metastatic PDAC, gemcitabine had been the mainstay treatment for the past three decades. The treatment landscape has changed since 2010, and current first-line chemotherapy includes triplet drugs like FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin), and doublet agents like nab-paclitaxel and gemcitabine. Nanoliposomal encapsulated irinotecan (nal-IRI) was developed as a novel formulation to improve drug delivery, effectiveness, and limit toxicities. Nal-IRI, in combination with leucovorin-modulated fluorouracil (5-FU/LV), was found in a large randomized phase III clinical trial (NAPOLI-1) to significantly improve overall survival in patients who progressed on gemcitabine-based therapy. This review will focus on the value of using nal-IRI, toxicities, recent clinical experiences, and tools to improve patient outcomes in this setting.
Collapse
Affiliation(s)
- Wonhee Woo
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA,
| | - Edward T Carey
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA,
| | - Minsig Choi
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA,
| |
Collapse
|
106
|
Pu N, Zhao G, Yin H, Li JA, Nuerxiati A, Wang D, Xu X, Kuang T, Jin D, Lou W, Wu W. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J Transl Med 2018; 16:294. [PMID: 30359281 PMCID: PMC6203282 DOI: 10.1186/s12967-018-1673-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains poor due to the difficulty of disease diagnosis and therapy. Immunotherapy has had robust performance against several malignancies, including PDAC. In this study, we aim to analyze the expression of CD8 and FoxP3 on T lymphocytes and TGF-β expression in tumor tissues, and then analyze the possible clinical significance of these finding in order to find a novel effective immunotherapy target in PDAC using a murine model. METHODS A tissue microarray using patient PDAC samples was stained and analyzed for associations with clinicopathological characteristics. A preclinical murine model administrated with various immunotherapies were analyzed by growth inhibitor, flow cytometry, enzyme-linked immuno sorbent assay and immunohistochemistry. RESULTS The infiltrating FoxP3+ regulatory T cells (Tregs) in tumor tissues were associated with survival, while CD8+ tumor infiltrating lymphocytes (TILs) were not. Considering the drawbacks of these measure alone, the number of CD8+ and FoxP3+ T cells were combined to create a new estimated value-integrated immune ratio (IIR), which showed excellent validity in survival risk stratification. IIR was further verified as an independent prognostic factor according to multivariate analysis as well as TGF-β expression. Association between TGF-β expression and infiltrating Tregs was also verified. Then, in our preclinical murine model, CD25 and TGF-β combination blockade had a higher tumor growth inhibitor value. This combination therapy significantly depleted periphery and intra-tumor FoxP3+ Tregs while increasing intra-tumor CD8+ TILs levels compared to controls or anti-TGF-β monotherapy (p < 0.05). Anti-CD25 monotherapy alone also had the ability to deplete periphery and intra-tumor Tregs (p < 0.05). The excretion of intra-tumor IL-10, TGF-β was notably lower but higher IFN-γ excretion in this combination immunotherapy. Such combination immunotherapy was further confirmed to synergize with anti-PD-1 monotherapy to improve tumor growth inhibition and cure rates. CONCLUSIONS The combination of CD25, TGF-β and PD-1 blockade plays a potentially effective role in inhibiting tumor formation and progression. Our results also provide a strong rational strategy for use of IIR in future immunotherapy clinical trials.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian-Ang Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Abulimiti Nuerxiati
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
107
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
108
|
An Improved Method for Prediction of Cancer Prognosis by Network Learning. Genes (Basel) 2018; 9:genes9100478. [PMID: 30279327 PMCID: PMC6210393 DOI: 10.3390/genes9100478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023] Open
Abstract
Accurate identification of prognostic biomarkers is an important yet challenging goal in bioinformatics. Many bioinformatics approaches have been proposed for this purpose, but there is still room for improvement. In this paper, we propose a novel machine learning-based method for more accurate identification of prognostic biomarker genes and use them for prediction of cancer prognosis. The proposed method specifies the candidate prognostic gene module by graph learning using the generative adversarial networks (GANs) model, and scores genes using a PageRank algorithm. We applied the proposed method to multiple-omics data that included copy number, gene expression, DNA methylation, and somatic mutation data for five cancer types. The proposed method showed better prediction accuracy than did existing methods. We identified many prognostic genes and their roles in their biological pathways. We also showed that the genes identified from different omics data were complementary, which led to improved accuracy in prediction using multi-omics data.
