101
|
El Hariri El Nokab M, Lasorsa A, Sebakhy KO, Picchioni F, van der Wel PC. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
102
|
Rizzo R, Onesto V, Forciniti S, Chandra A, Prasad S, Iuele H, Colella F, Gigli G, Del Mercato LL. A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens Bioelectron 2022; 212:114401. [PMID: 35617754 DOI: 10.1016/j.bios.2022.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
The detection of extracellular pH at single cell resolution is challenging and requires advanced sensibility. Sensing pH at high spatial and temporal resolution might provide crucial information in understanding the role of pH and its fluctuations in a wide range of physio-pathological cellular processes, including cancer. Here, a method to embed silica-based fluorescent pH sensors into alginate-based three-dimensional (3D) microgels tumour models, coupled with a computational method for fine data analysis, is presented. By means of confocal laser scanning microscopy, live-cell time-lapse imaging of 3D alginate microgels was performed and the extracellular pH metabolic variations were monitored in both in vitro 3D mono- and 3D co-cultures of tumour and stromal pancreatic cells. The results show that the extracellular pH is cell line-specific and time-dependent. Moreover, differences in pH were also detected between 3D monocultures versus 3D co-cultures, thus suggesting the existence of a metabolic crosstalk between tumour and stromal cells. In conclusion, the system has the potential to image multiple live cell types in a 3D environment and to decipher in real-time their pH metabolic interplay under controlled experimental conditions, thus being also a suitable platform for drug screening and personalized medicine.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
103
|
Piras CC, Mahon CS, Genever PG, Smith DK. Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles. ACS Biomater Sci Eng 2022; 8:1829-1840. [PMID: 35364810 PMCID: PMC9092345 DOI: 10.1021/acsbiomaterials.1c01560] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Hydrogels
with spatio-temporally
controlled properties are appealing
materials for biological and pharmaceutical applications. We make
use of mild acidification protocols to fabricate hybrid gels using
calcium alginate in the presence of a preformed thermally triggered
gel based on a low-molecular-weight gelator (LMWG) 1,3:2:4-di(4-acylhydrazide)-benzylidene
sorbitol (DBS-CONHNH2). Nonwater-soluble calcium carbonate
slowly releases calcium ions over time when exposed to an acidic pH,
triggering the assembly of the calcium alginate gel network. We combined
the gelators in different ways: (i) the LMWG was used as a template
to spatially control slow calcium alginate gelation within preformed
gel beads, using glucono-δ-lactone (GdL) to lower the pH; (ii)
the LMWG was used as a template to spatially control slow calcium
alginate gelation within preformed gel trays, using diphenyliodonium
nitrate (DPIN) as a photoacid to lower the pH, and spatial resolution
was achieved by masking. The dual-network hybrid gels display highly
tunable properties, and the beads are compatible with stem cell growth.
Furthermore, they preserve the LMWG function of inducing in situ silver
nanoparticle (AgNP) formation, which provides the gels with antibacterial
activity. These gels have potential for eventual regenerative medicine
applications in (e.g.) bone tissue engineering.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Clare S Mahon
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Paul G Genever
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
104
|
Leong SW, Tan SC, Norhayati MN, Monif M, Lee SY. Effectiveness of Bioinks and the Clinical Value of 3D Bioprinted Glioblastoma Models: A Systematic Review. Cancers (Basel) 2022; 14:cancers14092149. [PMID: 35565282 PMCID: PMC9103189 DOI: 10.3390/cancers14092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Many medical applications have arisen from the technological advancement of three-dimensional (3D) bioprinting, including the printing of cancer models for better therapeutic practice whilst imitating the human system more accurately than animal and conventional in vitro systems. The objective of this systematic review is to comprehensively summarise information from existing studies on the effectiveness of bioinks in mimicking the tumour microenvironment of glioblastoma and their clinical value. Based on predetermined eligibility criteria, relevant studies were identified from PubMed, Medline Ovid, Web of Science, Scopus, and ScienceDirect databases. Nineteen articles fulfilled the inclusion criteria and were included in this study. Alginate hydrogels were the most widely used bioinks in bioprinting. The majority of research found that alginate bioinks had excellent biocompatibility and maintained high cell viability. Advanced structural design, as well as the use of multicomponent bioinks, recapitulated the native in vivo morphology more closely and resulted in bioprinted glioblastoma models with higher drug resistance. In addition, 3D cell cultures were superior to monolayer or two-dimensional (2D) cell cultures for the simulation of an optimal tumour microenvironment. To more precisely mimic the heterogenous niche of tumours, future research should focus on bioprinting multicellular and multicomponent tumour models that are suitable for drug screening.
Collapse
Affiliation(s)
- Shye Wei Leong
- Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Si-Yuen Lee
- Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
- Correspondence: or
| |
Collapse
|
105
|
Abdelbasset WK, Jasim SA, Sharma SK, Margiana R, Bokov DO, Obaid MA, Hussein BA, Lafta HA, Jasim SF, Mustafa YF. Alginate-Based Hydrogels and Tubes, as Biological Macromolecule-Based Platforms for Peripheral Nerve Tissue Engineering: A Review. Ann Biomed Eng 2022; 50:628-653. [PMID: 35446001 DOI: 10.1007/s10439-022-02955-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/20/2022] [Indexed: 12/25/2022]
Abstract
Unlike the central nervous system, the peripheral nervous system (PNS) has an inherent capacity to regenerate following injury. However, in the case of large nerve defects where end-to-end cooptation of two nerve stumps is not tension-free, autologous nerve grafting is often utilized to bridge the nerve gaps. To address the challenges associated with autologous nerve grafting, neural guidance channels (NGCs) have been successfully translated into clinic. Furthermore, hydrogel-based drug delivery systems have been extensively studied for the repair of PNS injuries. There are numerous biomaterial options for the production of NGCs and hydrogels. Among different candidates, alginate has shown promising results in PNS tissue engineering. Alginate is a naturally occurring polysaccharide which is biocompatible, non-toxic, non-immunogenic, and possesses modifiable properties. In the current review, applications, challenges, and future perspectives of alginate-based NGCs and hydrogels in the repair of PNS injuries will be discussed.
Collapse
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box. 173, Al-Kharj, 11942, Saudi Arabia. .,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, 12613, Egypt.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Satish Kumar Sharma
- Pharmacology Department, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation, 109240
| | - Maithm A Obaid
- College of Pharmacy, National University of Science and Technology, Thi Qar, Iraq
| | | | | | - Sara Firas Jasim
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
106
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
107
|
Rocha GA, Ferreira RB. Antimicrobial polysaccharides obtained from natural sources. Future Microbiol 2022; 17:701-716. [PMID: 35392662 DOI: 10.2217/fmb-2021-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increase in resistance to conventional antibiotics among bacterial pathogens, the search for new antimicrobials becomes more and more necessary. Although most studies focus on the discovery of antimicrobial peptides for the development of new antibiotics, several others in the literature have described polysaccharides with the same biological activity with the potential for use as therapeutic alternatives. Here we review the currently available literature on antimicrobial polysaccharides isolated from different sources to demonstrate that there are several possible unconventional carbohydrate polymers that could act as therapeutic alternatives in the battle against drug-resistant pathogens.
