101
|
A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci 2021; 287:102318. [PMID: 33242713 DOI: 10.1016/j.cis.2020.102318] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Applications of nanotechnology in various spheres have increased manifold as it offers solution to unsolved problems with higher effectiveness. Nanoemulsions are one such system that are widely studied and have a very promising potential in solving various issues as those encountered in delivery of drugs, pesticides or any other biologically potent substance. Apart from this, nanoemulsions have wide applications in the field of food, cosmetics, skincare and agriculture. In this review, we have discussed and compared the methods of nanoemulsion preparation and various methods of synthesis, along with few major applications in various fields of science and technology. We sincerely hope that this review will help to understand the different aspects of nanoemulsions and help us to explore its potent applications in various fields.
Collapse
|
102
|
Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur J Med Chem 2021; 209:112905. [PMID: 33069435 PMCID: PMC7548078 DOI: 10.1016/j.ejmech.2020.112905] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
There are several routes of administration to the brain, including intraparenchymal, intraventricular, and subarachnoid injections. The blood-brain barrier (BBB) impedes the permeation and access of most drugs to the central nervous system (CNS), and consequently, many neurological diseases remain undertreated. For past decades, to circumvent this effect, several nanocarriers have been developed to deliver drugs to the brain. Importantly, intranasal (IN) administration can allow direct delivery of drugs into the brain through the anatomical connection between the nasal cavity and brain without crossing the BBB. In this regard, dendrimers may possess great potential to deliver drugs to the brain by IN administration, bypassing the BBB and reducing systemic exposure and side effects, to treat diseases of the CNS. In this original concise review, we highlighted the few examples advocated regarding the use of dendrimers to deliver CNS drugs directly via IN. This review highlighed the few examples of the association of dendrimer encapsulating drugs (e.g., small compounds: haloperidol and paeonol; macromolecular compounds: dextran, insulin and calcitonin; and siRNA) using IN administration. Good efficiencies were observed. In addition, we will present the in vivo effects of PAMAM dendrimers after IN administration, globally, showing no general toxicity.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination Du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex 4, France; Université Toulouse 118 Route de Narbonne, 31077, Toulouse, Cedex 4, France.
| |
Collapse
|
103
|
Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics 2020; 12:pharmaceutics12121246. [PMID: 33371285 PMCID: PMC7766211 DOI: 10.3390/pharmaceutics12121246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and can be an important cause of the damages in cerebral ischemia. Oxidative stress arises from high levels of reactive oxygen species (ROS). Consequently, on this rational base, antioxidants (many of natural origin) are proposed as potential drugs to prevent ROS noxious actions because they can protect the target tissues from the oxidative stress. However, the potential of antioxidants is limited, owing to the presence of the blood-brain barrier (BBB), which is difficult to cross with a consequent low bioavailability of the drug into the brain after systemic (intravenous, intraperitoneal, oral) administrations. One strategy to improve the delivery of antioxidants to the brain involves the use of the so-called nose-to-brain route, with the administration of the antioxidant in specific nasal formulations and its passage to the central nervous system (CNS) mainly through the olfactory nerve way. In the current literature, many examples show encouraging results in studies carried out in cell cultures and in animal models about the potential neuroprotective effects of antioxidants when administered through the nose. This review concerns the nose-to-brain route for the brain targeting of antioxidants as a potential tool for the therapy of neurological diseases.
Collapse
|
104
|
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020; 12:E1230. [PMID: 33352959 PMCID: PMC7767046 DOI: 10.3390/pharmaceutics12121230] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of various central nervous system (CNS) diseases has been challenging, despite the rapid development of several novel treatment approaches. The blood-brain barrier (BBB) is one of the major issues in the treatment of CNS diseases, having major role in the protection of the brain but simultaneously constituting the main limiting hurdle for drugs targeting the brain. Nasal drug delivery has gained significant interest for brain targeting over the past decades, wherein the drug is directly delivered to the brain by the trigeminal and olfactory pathway. Various novel and promising formulation approaches have been explored for drug targeting to the brain by nasal administration. Nanoemulsions have the potential to avoid problems, including low solubility, poor bioavailability, slow onset of action, and enzymatic degradation. The present review highlights research scenarios of nanoemulsions for nose-to-brain delivery for the management of CNS ailments classified on the basis of brain disorders and further identifies the areas that remain unexplored. The significance of the total dose delivered to the target region, biodistribution studies, and long-term toxicity studies have been identified as the key areas of future research.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Dinesh M. Pardhi
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (D.M.P.); (J.R.)