Collapse
|
109
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42. [PMID: 29901090 PMCID: PMC6089780 DOI: 10.3892/ijmm_2018.3714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Correspondence to: Dr Akira Ishisaki, Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan, E-mail:
| |
Collapse
|
110
|
Abstract
OPINION STATEMENT Managing patients with metastatic pancreatic adenocarcinoma (mPDA) is a challenging proposition for any treating oncologist. Although the potency of first-line therapies has improved with the approvals of FOLFIRINOX and gemcitabine plus nab-paclitaxel, many patients are unable to derive significant benefit from later lines of therapy upon progression. Enrollment on clinical trials remains among the best options for patients with mPDA in all lines of therapy. At our institution, we routinely check for microsatellite instability (MSI-H) and perform next-generation sequencing (NGS) at the time of diagnosis in all good performance status mPDA patients. Although MSI-H status is only found in 1% of patients with mPDA, given pembrolizumab's tissue-agnostic approval for MSI-H tumors in later-line settings, it is a viable option when deciding on subsequent lines of therapy. Any use of immune therapy in mPDA is investigational outside the MSI-H setting. NGS can identify BRCA or other DNA damage response (DDR) defects in patients which can predict sensitivity to platinum-based therapies and influence choice of both initial and later lines of therapy. It can also identify rare actionable genomic alterations such as HER2 (2%) and TRK fusions (0.1%) and offer patients the option of enrollment on clinical trials with agents targeting these or other identified alterations. We believe enrolling mPDA patients on clinical trials with immune-modulating agents is critical to determine if there are other patient subsets, outside of the MSI-H setting, who would benefit from these approaches. Immunotherapy's general tolerability and potential to generate durable responses make it particularly appealing for mPDA patients. Although single-modality immunotherapy such as checkpoint inhibitors or vaccines have not demonstrated efficacy in this disease, combinatorial strategies targeting unique aspects of PDA including the tumor microenvironment and desmoplastic stroma have shown preclinical or early-phase success. Validating these treatments with later-phase prospective studies is essential to making immunotherapy a routine component of the treatment armamentarium for mPDA patients.
Collapse
Affiliation(s)
- Satya Das
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA.
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| | - Dana Cardin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| |
Collapse
|
111
|
Song W, Huang T, Yu L, Cheng Z. [Expressions of ΔNp63α, DPC4/Smad4 and P21 in cervical squamous cell carcinoma an their clinical significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:850-855. [PMID: 33168506 DOI: 10.3969/j.issn.1673-4254.2018.07.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the expressions of ΔNp63α, DPC4/Smad4 and P21 in cervical squamous cell carcinomas and explore their implications in tumorigenesis, progression and prognosis of the malignancy. METHODS The expressions of ΔNp63α, DPC4/Smad4 and P21 were examined with immunohistochemistry in 100 specimens of cervical squamous cell carcinoma, 40 specimens of cervical intraepithelial neoplasia (CIN) and 40 specimens of normal cervical tissues to explore their associations with the occurrence, progression and prognosis of cervical squamous cell carcinoma. RESULTS The expressions of ΔNp63α and DPC4/Smad4 decreased and P21 expression increased significantly in the order of normal cervical tissue, CIN and cervical squamous cell carcinoma (P < 0.01), and their expressions were associated with the differentiation, clinical stages and lymph node metastasis of cervical squamous cell carcinoma (P < 0.01). The expression of ΔNp63α was positively correlated with the expression of DPC4/Smad4 (r=0.581, P < 0.05), and they were both negatively correlated with P21 expression (r=-0.449 and -0.254, respectively; P < 0.05). Kaplan-Meier survival analysis showed that patients with cervical squamous cell carcinoma positive for ΔNp63α and DPC4/Smad4 had a significantly higher 5-year survival rate than those negative for ΔNp63α and DPC4/Smad4 (P < 0.001); the patients positive for P21 had a significantly lower 5-year survival rate than the P21-negative patients (P < 0.005). CONCLUSIONS The expressions of ΔNp63α, DPC4/Smad4 and P21are related with the differentiation, invasion, lymph node metastasis, pTNM stage and prognosis of in cervical squamous cell carcinomas, suggesting their value as potential markers for prognostic evaluation of patients with cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Wenqing Song