Collapse
Affiliation(s)
- Giulia A Rocha
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| | - Rosana Br Ferreira
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
108
|
Characterization of a Human Platelet Lysate-Loaded Keratin Hydrogel for Wound Healing Applications In Vitro. Int J Mol Sci 2022; 23:ijms23084100. [PMID: 35456921 PMCID: PMC9031577 DOI: 10.3390/ijms23084100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
One of the promising approaches to facilitate healing and regenerative capacity includes the application of growth-factor-loaded biomaterials. Human platelet lysate (hPL) derived from platelet-rich plasma through a freeze-thaw process has been used as a growth factor rich therapeutic in many regenerative applications. To provide sustained local delivery of the hPL-derived growth factors such as epidermal growth factor (EGF), the hPL can be loaded into biomaterials that do not degrade rapidly in vivo. Keratin (KSO), a strong filamentous protein found in human hair, when formulated as a hydrogel, is shown to sustain the release of drugs and promote wound healing. In the current study, we created a KSO biomaterial that spontaneously forms a hydrogel when rehydrated with hPL that is capable of controlled and sustained release of pro-regenerative molecules. Our study demonstrates that the release of hPL is controlled by changing the KSO hydrogel and hPL-loading concentrations, with hPL loading concentrations having a greater effect in changing release profiles. In addition, the 15% KSO concentration proved to form a stable hydrogel, and supported cell proliferation over 3 days without cytotoxic effects in vitro. The hPL-loaded keratin hydrogels show promise in potential applications for wound healing with the sustained release of pro-regenerative growth factors with easy tailoring of hydrogel properties.
Collapse
|
109
|
Stern A, Thompson B, Williams K, McClellan R, Gebhart S, Hartman J. The CellRaft AIR Ⓡ system: A novel system enabling organoid imaging, identification, and isolation. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:201-208. [PMID: 35058186 PMCID: PMC10802934 DOI: 10.1016/j.slasd.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) culture systems have been developed that can re-capitulate organ level responses, simulate compound diffusion through complex structures, and assess cellular heterogeneity of tissues, making them attractive models for advanced in vitro research and discovery. Organoids are a unique subtype of 3D cell culture that are grown from stem cells, are self-organizing, and closely replicate in vivo pathophysiology. Organoids have been used to understand tissue development, model diseases, test drug sensitivity and toxicity, and advance regenerative medicine. However, traditional organoid culture methods are inadequate because they are low throughput and ill-suited for single organoid imaging, phenotypic assessment, and isolation from heterogenous organoid populations. To address these bottlenecks, we have adapted our tissue culture consumable and instrumentation to enable automated imaging, identification, and isolation of individual organoids. Organoids grown on the 3D CytoSortⓇ Array can be reliably tracked, imaged, and phenotypically analyzed using brightfield and fluorescent microscopy as they grow over time, then released and transferred fully intact for use in downstream applications. Using mouse hepatic and pancreatic organoids, we have demonstrated the use of this technology for single-organoid imaging, clonal organoid generation, parent organoid subcloning, and single-organoid RNA extraction for downstream gene expression or transcriptomic analysis. The results validate the ability of the CellRaft AIRⓇ System to facilitate efficient, user-friendly, and automated workflows broadly applicable to organoid research by overcoming several pain points: 1) single organoid time-course imaging and phenotypic assessment, 2) establishment of single cell-derived organoids, and 3) isolation and retrieval of single organoids for downstream applications.
Collapse
|
110
|
Carrasco M, Wang C, Søviknes AM, Bjørlykke Y, Abadpour S, Paulo JA, Tjora E, Njølstad P, Ghabayen J, Nermoen I, Lyssenko V, Chera S, Ghila LM, Vaudel M, Scholz H, Ræder H. Spatial Environment Affects HNF4A Mutation-Specific Proteome Signatures and Cellular Morphology in hiPSC-Derived β-Like Cells. Diabetes 2022; 71:862-869. [PMID: 35043148 PMCID: PMC8965667 DOI: 10.2337/db20-1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Studies of monogenic diabetes are particularly useful because we can gain insight into the molecular events of pancreatic β-cell failure. Maturity-onset diabetes of the young 1 (MODY1) is a form of monogenic diabetes caused by a mutation in the HNF4A gene. Human-induced pluripotent stem cells (hiPSCs) provide an excellent tool for disease modeling by subsequently directing differentiation toward desired pancreatic islet cells, but cellular phenotypes in terminally differentiated cells are notoriously difficult to detect. Re-creating a spatial (three-dimensional [3D]) environment may facilitate phenotype detection. We studied MODY1 by using hiPSC-derived pancreatic β-like patient and isogenic control cell lines in two different 3D contexts. Using size-adjusted cell aggregates and alginate capsules, we show that the 3D context is critical to facilitating the detection of mutation-specific phenotypes. In 3D cell aggregates, we identified irregular cell clusters and lower levels of structural proteins by proteome analysis, whereas in 3D alginate capsules, we identified altered levels of glycolytic proteins in the glucose sensing apparatus by proteome analysis. Our study provides novel knowledge on normal and abnormal function of HNF4A, paving the way for translational studies of new drug targets that can be used in precision diabetes medicine in MODY.
Collapse
Affiliation(s)
- Manuel Carrasco
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Chencheng Wang
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub–Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne M. Søviknes
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yngvild Bjørlykke
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub–Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Erling Tjora
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Pål Njølstad
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jonas Ghabayen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Nermoen
- Department of Endocrinology, Akershus University Hospital, Lorenskog, Norway
| | - Valeriya Lyssenko
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Luiza M. Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub–Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- Corresponding author: Helge Ræder,
| |
Collapse
|
111
|
Soroushzadeh S, Karamali F, Masaeli E, Atefi A, Nasr Esfahani MH. Scaffold free retinal pigment epithelium sheet engineering using modified alginate-RGD hydrogel. J Biosci Bioeng 2022; 133:579-586. [PMID: 35339352 DOI: 10.1016/j.jbiosc.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Tissue-specific extracellular matrix (ECM) plays a critical role in cell survival and homeostasis, which are particularly essential for directing differentiation of different complex tissues such as retina. However, ECM maintenance should be considered to design an effective therapeutic strategy for retina regeneration. To achieve this, cell sheet engineering has emerged as a growing approach to closely reconstruct basal membrane of cells through a scaffold-free manner. Several irreversible sight-threatening diseases are characterized by the dysfunction and lose of retinal pigment epithelium (RPE), leading to vision loss and eventually total blindness in patients. According to impressive developments in achievement of RPE from human embryonic stem cells (hESCs), we obtained RPE cells without any extrinsic factors in a co-culture system, and cultured them on a temporary alginate hydrogel substrate. Subsequently, Arg-Gly-Asp (RGD) peptide was superficially immobilized on the upper layer of hydrogel to improve cell attachment before harvesting sheet layer. RPE cell sheet layer was released by treating pre-seeded hydrogels with sodium citrate as a calcium chelating agent and characterized in both in vitro and in vivo models. RPE sheets formed tight junction and expressed high levels of retina structural markers such as ZO-1, Bestrophin and Collagen type IV. One week after in vivo transplantation of RPE sheet, cells survived in the subretinal space, indicating that our harvesting method is non-invasive. To sum up, we introduced a unique scaffold-free method for RPE cell sheet engineering, which can find potential use for future therapeutic purposes.