| | - Jarkko Rautio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (D.M.P.); (J.R.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
105
|
Gettemans J, De Dobbelaer B. Transforming nanobodies into high-precision tools for protein function analysis. Am J Physiol Cell Physiol 2020; 320:C195-C215. [PMID: 33264078 DOI: 10.1152/ajpcell.00435.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-domain antibodies, derived from camelid heavy antibodies (nanobodies) or shark variable new antigen receptors, have attracted increasing attention in recent years due to their extremely versatile nature and the opportunities they offer for downstream modification. Discovered more than three decades ago, these 120-amino acid (∼15-kDa) antibody fragments are known to bind their target with high specificity and affinity. Key features of nanobodies that make them very attractive include their single-domain nature, small size, and affordable high-level expression in prokaryotes, and their cDNAs are routinely obtained in the process of their isolation. This facilitates and stimulates new experimental approaches. Hence, it allows researchers to formulate new answers to complex biomedical questions. Through elementary PCR-based technologies and chemical modification strategies, their primary structure can be altered almost at leisure while retaining their specificity and biological activity, transforming them into highly tailored tools that meet the increasing demands of current-day biomedical research. In this review, various aspects of camelid nanobodies are expounded, including intracellular delivery in recombinant format for manipulation of, i.e., cytoplasmic targets, their derivatization to improve nanobody orientation as a capturing device, approaches to reversibly bind their target, their potential as protein-silencing devices in cells, the development of strategies to transfer nanobodies through the blood-brain barrier and their application in CAR-T experimentation. We also discuss some of their disadvantages and conclude with future prospects.
Collapse
Affiliation(s)
- Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Brian De Dobbelaer
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
106
|
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2020; 18:169-185. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Epilepsy, a major neurological disorder affects about 1% of the Indian population. The discovery of noninvasive strategies for epilepsy presents a challenge for the scientists. Different types of nose-to-brain dosage-forms have been studied for epilepsy management. It aims to give new perspectives for developing new and existing anti-epileptic drugs. Combining nanotechnology with nose-to-brain approach can help in promoting the treatment efficacy by site-specific delivery. Also, it will minimize the side-effects and patient noncompliance observed in conventional administration routes. Peptide delivery can be an interesting approach for the management of epilepsy. Drug-loaded intranasal nanoformulations exhibit diverse prospective potentials in the management of epilepsy. Considering that, nanotherapy using nose-to-brain delivery as a prospective technique for the efficient management of epilepsy is reviewed. AREAS COVERED The authors have compiled all recently available data pertaining to the nose-to-brain delivery of therapeutics using nanotechnological strategies. The fundamental mechanism of nose-to-brain delivery, claims for intranasal delivery and medical devices for epilepsy are discussed. EXPERT OPINION Drug-loaded intranasal nanoformulations exhibit different prospective potentials in the management of epilepsy. Considering the foregoing research done in the field of nanotechnology, globally, authors propose nose-to-brain delivery of nanoformulations as a potential technique for the efficient management of epilepsy.
Collapse
Affiliation(s)
- Mihika Shringarpure
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.,SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
107
|
Curcumin and Quercetin-Loaded Nanoemulsions: Physicochemical Compatibility Study and Validation of a Simultaneous Quantification Method. NANOMATERIALS 2020; 10:nano10091650. [PMID: 32842590 PMCID: PMC7558409 DOI: 10.3390/nano10091650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Biphasic oil/water nanoemulsions have been proposed as delivery systems for the intranasal administration of curcumin (CUR) and quercetin (QU), due to their high drug entrapment efficiency, the possibility of simultaneous drug administration and protection of the encapsulated compounds from degradation. To better understand the physicochemical and biological performance of the selected formulation simultaneously co-encapsulating CUR and QU, a stability test of the compound mixture was firstly carried out using X-ray powder diffraction and thermal analyses, such as differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA). The determination and quantification of the encapsulated active compounds were then carried out being an essential parameter for the development of innovative nanomedicines. Thus, a new HPLC-UV/Vis method for the simultaneous determination of CUR and QU in the nanoemulsions was developed and validated. The X-ray diffraction analyses demonstrated that no interaction between the mixture of active ingredients, if any, is strong enough to take place in the solid state. Moreover, the thermal analysis demonstrated that the CUR and QU are stable in the nanoemulsion production temperature range. The proposed analytical method for the simultaneous quantification of the two actives was selective and linear for both compounds in the range of 0.5-12.5 µg/mL (R2 > 0.9997), precise (RSD below 3%), robust and accurate (recovery 100 ± 5 %). The method was validated in accordance with ICH Q2 R1 "Validation of Analytical Procedures" and CDER-FDA "Validation of chromatographic methods" guideline. Furthermore, the low limit of detection (LOD 0.005 µg/mL for CUR and 0.14 µg/mL for QU) and the low limit of quantification (LOQ 0.017 µg/mL for CUR and 0.48 µg/mL for QU) of the method were suitable for the application to drug release and permeation studies planned for the development of the nanoemulsions. The method was then applied for the determination of nanoemulsions CUR and QU encapsulation efficiencies (> 99%), as well as for the stability studies of the two compounds in simulated biological fluids over time. The proposed method represents, to our knowledge, the only method for the simultaneous quantification of CUR and QU in nanoemulsions.