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College 233000, China
| | - Tingting Huang
- Department of Pathology, Department of Clinical Medicine, Bengbu 233000, China
| | - Lan Yu
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College 233000, China
| | - Zenong Cheng
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College 233000, China
| |
Collapse
|
112
|
Pan H, Li Y, Qian H, Qi X, Wu G, Zhang H, Xu M, Rao Z, Li JL, Wang L, Ying H. Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5802-5811. [PMID: 29771121 DOI: 10.1021/acs.jafc.8b00739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geniposide is the main bioactive constituent of gardenia fruit. Skeletal-muscle fibrosis is a common and irreversibly damaging process. Numerous studies have shown that geniposide could improve many chronic diseases, including metabolic syndrome and tumors. However, the effects of geniposide on skeletal-muscle fibrosis are still poorly understood. Here, we found that crude extracts of gardenia fruit pomace could significantly decrease the expression of profibrotic genes in vitro. Moreover, geniposide could also reverse profibrotic-gene expression induced by TGF-β and Smad4, a regulator of skeletal-muscle fibrosis. In addition, geniposide treatment could significantly downregulate profibrotic-gene expression and improve skeletal-muscle injuries in a mouse model of contusion. These results together suggest that geniposide has an antifibrotic effect on skeletal muscle through the suppression of the TGF-β-Smad4 signaling pathway.
Collapse
Affiliation(s)
- Haiou Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Jin-Long Li
- School of Pharmacy , Nantong University , Nantong 226001 , China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| |
Collapse
|
113
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42:1484-1494. [PMID: 29901090 DOI: 10.3892/ijmm.2018.3714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/11/2018] [Indexed: 01/11/2023] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita‑ku, Sapporo 060‑0812, Japan
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| |
Collapse
|
114
|
Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori S, Terracciano L, Eichmann MD, Worni M, Gloor B, Perren A, Karamitopoulou E. Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals Three Distinct Subtypes with Prognostic/Predictive Significance. Clin Cancer Res 2018; 24:4444-4454. [PMID: 29661773 DOI: 10.1158/1078-0432.ccr-17-3401] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Current clinical classification of pancreatic ductal adenocarcinoma (PDAC) is unable to predict prognosis or response to chemo- or immunotherapy and does not take into account the host reaction to PDAC cells. Our aim is to classify PDAC according to host- and tumor-related factors into clinically/biologically relevant subtypes by integrating molecular and microenvironmental findings.Experimental Design: A well-characterized PDAC cohort (n = 110) underwent next-generation sequencing with a hot spot cancer panel while next-generation tissue microarrays were immunostained for CD3, CD4, CD8, CD20, PD-L1, p63, hyaluronan-mediated motility receptor (RHAMM), and DNA mismatch repair proteins. Previous data on FOXP3 were integrated. Immune cell counts and protein expression were correlated with tumor-derived driver mutations, clinicopathologic features (TNM 8th edition, 2017), survival, and epithelial-mesenchymal transition (EMT)-like tumor budding.Results: Three PDAC subtypes were identified: the "immune escape" (54%), poor in T and B cells and enriched in FOXP3+ regulatory T cells (Treg), with high-grade budding, frequent CDKN2A, SMAD4, and PIK3CA mutations, and poor outcome; the "immune rich" (35%), rich in T and B cells and poorer in FOXP3+ Tregs, with infrequent budding, lower CDKN2A and PIK3CA mutation rate, and better outcome and a subpopulation with tertiary lymphoid