Collapse
Affiliation(s)
- Sareh Soroushzadeh
- ACECR Institute of Higher Education (Isfahan Branch), P.O. Box: 84175443, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Atefeh Atefi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran.
| |
Collapse
|
112
|
Characterization of Alginate–Gelatin–Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds. Polymers (Basel) 2022; 14:polym14051021. [PMID: 35267843 PMCID: PMC8915124 DOI: 10.3390/polym14051021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022] Open
Abstract
Tissue engineering (TE) is an innovative approach to tackling many diseases and body parts that need to be replaced by developing artificial tissues and organs. Bioinks play an important role in the success of various TE applications. A bioink refers to a combination of a living cell, biomaterials, and bioactive molecules deposited in a layer-by-layer form to fabricate tissue-like structures. The research on bioink attempts to offer a 3D complex architecture and control cellular behavior that improve cell physical properties and viability. This research proposed a new multi-material bioink based on alginate (A), gelatin (G), and cholesteryl ester liquid crystals (CELC) biomaterials, namely (AGLC) bioinks. The development of AGLC was initiated with the optimization of different concentrations of A and G gels to obtain a printable formulation of AG gels. Subsequently, the influences of different concentrations of CELC with AG gels were investigated by using a microextrusion-based 3D bioprinting system to obtain a printed structure with high shape fidelity and minimum width. The AGLC bioinks were formulated using AG gel with 10% weight/volume (w/v) of A and 50% w/v G (AG10:50) and 1%, 5%, 10%, 20%, and 40% of CELC, respectively. The AGLC bioinks yield a high printability and resolution blend. The printed filament has a minimum width of 1.3 mm at a 1 mL/min extrusion rate when the A equals 10% w/v, G equals 50% w/v, and CELC equals 40% v/v (AGLC40). Polymerization of the AGLC bioinks with calcium (Ca2+) ions shows well-defined and more stable structures in the post-printing process. The physicochemical and viability properties of the AGLC bioinks were examined by FTIR, DSC, contact angle, FESEM, MTT assay, and cell interaction evaluation methods. The FTIR spectra of the AGLC bioinks exhibit a combination of characteristics vibrations of AG10:50 and CELC. The DSC analysis indicates the high thermal stability of the bioinks. Wettability analysis shows a reduction in the water absorption ability of the AGLC bioinks. FESEM analysis indicates that the surface morphologies of the bioinks exhibit varying microstructures. In vitro cytotoxicity by MTT assay shows the ability of the bioinks to support the biological activity of HeLa cells. The AGLC bioinks show average cell viability of 82.36% compared to the control (90%). Furthermore, cultured cells on the surface of AGLC bioinks showed that bioinks provide favorable interfaces for cell attachment.
Collapse
|
113
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
114
|
Kovacevic B, Jones M, Ionescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials 2022; 283:121459. [PMID: 35303546 DOI: 10.1016/j.biomaterials.2022.121459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
|
115
|
Kim D, Kim M, Lee J, Jang J. Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues. Front Bioeng Biotechnol 2022; 10:764682. [PMID: 35237569 PMCID: PMC8884173 DOI: 10.3389/fbioe.2022.764682] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D)-printed in vitro tissue models have been used in various biomedical fields owing to numerous advantages such as enhancements in cell response and functionality. In liver tissue engineering, several studies have been reported using 3D-printed liver tissue models with improved cellular responses and functions in drug screening, liver disease, and liver regenerative medicine. However, the application of conventional single-component bioinks for the printing of 3D in vitro liver constructs remains problematic because of the complex structural and physiological characteristics of the liver. The use of multicomponent bioinks has become an attractive strategy for bioprinting 3D functional in vitro liver tissue models because of the various advantages of multicomponent bioinks, such as improved mechanical properties of the printed tissue construct and cell functionality. Therefore, it is essential to review various 3D bioprinting techniques and multicomponent hydrogel bioinks proposed for liver tissue engineering to suggest future directions for liver tissue engineering. Accordingly, we herein review multicomponent bioinks for 3D-bioprinted liver tissues. We first describe the fabrication methods capable of printing multicomponent bioinks and introduce considerations for bioprinting. We subsequently categorize and evaluate the materials typically utilized for multicomponent bioinks based on their characteristics. In addition, we also review recent studies for the application of multicomponent bioinks to fabricate in vitro liver tissue models. Finally, we discuss the limitations of current studies and emphasize aspects that must be resolved to enhance the future applicability of such bioinks.
Collapse
Affiliation(s)
- Daekeun Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi, South Korea
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Jongwan Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
116
|
Laboy-López S, Méndez Fernández PO, Padilla-Zayas JG, Nicolau E. Bioactive Cellulose Acetate Electrospun Mats as Scaffolds for Bone Tissue Regeneration. Int J Biomater 2022; 2022:3255039. [PMID: 35154326 PMCID: PMC8837436 DOI: 10.1155/2022/3255039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
In the last decades, cell-based approaches for bone tissue engineering (BTE) have relied on using models that cannot replicate the complexity of the bone microenvironment. There is an ongoing amount of research on scaffold development responding to the need for feasible materials that can mimic the bone extracellular matrix (ECM) and aid bone tissue regeneration (BTR). In this work, a porous cellulose acetate (CA) fiber mat was developed using the electrospinning technique and the mats were chemically modified to bioactivate their surface and promote osteoconduction and osteoinduction. The mats were characterized using FTIR and SEM/EDS to validate the chemical modifications and assess their structural integrity. By coupling adhesive peptides KRSR, RGD, and growth factor BMP-2, the fiber mats were bioactivated, and their induced biological responses were evaluated by employing immunocytochemical (ICC) techniques to study the adhesion, proliferation, and differentiation of premature osteoblast cells (hFOB 1.19). The biological assessment revealed that at short culturing periods of 48 hours and 7 days, the presence of the peptides was significant for proliferation and adhesion, whereas at longer culture times of 14 days, it had no significant effect on differentiation and maturation of the osteogenic progenitor cells. Based on the obtained results, it is thus concluded that the CA porous fiber mats provide a promising surface morphology that is both biocompatible and can be rendered bioactive upon the addition of osteogenic peptides to favor osteoconduction leading to new tissue formation.
Collapse
Affiliation(s)
- Simara Laboy-López
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 University Ave. 1701, San Juan 00925, USA
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
| | - Pedro O. Méndez Fernández
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan 00931-3346, USA
| | - Jorge G. Padilla-Zayas
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan 00931-3346, USA
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 University Ave. 1701, San Juan 00925, USA
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De Leon Ave, Suite 2, San Juan 00931-3346, USA
| |
Collapse
|
117
|
Chummun I, Gimié F, Goonoo N, Arsa IA, Cordonin C, Jhurry D, Bhaw-Luximon A. Polysucrose hydrogel and nanofiber scaffolds for skin tissue regeneration: Architecture and cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112694. [DOI: 10.1016/j.msec.2022.112694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/25/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
|
118
|
Three-dimensional models: a novel approach for lymphoma research. J Cancer Res Clin Oncol 2022; 148:753-765. [DOI: 10.1007/s00432-021-03897-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
|
119
|
Shahabipour F, Tavafoghi M, Aninwene GE, Bonakdar S, Oskuee RK, Shokrgozar MA, Potyondy T, Alambeigi F, Ahadian S. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models. J Biomed Mater Res A 2022; 110:1077-1089. [PMID: 35025130 DOI: 10.1002/jbm.a.37354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
The crosstalk between osteoblasts and endothelial cells is critical for bone vascularization and regeneration. Here, we used a coaxial 3D bioprinting method to directly print an osteon-like structure by depositing angiogenic and osteogenic bioinks from the core and shell regions of the coaxial nozzle, respectively. The bioinks were made up of gelatin, gelatin methacryloyl (GelMA), alginate, and hydroxyapatite (HAp) nanoparticles and were loaded with human umbilical vascular endothelial cells (HUVECs) and osteoblasts (MC3T3) in the core and shell regions, respectively. Conventional monoaxial 3D bioprinting was used as a control method, where the hydrogels, HAp nanoparticles, MC3T3 cells, and HUVECs were all mixed in one bioink and printed from the core nozzle. As a result, the bioprinted scaffolds were composed of cell-laden fibers with either a core-shell or homogenous structure, providing a non-contact (indirect) or contact (direct) co-culture of MC3T3 cells and HUVECs, respectively. Both structures supported the 3D culture of HUVECs and osteoblasts over a long period. The scaffolds also supported the expression of osteogenic and angiogenic factors. However, the gene expression was significantly higher for the core-shell structure than the homogeneous structure due to the well-defined distribution of osteoblasts and endothelial cells and the formation of vessel-like structures in the co-culture system. Our results indicated that the coaxial bioprinting technique, with the ability to create a non-contact co-culture of cells, can provide a more efficient bioprinting strategy for printing highly vascularized and bioactive bone structures.
Collapse
Affiliation(s)
- Fahimeh Shahabipour
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maryam Tavafoghi
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Shahin Bonakdar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Kazemi Oskuee
- Biomedical Applied Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tyler Potyondy
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| |
Collapse
|
120
|
Savoj S, Esfahani MHN, Karimi A, Karamali F. Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sci 2022; 291:120273. [PMID: 35016877 DOI: 10.1016/j.lfs.2021.120273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
AIM Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.
Collapse
Affiliation(s)
- Soraya Savoj
- Department of Biology, University of Payam Noor, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Akbar Karimi
- Department of Biology, University of Payam Noor, Isfahan, Iran.
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
121
|
Bonany M, del-Mazo-Barbara L, Espanol M, Ginebra MP. Microsphere incorporation as a strategy to tune the biological performance of bioinks. J Tissue Eng 2022; 13:20417314221119895. [PMID: 36199978 PMCID: PMC9527984 DOI: 10.1177/20417314221119895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although alginate is widely used as a matrix in the formulation of cell-laden inks, this polymer often requires laborious processing strategies due to its lack of cell adhesion moieties. The main objective of the present work was to explore the incorporation of microspheres into alginate-based bioinks as a simple and tuneable way to solve the cell adhesion problems, while adding extra biological functionality and improving their mechanical properties. To this end, three types of microspheres with different mineral contents (i.e. gelatine with 0% of hydroxyapatite, gelatine with 25 wt% of hydroxyapatite nanoparticles and 100 wt% of calcium -deficient hydroxyapatite) were synthesised and incorporated into the formulation of cell-laden inks. The results showed that the addition of microspheres generally improved the rheological properties of the ink, favoured cell proliferation and positively affected osteogenic cell differentiation. Furthermore, this differentiation was found to be influenced by the type of microsphere and the ability of the cells to migrate towards them, which was highly dependent on the stiffness of the bioink. In this regard, Ca2+ supplementation in the cell culture medium had a pronounced effect on the relaxation of the stiffness of these cell-loaded inks, influencing the overall cell performance. In conclusion, we have developed a powerful and tuneable strategy for the fabrication of alginate-based bioinks with enhanced biological characteristics by incorporating microspheres into the initial ink formulation.
Collapse
Affiliation(s)
- Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Laura del-Mazo-Barbara
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
122
|
Ghila L, Legøy TA, Chera S. A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors. Methods Mol Biol 2022; 2454:327-349. [PMID: 33786775 DOI: 10.1007/7651_2021_356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pancreatic islet endocrine cells generated from patient-derived induced pluripotent stem cells represent a great strategy for both disease modeling and regenerative medicine. Nevertheless, these cells inherently miss the effects of the intricate network of systemic signals characterizing the living organisms. Xenotransplantation of in vitro differentiating cells into murine hosts substantially compensates for this drawback.Here we describe our transplantation strategy of encapsulated differentiating pancreatic progenitors into diabetic immunosuppressed (NSG) overtly diabetic mice generated by the total ablation of insulin-producing cells following diphtheria toxin administration. We will detail the differentiation protocol employed, the alginate encapsulation procedure, and the xenotransplantation steps required for a successful and reproducible experiment.
Collapse
Affiliation(s)
- Luiza Ghila
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway.
| |
Collapse
|
123
|
Sogomonyan AS, Shipunova VO, Soloviev VD, Larionov VI, Kotelnikova PA, Deyev SM. 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro. Acta Naturae 2022; 14:92-100. [PMID: 35441052 PMCID: PMC9013434 DOI: 10.32607/actanaturae.11603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to develop a 3D cell culture model based on cell spheroids for predicting the functional activity of various compounds in vivo. Agarose gel molds were made using 3D printing. The solidified agarose gel is a matrix consisting of nine low-adhesive U-shaped microwells of 2.3 × 3.3 mm for 3D cell spheroid formation and growth. This matrix is placed into a single well of a 12-well plate. The effectiveness of the cell culture method was demonstrated using human ovarian carcinoma SKOVip-kat cells stably expressing the red fluorescent protein Katushka in the cytoplasm and overexpressing the membrane-associated tumor marker HER2. The SKOVip-kat cell spheroids were visualized by fluorescence microscopy. The cell concentration required for the formation of same-shape and same-size spheroids with tight intercellular contacts was optimized. To verify the developed model, the cytotoxicity of the targeted immunotoxin anti-HER2 consisting of the anti-HER2 scaffold DARP 9_29 and a fragment of the Pseudomonas aeroginosa exotoxin, DARP-LoPE, was studied in 2D and 3D SKOVip-kat cell cultures. The existence of a difference in the cytotoxic properties of DARP-LoPE between the 2D and 3D cultures has been demonstrated: the IC50 value in the 3D culture is an order of magnitude higher than that in the monolayer culture. The present work describes a universal tool for 3D cultivation of mammalian cells based on reusable agarose gel molds that allows for reproducible formation of multicellular spheroids with tight contacts for molecular and cell biology studies.
Collapse
Affiliation(s)
- A. S. Sogomonyan
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine, (PhysBio), Moscow, 115409 Russia
| | - V. O. Shipunova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine, (PhysBio), Moscow, 115409 Russia
- Sirius University of Science and Technology, Sochi, 354340 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. D. Soloviev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. I. Larionov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - P. A. Kotelnikova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - S. M. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine, (PhysBio), Moscow, 115409 Russia
| |
Collapse
|
124
|
Carigga Gutierrez NM, Le Clainche T, Coll JL, Sancey L, Broekgaarden M. Generating Large Numbers of Pancreatic Microtumors on Alginate-Gelatin Hydrogels for Quantitative Imaging of Tumor Growth and Photodynamic Therapy Optimization. Methods Mol Biol 2022; 2451:91-105. [PMID: 35505013 DOI: 10.1007/978-1-0716-2099-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emerging use of 3D culture models of cancer has provided novel insights into the therapeutic mechanisms of photodynamic therapy on a mesoscopic scale. Especially microscale tumors grown on scaffolds of extracellular matrix can provide statistically robust data on the effects of photosensitizers and photodynamic therapy by leveraging high-throughput imaging-based assays. Although highly informative, the use of such 3D cultures can be impractical due to the high costs and inter-batch variability of the extracellular matrix scaffolds that are necessary to establish such cultures. In this study, we therefore provide a protocol to generate inexpensive and defined hydrogels composed of sodium alginate and gelatin that can be used for culturing 3D microtumors in a manner that is compatible with state-of-the-art imaging assays. Our results reveal that the alginate-gelatin hydrogels can perform similarly to a commercially available ECM scaffold in terms of facilitating microtumor growth. We then applied these microtumor models to quantify the uptake and dark toxicity of benzoporphyrin derivative encapsulated in liposomes with either an anionic or a cationic surface charge. The results indicate that cationic liposomes achieve the highest level of uptake in the microtumors, yet also exert minor toxicity. Moreover, we reveal that there is typically a significant positive correlation between microtumor size and liposome uptake. In conclusion, alginate-based hydrogels are inexpensive and effective scaffolds for 3D culture models of cancer, with versatile applications in research toward photodynamic therapy.