tissue (TLT), mutations in DNA damage response genes (STK11 and ATM), and the best outcome; and the "immune exhausted" (11%), with immunogenic microenvironment and two subpopulations-one with PD-L1 expression and a high PIK3CA mutation rate and a microsatellite-unstable subpopulation with a high prevalence of JAK3 mutations. The combination of low budding, low stromal FOXP3 counts, presence of TLTs, and absence of CDKN2A mutations confers significant survival advantage in patients with PDAC.Conclusions: Immune host responses correlate with tumor characteristics, leading to morphologically recognizable PDAC subtypes with prognostic/predictive significance. Clin Cancer Res; 24(18); 4444-54. ©2018 AACRSee related commentary by Khalil and O'Reilly, p. 4355.
Collapse
Affiliation(s)
| | - Silvia Cibin
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | - Mathias Worni
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
115
|
Ulipristal acetate decreases transforming growth factor β3 serum and tumor tissue concentrations in patients with uterine fibroids. Fertil Steril 2018. [DOI: 10.1016/j.fertnstert.2017.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
116
|
Elevated Polyamines in Saliva of Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020043. [PMID: 29401744 PMCID: PMC5836075 DOI: 10.3390/cancers10020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Detection of pancreatic cancer (PC) at a resectable stage is still difficult because of the lack of accurate detection tests. The development of accurate biomarkers in low or non-invasive biofluids is essential to enable frequent tests, which would help increase the opportunity of PC detection in early stages. Polyamines have been reported as possible biomarkers in urine and saliva samples in various cancers. Here, we analyzed salivary metabolites, including polyamines, using capillary electrophoresis-mass spectrometry. Salivary samples were collected from patients with PC (n = 39), those with chronic pancreatitis (CP, n = 14), and controls (C, n = 26). Polyamines, such as spermine, N₁-acetylspermidine, and N₁-acetylspermine, showed a significant difference between patients with PC and those with C, and the combination of four metabolites including N₁-acetylspermidine showed high accuracy in discriminating PC from the other two groups. These data show the potential of saliva as a source for tests screening for PC.
Collapse
|
117
|
Zheng S, Lin Z, Liu Z, Liu Y, Wu W. Lipopolysaccharide Mediates the Destruction of Intercellular Tight Junction among Renal Tubular Epithelial Cells via RhoT1/SMAD-4/JAM-3 Pathway. Int J Med Sci 2018; 15:595-602. [PMID: 29725250 PMCID: PMC5930461 DOI: 10.7150/ijms.23786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background: The morbidity of sepsis induced acute kidney injury remains unacceptable high and the mechanisms of that disease remains unclear. For urine backleak and intercellular tight junction among tubular epithelial cells (TECs) destruction often occur during sepsis induced acute kidney injury, we examined whether lipopolysaccharide could damage intercellular tight junction among TECs and associated mechanisms in our present study. Methods: HK-2 cells were cultured, transfected with different SiRNAs and stimulated with LPS and PYR-41. Transepithelial Permeability Assay and Transepithelial Electrical Resistance Assay were used to evaluate intercellular tight junction destruction and Western Blot and Immunofluorescence were used to evaluate proteins expression. Results: Transepithelial Permeability increased significantly (P<0.05) and Transepithelial Electrical Resistance reduced remarkably (P<0.05) of the monolayer TECs stimulated with LPS. The expression of JAM-3 and RhoT1 decreased significantly (P<0.05) in TECs stimulated with LPS, while the level of SMAD-4 increased significantly (P<0.05). Downregulation of the expression of SMAD-4 with RNA interference could increase the expression of JAM-3 in LPS treated TECs. Moreover, upregulation of RhoT1 level by decreased the degradation of RhoT1 could decrease the expression of SMAD-4 and increase the JAM-3 level in TECs treated with LPS, while downregulation of RhoT1 level with RNA interference had the opposite effects. Conclusion: LPS mediates intercellular tight junction destruction among TECs and RhoT1/SMAD-4/JAM-3 is a pivotal pathway to mediate the phenomenon.