Collapse
Affiliation(s)
| | - Tristan Le Clainche
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université de Grenoble Alpes, Grenoble, France
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université de Grenoble Alpes, Grenoble, France
| | - Lucie Sancey
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université de Grenoble Alpes, Grenoble, France
| | - Mans Broekgaarden
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université de Grenoble Alpes, Grenoble, France.
| |
Collapse
|
125
|
Dragoj M, Stojkovska J, Jovanović Stojanov S, Obradović B, Pešić M. A 3D Biomimetic System for Testing Anticancer Drug Sensitivity. Methods Mol Biol 2022; 2535:1-9. [PMID: 35867218 DOI: 10.1007/978-1-0716-2513-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
3D cultures of cancer cells enable better mimicking of physiological conditions compared to traditional monolayer 2D cultures. Here we describe alginate scaffold-based model that can be used in both static and biomimetic conditions for studying drug sensitivity in cancer cells and multidrug resistance (MDR) mechanisms. This 3D culture model resembles in vivo conditions and provides relevant and reproducible results. It is easy to set up and allows for facile manipulation for downstream analyses. All these remarkable features make this 3D culture model a promising tool in drug discovery and cancer cell biology research.
Collapse
Affiliation(s)
- Miodrag Dragoj
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Stojkovska
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Obradović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
126
|
Nazari H, Heirani-Tabasi A, Ghorbani S, Eyni H, Razavi Bazaz S, Khayati M, Gheidari F, Moradpour K, Kehtari M, Ahmadi Tafti SM, Ahmadi Tafti SH, Ebrahimi Warkiani M. Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends. BIOSENSORS 2021; 12:20. [PMID: 35049648 PMCID: PMC8773546 DOI: 10.3390/bios12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran; (A.H.-T.); (S.H.A.T.)
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14535, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark;
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45371, Iran;
| | - Fatemeh Gheidari
- Department of Biotechnology, University of Tehran, Tehran 14535, Iran;
| | - Keyvan Moradpour
- Department of Chemical Engineering, Sharif University of Technology, Tehran 14535, Iran;
| | - Mousa Kehtari
- Department of Biology, Faculty of Science, University of Tehran, Tehran 14535, Iran;
| | - Seyed Mohsen Ahmadi Tafti
- Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran 14535, Iran;
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran; (A.H.-T.); (S.H.A.T.)
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
- Institute of Molecular Medicine, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
127
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
128
|
Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Front Oncol 2021; 11:782766. [PMID: 34917509 PMCID: PMC8669727 DOI: 10.3389/fonc.2021.782766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Over 90% of potential anti-cancer drug candidates results in translational failures in clinical trials. The main reason for this failure can be attributed to the non-accurate pre-clinical models that are being currently used for drug development and in personalised therapies. To ensure that the assessment of drug efficacy and their mechanism of action have clinical translatability, the complexity of the tumor microenvironment needs to be properly modelled. 3D culture models are emerging as a powerful research tool that recapitulates in vivo characteristics. Technological advancements in this field show promising application in improving drug discovery, pre-clinical validation, and precision medicine. In this review, we discuss the significance of the tumor microenvironment and its impact on therapy success, the current developments of 3D culture, and the opportunities that advancements that in vitro technologies can provide to improve cancer therapeutics.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Laura Rodriguez de la Fuente
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia
| | - Thomas J Grundy
- Life Sciences, Inventia Life Science Pty Ltd, Alexandria, NSW, Australia
| | - Guocheng Fang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
129
|
Lee SY, Teng Y, Son M, Ku B, Moon HS, Tergaonkar V, Chow PKH, Lee DW, Nam DH. High-dose drug heat map analysis for drug safety and efficacy in multi-spheroid brain normal cells and GBM patient-derived cells. PLoS One 2021; 16:e0251998. [PMID: 34855773 PMCID: PMC8638871 DOI: 10.1371/journal.pone.0251998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
To test the safety and efficacy of drugs via a high does drug heat map, a multi-spheroids array chip was developed by adopting a micropillar and microwell structure. In the chip, patient-derived cells were encapsulated in alginate and grown to maturity for more than 7 days to form cancer multi-spheroids. Multi-spheroids grown in conventional well plates require many cells and are easily damaged as a result of multiple pipetting during maintenance culture or experimental procedures. To address these issues, we applied a micropillar and microwell structure to the multi-spheroids array. Patient-derived cells from patients with Glioblastoma (GBM), the most common and lethal form of central nervous system cancer, were used to validate the array chip performance. After forming multi-spheroids with a diameter greater than 100μm in a 12×36 pillar array chip (25mm × 75mm), we tested 70 drug compounds (6 replicates) using a high-dose to determine safety and efficacy for drug candidates. Comparing the drug response of multi-spheroids derived from normal cells and cancer cells, we found that four compounds (Dacomitinib, Cediranib, LY2835219, BGJ398) did not show toxicity to astrocyte cell and were efficacious to patient-derived GBM cells.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Central R & D Center, Medical & Bio Device (MBD) Co., Ltd, Suwon, Republic of Korea
| | - Yvonne Teng
- Research & Development Department, AVATAMED Pte. Ltd., Singapore, Singapore
| | - Miseol Son
- Research & Development Department, AVATAMED Pte. Ltd., Singapore, Singapore
| | - Bosung Ku
- Central R & D Center, Medical & Bio Device (MBD) Co., Ltd, Suwon, Republic of Korea
| | - Ho Sang Moon
- Central R & D Center, Medical & Bio Device (MBD) Co., Ltd, Suwon, Republic of Korea
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital (SGH), Singapore, Singapore
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Faculty (Senior Group Leader), Genome Institute of Singapore (GIS), Singapore, Singapore
- Research Director, Institute of Molecular Cell Biology (IMCB), Singapore, Singapore
| | - Dong Woo Lee
- Department of Biomedical Engineering, Konyang University, Daejon, Korea
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
130
|
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021; 26:7264. [PMID: 34885846 PMCID: PMC8659150 DOI: 10.3390/molecules26237264] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.
Collapse
Affiliation(s)
- Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Ilona Latanska
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Paulina Paul
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Witold Sujka
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| |
Collapse
|
131
|
Hauck N, Neuendorf TA, Männel MJ, Vogel L, Liu P, Stündel E, Zhang Y, Thiele J. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species. SOFT MATTER 2021; 17:10312-10321. [PMID: 34664052 PMCID: PMC8612358 DOI: 10.1039/d1sm01176f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Microscopic hydrogels, also referred to as microgels, find broad application in life and materials science. A well-established technique for fabricating uniform microgels is droplet microfluidics. Here, optimal mixing of hydrogel precursor components is crucial to yield homogeneous microgels with respect to their morphology, mechanics, and distribution of functional moieties. However, when processing premixed polymer precursors that are highly reactive, fast or even instantaneous gelation inside fluid reservoirs or the microchannels of the flow cell commonly occurs, leading to an increase of fluid viscosity over time, and thus exacerbating the intrinsic control over fluid flow rates, droplet and microgel uniformity, which are key selling points of microfluidics in material design. To address these challenges, we utilize microflow cells with integrated electrodes, which enable fast addition and mixing of hydrogel precursors on demand by means of emulsion droplet coalescence. Here, two populations of surfactant-stabilized aqueous droplets - the first containing the material basis of the microgel, and the second containing another gel-forming component (e.g., a crosslinker) are formed at two consecutive microchannel junctions and merged via temporary thin-film instability. Our approach provides the ability to process such hydrogel systems that are otherwise challenging to process into uniform droplets and microgels by conventional droplet microfluidics. To demonstrate its versatility, we fabricate microgels with uniform shape and composition using fast hydrogelation via thiol-Michael addition reaction or non-covalent self-assembly. Furthermore, we elucidate the limitations of electrocoalescence of reactive hydrogel precursors by processing sodium alginate, crosslinked by calcium-induced ionic interactions. For this instantaneous type of hydrogelation, electrocoalescence of alginate and calcium ions does not result in the formation of morphologically isotropic microgels. Instead, it enables the creation of anisotropic microgel morphologies with tunable shape, which have previously only been achieved by selective crosslinking of elaborate higher-order emulsions or by aqueous two-phase systems as microgel templates.
Collapse
Affiliation(s)
- Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Talika A Neuendorf
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Lucas Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Ping Liu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Enno Stündel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| |
Collapse
|
132
|
Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021; 110:967-983. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
Collapse
Affiliation(s)
- Lucas Fabricio Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Bianca C Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| |
Collapse
|
133
|
Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, Mustapha M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:735090. [PMID: 34733829 PMCID: PMC8558675 DOI: 10.3389/fbioe.2021.735090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jingyi Ma
- Duke-NUS Medical School, Singapore, Singapore
| | - Tze Sean Khoo
- UKM Medical Molecular Biology Institute, National University of Malaysia, Bangi, Malaysia
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
134
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
135
|
Pais AS, Reis S, Laranjo M, Caramelo F, Silva F, Botelho MF, Almeida-Santos T. The challenge of ovarian tissue culture: 2D versus 3D culture. J Ovarian Res 2021; 14:147. [PMID: 34724957 PMCID: PMC8561954 DOI: 10.1186/s13048-021-00892-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cryopreservation of ovarian tissue is a powerful technique for preserving female fertility, as it can restore fertility and endocrine function. To increase the longevity of the transplant and decrease the risk of reimplantation of neoplastic cells, several studies have been carried out with culture of ovarian tissue. The aim of this study was to compare a conventional (2D) culture with an alginate matrix three-dimensional (3D) model for ovarian tissue culture. RESULTS The ovarian tissue culture within the alginate matrix (3D) was similar to 2D culture, regarding follicular density and cell apoptosis in follicles and stroma. The proliferation rate remained stable in both models for follicles, but for stromal cell proliferation it decreased only in 3D culture (p = 0.001). At 24 h of culture, cytotoxicity was lower in the 3D model (p = 0.006). As culture time increased, cytotoxicity seemed similar. Degradation of the tissue was suggested by the histological score analysis of tissue morphology after 72 h of culture. Tissue injury was greater (p = 0.01) in 3D culture due to higher interstitial oedema (p = 0.017) and tissue necrosis (p = 0.035). CONCLUSION According to our results, 3D culture of ovarian tissue has no advantage over 2Dculture; it is more time consuming and difficult to perform and has worse reproducibility.
Collapse
Affiliation(s)
- Ana Sofia Pais
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), E.P.E., Coimbra, Portugal.
- Obstetrics Department, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Sandra Reis
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), E.P.E., Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), CIBB, Azinhaga de Santa Comba, Celas, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Mafalda Laranjo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Francisco Caramelo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Fátima Silva
- Pathology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), E.P.E., Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), E.P.E., Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), CIBB, Azinhaga de Santa Comba, Celas, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
136
|
Dubay R, Urban JN, Darling EM. Single-Cell Microgels for Diagnostics and Therapeutics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009946. [PMID: 36329867 PMCID: PMC9629779 DOI: 10.1002/adfm.202009946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 05/14/2023]
Abstract
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.
Collapse
Affiliation(s)
- Ryan Dubay
- Center for Biomedical Engineering, Brown University, 175 Meeting St., Providence, RI 02912, USA
- Draper, 555 Technology Sq., Cambridge, MA 02139, USA
| | - Joseph N Urban
- Center for Biomedical Engineering, Brown University, 175 Meeting St., Providence, RI 02912, USA
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, School of Engineering, Department of Orthopaedics, Brown University, 175 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
137
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
138
|
Piras CC, Patterson AK, Smith DK. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery. Chemistry 2021; 27:13203-13210. [PMID: 34346527 PMCID: PMC8519141 DOI: 10.1002/chem.202101405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/11/2022]
Abstract
This article describes the fabrication of new pH-responsive hybrid gel beads combining the polymer gelator calcium alginate with two different low-molecular-weight gelators (LMWGs) based on 1,3 : 2,4-dibenzylidene-d-sorbitol: pH-responsive DBS-COOH and thermally responsive DBS-CONHNH2 , thus clearly demonstrating that different classes of LMWG can be fabricated into gel beads by using this approach. We also demonstrate that self-assembled multicomponent gel beads can be formed by using different combinations of these gelators. The different gel bead formulations exhibit different responsiveness - the DBS-COOH network can disassemble within those beads in which it is present upon raising the pH. To exemplify preliminary data for a potential application for these hybrid gel beads, we explored aspects of the delivery of the lipid-lowering active pharmaceutical ingredient (API) rosuvastatin. The release profile of this statin from the hybrid gel beads is pH-dependent, with greater release at pH 7.4 than at pH 4.0 - primary control of this process results from the pKa of the API. The extent of pH-mediated API release is also significantly further modified according to gel bead composition. The DBS-COOH/alginate beads show rapid, highly effective drug release at pH 7.4, whereas the three-component DBS-COOH/DBS-CONHNH2 /alginate system shows controlled slow release of the API under the same conditions. These initial results indicate that such gel beads constitute a promising, versatile and easily tuned platform suitable for further development for controlled drug-delivery applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | | | - David K. Smith
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| |
Collapse
|
139
|
Jahandideh A, Noori H, Rahimi B, Hamblin MR, Behroozi Z, Ramezani M, Ramezani F. Alginate scaffolds improve functional recovery after spinal cord injury. Eur J Trauma Emerg Surg 2021; 48:1711-1721. [PMID: 34363487 DOI: 10.1007/s00068-021-01760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE In this systematic review and meta-analysis, the use of alginate for the repair of the damaged spinal cord was investigated. METHODS After an extensive search of databases including MEDLINE, SCOPUS, EMBASE and Web of Science, an initial screening was performed based on inclusion and exclusion criteria. The full text of related articles was reviewed and data mining was performed. Data were analyzed by calculating the mean of ratios between treated and untreated groups using STATA software. Subgroup analysis was also performed due to heterogeneity. Articles were subjected to quality control and PRISMA guidelines were followed. RESULTS Twelve studies and 17 experiments were included in the study. After SCI, alginate hydrogel had a moderate effect on motor function recovery (SMD = 0.64; 95% CI 0.28-1.00; p < 0.0001) and alginate scaffolds loaded with drugs, growth factors, or cells on the SCI group compared with untreated SCI animals showed has a strong effect in the treatment of SCI (SMD = 2.82; 95% CI 1.49-4.145; p < 0.0001). Treatment with drug/cell in combination with alginate was more strongly significant compared to the groups treated with drug/cell alone (SMD = 4.55; 95% CI 1.42-7.69; p < 0.0001). Alginate alone or in combination therapy when used as an implant, had a more significant effect than injection. CONCLUSION These findings suggest that alginate is an efficient scaffold for functional recovery and even a much better scaffold for drug/cell delivery after SCI.