Collapse
Affiliation(s)
- Shixiang Zheng
- Division of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China 350001.,Department of Vascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Zhuoyong Lin
- Deparment of Anesthesiology, Fujian Renmin Hospital, Fuzhou, Fujian, China 350001
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China 710068
| | - Yipeng Liu
- Department of Nephrology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China 250014
| | - Wenwei Wu
- Division of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China 350001
| |
Collapse
|
118
|
Phanstiel O. An overview of polyamine metabolism in pancreatic ductal adenocarcinoma. Int J Cancer 2017; 142:1968-1976. [PMID: 29134652 DOI: 10.1002/ijc.31155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest major cancers, with a five year survival rate of less than 8%. With current therapies only giving rise to modest life extension, new approaches are desperately needed. Even though targeting polyamine metabolism is a proven anticancer strategy, there are no reports, which thoroughly survey the literature describing the role of polyamine biosynthesis and transport in PDAC. This review seeks to fill this void by describing what is currently known about polyamine metabolism in PDAC and identifies new targets and opportunities to treat this disease. Due to the pleiotropic effects that polyamines play in cells, this review covers diverse areas ranging from polyamine metabolism (biosynthesis, catabolism and transport), as well as the potential role of polyamines in desmoplasia, autophagy and immune privilege. Understanding these diverse roles provides the opportunity to design new therapies to treat this deadly cancer via polyamine depletion.
Collapse
Affiliation(s)
- Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL
| |
Collapse
|
119
|
Chung Y, Wi YC, Kim Y, Bang SS, Yang JH, Jang K, Min KW, Paik SS. The Smad4/PTEN Expression Pattern Predicts Clinical Outcomes in Colorectal Adenocarcinoma. J Pathol Transl Med 2017; 52:37-44. [PMID: 29056035 PMCID: PMC5784229 DOI: 10.4132/jptm.2017.10.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background Smad4 and PTEN are prognostic indicators for various tumor types. Smad4 regulates tumor suppression, whereas PTEN inhibits cell proliferation. We analyzed and compared the performance of Smad4 and PTEN for predicting the prognosis of patients with colorectal adenocarcinoma. Methods Combined expression patterns based on Smad4+/– and PTEN+/– status were evaluated by immunostaining using a tissue microarray of colorectal adenocarcinoma. The relationships between the protein expression and clinicopathological variables were analyzed. Results Smad4–/PTEN– status was most frequently observed in metastatic adenocarcinoma, followed by primary adenocarcinoma and tubular adenoma (p<.001). When Smad4–/PTEN– and Smad4+/PTEN+ groups were compared, Smad4–/PTEN– status was associated with high N stage (p=.018) and defective mismatch repair proteins (p=.006). Significant differences in diseasefree survival and overall survival were observed among the three groups (Smad4+/PTEN+, Smad4–/PTEN+ or Smad4+/PTEN–, and Smad4–/PTEN–) (all p<.05). Conclusions Concurrent loss of Smad4 and PTEN may lead to more aggressive disease and poor prognosis in patients with colorectal adenocarcinoma compared to the loss of Smad4 or PTEN alone.
Collapse
Affiliation(s)
- Yumin Chung
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Young Chan Wi
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Yeseul Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Seong Sik Bang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Jung-Ho Yang
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
120
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|