Collapse
Affiliation(s)
- Atefeh Jahandideh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Zahra Behroozi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
140
|
Gilmozzi V, Gentile G, Riekschnitz DA, Von Troyer M, Lavdas AA, Kerschbamer E, Weichenberger CX, Rosato-Siri MD, Casarosa S, Conti L, Pramstaller PP, Hicks AA, Pichler I, Zanon A. Generation of hiPSC-Derived Functional Dopaminergic Neurons in Alginate-Based 3D Culture. Front Cell Dev Biol 2021; 9:708389. [PMID: 34409038 PMCID: PMC8365765 DOI: 10.3389/fcell.2021.708389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent an unlimited cell source for the generation of patient-specific dopaminergic (DA) neurons, overcoming the hurdle of restricted accessibility to disease-affected tissue for mechanistic studies on Parkinson's disease (PD). However, the complexity of the human brain is not fully recapitulated by existing monolayer culture methods. Neurons differentiated in a three dimensional (3D) in vitro culture system might better mimic the in vivo cellular environment for basic mechanistic studies and represent better predictors of drug responses in vivo. In this work we established a new in vitro cell culture system based on the microencapsulation of hiPSCs in small alginate/fibronectin beads and their differentiation to DA neurons. Optimization of hydrogel matrix concentrations and composition allowed a high viability of embedded hiPSCs. Neural differentiation competence and efficiency of DA neuronal generation were increased in the 3D cultures compared to a conventional 2D culture methodology. Additionally, electrophysiological parameters and metabolic switching profile confirmed increased functionality and an anticipated metabolic resetting of neurons grown in alginate scaffolds with respect to their 2D counterpart neurons. We also report long-term maintenance of neuronal cultures and preservation of the mature functional properties. Furthermore, our findings indicate that our 3D model system can recapitulate mitochondrial superoxide production as an important mitochondrial phenotype observed in neurons derived from PD patients, and that this phenotype might be detectable earlier during neuronal differentiation. Taken together, these results indicate that our alginate-based 3D culture system offers an advantageous strategy for the reliable and rapid derivation of mature and functional DA neurons from hiPSCs.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Diana A. Riekschnitz
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael Von Troyer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian X. Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Marcelo D. Rosato-Siri
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
141
|
Jang BS, Park KH, Suh EY, Lee BS, Kang SW, Huh KM. Non-cell adhesive hexanoyl glycol chitosan hydrogels for stable and efficient formation of 3D cell spheroids with tunable size and density. Int J Biol Macromol 2021; 187:955-963. [PMID: 34343581 DOI: 10.1016/j.ijbiomac.2021.07.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022]
Abstract
Three-dimensional (3D) culture systems that provide a more physiologically similar environment than conventional two-dimensional (2D) cultures have been extensively developed. Previously we have provided a facile method for the formation of 3D spheroids using non-adhesive N-hexanoyl glycol chitosan (HGC) hydrogel-coated dishes, but with limitations such as low gel stability and weak mechanical properties. In this study, chemically crosslinked hydrogels were prepared by photocrosslinking of methacrylated HGCs (M-HGCs), and their spheroid-forming abilities were evaluated for long-term 3D cell cultures. The M-HGC hydrogels demonstrated not only enhanced gel stability, but also good spheroid-forming abilities. Furthermore, the M-HGC-coated dishes were effective in generating spheroids of larger size and higher cell density depending on the crosslinking density of the M-HGCs. These results indicate that our hydrogel-coated dish system could be widely applied as an effective technique to produce cell spheroids with customized sizes and densities that are essential for tissue engineering and drug screening.
Collapse
Affiliation(s)
- Bo Seul Jang
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Kyoung Hwan Park
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea; Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Eun Yeong Suh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Byoung-Seok Lee
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
142
|
Clapacs Z, Neal S, Schuftan D, Tan X, Jiang H, Guo J, Rudra J, Huebsch N. Biocompatible and Enzymatically Degradable Gels for 3D Cellular Encapsulation under Extreme Compressive Strain. Gels 2021; 7:101. [PMID: 34449624 PMCID: PMC8395866 DOI: 10.3390/gels7030101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023] Open
Abstract
Cell encapsulating scaffolds are necessary for the study of cellular mechanosensing of cultured cells. However, conventional scaffolds used for loading cells in bulk generally fail at low compressive strain, while hydrogels designed for high toughness and strain resistance are generally unsuitable for cell encapsulation. Here we describe an alginate/gelatin methacryloyl interpenetrating network with multiple crosslinking modes that is robust to compressive strains greater than 70%, highly biocompatible, enzymatically degradable and able to effectively transfer strain to encapsulated cells. In future studies, this gel formula may allow researchers to probe cellular mechanosensing in bulk at levels of compressive strain previously difficult to investigate.
Collapse
Affiliation(s)
- Zain Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| | - Sydney Neal
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| | - David Schuftan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| | - Xiaohong Tan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| | - Huanzhu Jiang
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| | - Jingxuan Guo
- Department of Mechanical Engineering and Material Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Jai Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.C.); (S.N.); (D.S.); (X.T.); (H.J.); (J.R.)
| |
Collapse
|
143
|
Colombo M, Alkali IM, Prochowska S, Luvoni GC. Fighting Like Cats and Dogs: Challenges in Domestic Carnivore Oocyte Development and Promises of Innovative Culture Systems. Animals (Basel) 2021; 11:2135. [PMID: 34359262 PMCID: PMC8300176 DOI: 10.3390/ani11072135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro embryo production in cats and dogs still presents some challenges, and it needs to be optimized to transfer efficient protocols to related wild, endangered species. While the chemical composition of culture media has been the focus of several studies, the importance of culture substrates for oocyte and embryo culture has often been neglected. Traditional in vitro systems, i.e., two-dimensional cultures, do not resemble the physiological environments where cells develop, and they may cause morphological and functional alterations to oocytes and embryos. More modern three-dimensional and microfluidic culture system better mimic the structure and the stimuli found in in vivo conditions, and they could better support the development of oocytes and embryos in vitro, as well as the maintenance of more physiological behaviors. This review describes the different culture systems tested for domestic carnivore reproductive cells along the years, and it summarizes their effects on cultured cells with the purpose of analyzing innovative options to improve in vitro embryo production outcomes.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Isa Mohammed Alkali
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366 Wrocław, Poland;
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| |
Collapse
|
144
|
Munoz-Garcia J, Jubelin C, Loussouarn A, Goumard M, Griscom L, Renodon-Cornière A, Heymann MF, Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol 2021; 30:100379. [PMID: 34307011 PMCID: PMC8287221 DOI: 10.1016/j.jbo.2021.100379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare tumour entities that arise from the mesenchyme most of which are highly heterogeneous at the cellular, genetic and epigenetic levels. The three main types are osteosarcoma, Ewing sarcoma, and chondrosarcoma. These oncological entities are characterised by high morbidity and mortality and an absence of significant therapeutic improvement in the last four decades. In the field of oncology, in vitro cultures of cancer cells have been extensively used for drug screening unfortunately with limited success. Indeed, despite the massive knowledge acquired from conventional 2D culture methods, scientific community has been challenged by the loss of efficacy of drugs when moved to clinical trials. The recent explosion of new 3D culture methods is paving the way to more relevant in vitro models mimicking the in vivo tumour environment (e.g. bone structure) with biological responses close to the in vivo context. The present review gives a brief overview of the latest advances of the 3D culture methods used for studying primary bone sarcomas.
Collapse
Affiliation(s)
- Javier Munoz-Garcia
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Camille Jubelin
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,Atlantic Bone Screen, Saint-Herblain, France
| | | | - Matisse Goumard
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | | | | | - Marie-Françoise Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,University of Sheffield, Department of Oncology and Metabolism, Medical School, Sheffield, UK
| |
Collapse
|
145
|
Jalili C, Khani Hemmatabadi F, Bakhtiyari M, Abdolmaleki A, Moradi F. Effects of Three-Dimensional Sodium Alginate Scaffold on Maturation and Developmental Gene Expressions in Fresh and Vitrified Preantral Follicles of Mice. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:167-177. [PMID: 34155863 PMCID: PMC8233925 DOI: 10.22074/ijfs.2020.134609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/06/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prior to chemotherapy interventions, n vitroi maturation (IVM) of folliclesthrough vitrification can be used to help young people conserve their fertility. The aim of s tudy was to inves tigate effect of sodium alginat scaffold on follicles development and improvement of the culture medium. MATERIALS AND METHODS This experimental study was conducted on immature female BALB/c mice (12-14 days). Follicles were gathered mechanically and placed in α-Minimal Essential Medium (α-MEM) containing 5% fetal bovine serum (FBS). Some pre-antral follicles were frozen. The fresh and vitrified follicles were cultured in different concentrations of sodium alginate (0.25%, 0.5%, and 1%) and two dimensional (2D) medium for 12 days. The samples were evaluated for viability percentage, the number of MII-phase oocytes and reactive oxygen specious (ROS) level. Additionally, Gdf9, Bmp15, Bmp7, Bmp4, Gpx, mnSOD and Gcs gene expressions were assessed in the samples. RESULTS The highest and lowest percentages of follicle viability and maturation in the fresh and vitrified groups were respectively 0.5% concentration and 2D culture. There was no significant difference among the concentrations of 0.25% and 1%. Viability and maturation of follicles showed a significant increase in the fresh groups in comparison with the vitrified groups. ROS levels in the both fresh and vitrified groups with different concentrations of alginate showed a significant decrease compared to the control group. ROS levels in follicles showed a significant decrease in the fresh groups in comparison with the vitrified groups (P≤0.0001). The highest gene expression levels were observed in the 0.5% alginate (P≤0.0001). Moreover, the viability percentage, follicle maturation, and gene expression levels were higher in the fresh groupsthan the vitrified groups (P≤0.0001). CONCLUSION Alginate hydrogel at a proper concentration of 5%, not only helps follicle get mature, but also promotes the expression of developmental genes and reducesthe level of intracellular ROS. Follicular vitrification decreases quality of the follicles, which are partially compensated using a three dimensional (3D) cell culture medium.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fuzieh Khani Hemmatabadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Anatomy Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Anatomy Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abdolmaleki
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Moradi
- Anatomy Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
146
|
Svanström A, Rosendahl J, Salerno S, Leiva MC, Gregersson P, Berglin M, Bogestål Y, Lausmaa J, Oko A, Chinga-Carrasco G, Petronis S, Standoft S, Ståhlberg A, Håkansson J, Landberg G. Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery. Biomed Mater 2021; 16. [PMID: 34030145 DOI: 10.1088/1748-605x/ac0451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designingin vivo-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer. Here, the biocompatible polysaccharide alginate was used as base material to generate scaffolds consisting of a 3D grid containing periostin and hydroxyapatite. Breast cancer cell lines (MCF7 and MDA-MB-231) produced similar phenotypes and gene expression levels of cancer stem cell, epithelial-mesenchymal transition, differentiation and proliferation markers when cultured on 3DPS and PDS, contrasting conventional 2D cultures. Importantly, cells cultured on 3DPS and PDS showed scaffold-specific responses to cytotoxic drugs (doxorubicin and 5-fluorouracil) that were different from 2D cultured cells. In conclusion, the data presented support the use of a tunable alginate-based 3DPS as a tumor model in breast cancer drug discovery.
Collapse
Affiliation(s)
- Andreas Svanström
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Jennifer Rosendahl
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Simona Salerno
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Maria Carmen Leiva
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Mattias Berglin
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Yalda Bogestål
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Jukka Lausmaa
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Asaf Oko
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | | | - Sarunas Petronis
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Simon Standoft
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-41390 Gothenburg, Sweden
| | - Joakim Håkansson
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, PO Box 440, SE-40530 Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| |
Collapse
|
147
|
Ahmed H, Stokke BT. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach. LAB ON A CHIP 2021; 21:2232-2243. [PMID: 33903873 DOI: 10.1039/d1lc00111f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micron-sized alginate hydrogel beads are extensively employed as an encapsulation medium for biochemical and biomedical applications. Here we report on the microfluidic assisted fabrication of calcium alginate (Ca-alginate) beads by on-chip picoinjection of aqueous calcium chloride (CaCl2) in emulsified aqueous sodium alginate (Na-alginate) droplets or by picoinjection of Na-alginate solution in emulsified aqueous CaCl2 droplets. There is no added chelator to reduce the Ca activity in either of the two strategies. The two fabrication strategies are implemented using a flow-focusing and picoinjection modules in a single PDMS chip. Aqueous alginate solution was emulsified and infused with CaCl2 solution as the squeezed droplet pass the picoinjection channel; consequently, monodisperse, spherical, and structurally homogeneous Ca-alginate beads were obtained. Monodisperse alginate microgel populations with a mean diameter in the range of 8 to 28 μm and standard deviation less than 1 μm were successfully generated using microfluidic channels with various dimensions and controlling the flow parameters. Monodisperse but also non-spherical particles with diameters 6 to 15 μm were also fabricated when picoinjecting Na-alginate solution in emulsified aqueous CaCl2 droplets. The Ca-alginate microbeads fabricated with tailormade size in the range from sub-cellular and upwards were in both strategies realized without any use of chelators or change in pH conditions, which is considered a significant advantage for further exploitation as encapsulation process for improved enzymatic activity and cell viability.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
148
|
Majidi SS, Su Y, Jørgensen ML, Müller C, Forooghi P, Nie G, Chen M. Rayleigh Instability-Driven Coaxial Spinning of Knotted Cell-Laden Alginate Fibers as Artificial Lymph Vessels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22142-22149. [PMID: 33960773 DOI: 10.1021/acsami.1c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Constructing artificial lymph vessels, which play a key role in the immune response, can provide new insights into immunology and disease pathologies. An immune tissue is a highly complex network that consists of lymph vessels, with a "beads-on-a-string" knotted structure. Herein, we present the facile and rapid fabrication of beads-on-a-string knotted cell-laden fibers using coaxial spinning of alginate by exploiting the Plateau-Rayleigh instability. It is shown how alterations in the flow rate and alginate concentration greatly affect the beads-on-a-string structure, rooted in the Plateau-Rayleigh instability theory. Biocompatibility was confirmed by the lactate dehydrogenase (LDH) assay and live/dead staining of the encapsulated human white blood cells. Finally, the encapsulated white blood cells were still functional as indicated by their anti-CD3 activation to secrete interleukin 2. The rapid fabrication of a cell-laden beads-on-a-string three-dimensional (3D) culture platform enables a crude mimicry of the lymph vessel structure. With joint expertise in immunology, microfluidics, and bioreactors, the technology may contribute to the mechanistic assay of human immune response in vitro and functional replacement.
Collapse
Affiliation(s)
- Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 101400, China
| | - Yingchun Su
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Mathias Lindh Jørgensen
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Christoph Müller
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Pourya Forooghi
- Department of Mechanical and Production Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Guangjun Nie
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Menglin Chen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
149
|
Solano AG, Dupuy J, Therriault H, Liberelle B, Faucheux N, Lauzon MA, Virgilio N, Paquette B. An alginate-based macroporous hydrogel matrix to trap cancer cells. Carbohydr Polym 2021; 266:118115. [PMID: 34044932 DOI: 10.1016/j.carbpol.2021.118115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
To overcome the radioresistance of glioblastoma (GBM) cells infiltrated in the brain, we propose to attract these cancer cells into a trap to which a lethal radiation dose can be delivered safely. Herein, we have prepared and characterized a sodium alginate-based macroporous hydrogel as a potential cancer cell trap. Microcomputed X-ray tomography shows that the hydrogel matrices comprise interconnected pores with an average diameter of 300 μm. The F98 GBM cells migrated in the pores and mainly accumulated in the center of the matrix. Depending on the number of cancer cells added, the grafting of RGD cell-adhesion peptides to the alginate resulted in a 4 to 10 times increase in the number of F98 cells (which overexpress the associated αvβ3 and αvβ5 binding integrins) retained in the matrix. Finally, a radiation dose of 25 Gy eliminated all F98 cells trapped in the matrix, without significantly altering the matrix mechanical properties.
Collapse
Affiliation(s)
- Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Joan Dupuy
- Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoît Liberelle
- Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nick Virgilio
- Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, Canada.
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
150
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|