Collapse
|
108
|
Grijota-Martínez C, Bárez-López S, Ausó E, Refetoff S, Frey WH, Guadaño-Ferraz A. Intranasal delivery of Thyroid hormones in MCT8 deficiency. PLoS One 2020; 15:e0236113. [PMID: 32687511 PMCID: PMC7371167 DOI: 10.1371/journal.pone.0236113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of function mutations in the gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to severe neurodevelopmental defects in humans associated with a specific thyroid hormone phenotype manifesting high serum 3,5,3'-triiodothyronine (T3) and low thyroxine (T4) levels. Patients present a paradoxical state of peripheral hyperthyroidism and brain hypothyroidism, this last one most likely arising from impaired thyroid hormone transport across the brain barriers. The administration of thyroid hormones by delivery pathways that bypass the brain barriers, such as the intranasal delivery route, offers the possibility to improve the neurological defects of MCT8-deficient patients. In this study, the thyroid hormones T4 and T3 were administrated intranasally in different mouse models of MCT8 deficiency. We have found that, under the present formulation, intranasal administration of thyroid hormones does not increase the content of thyroid hormones in the brain and further raises the peripheral thyroid hormone levels. Our data suggests intranasal delivery of thyroid hormones is not a suitable therapeutic strategy for MCT8 deficiency, although alternative formulations could be considered in the future to improve the nose-to-brain transport.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
| | - Soledad Bárez-López
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Eva Ausó
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Spain
| | - Samuel Refetoff
- Departments of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Committee on Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - William H. Frey
- HealthPartners Neuroscience Center, St. Paul, Minnesota, United States of America
- HealthPartners Institute, St. Paul, Minnesota, United States of America
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
109
|
Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery. Pharmaceutics 2020; 12:pharmaceutics12070678. [PMID: 32709076 PMCID: PMC7407154 DOI: 10.3390/pharmaceutics12070678] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Brain infections as meningitis and encephalitis are attracting a great interest. Challenges in the treatment of these diseases are mainly represented by the blood brain barrier (BBB) that impairs the efficient delivery of even very potent drugs to reach the brain. The nose to the brain administration route, is a non-invasive alternative for a quick onset of action, and enables the transport of numerous medicinal agents straight to the brain thus workarounding the BBB through the highly vascularized olfactory region. In this report, Thymus vulgaris and Syzygium aromaticum essential oils (EOs) were selected to be included in chitosan coated nanoemulsions (NEs). The EOs were firstly analyzed to determine their chemical composition, then used to prepare NEs, that were deeply characterized in order to evaluate their use in intranasal administration. An in vitro evaluation against a collection of clinical isolated bacterial strains was carried out for both free and nanoemulsioned EOs. Chitosan coated NEs showed to be a potential and effective intranasal formulation against multi-drug resistant Gram-negative bacteria such as methicillin-susceptible Staphylococcus aureus and multi-drug resistant Gram-negative microorganisms including carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae.
Collapse
|
110
|
Bazán Henostroza MA, Curo Melo KJ, Nishitani Yukuyama M, Löbenberg R, Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
111
|
Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, Choudhury H. Nose to Brain Delivery of Nanocarriers Towards Attenuation of Demented Condition. Curr Pharm Des 2020; 26:2233-2246. [DOI: 10.2174/1381612826666200313125613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Increasing incidence of demented patients around the globe with limited FDA approved conventional
therapies requires pronounced research attention for the management of the demented conditions in the growing
elderly population in the developing world. Dementia of Alzheimer’s type is a neurodegenerative disorder, where
conventional therapies are available for symptomatic treatment of the disease but possess several peripheral toxicities
due to lack of brain targeting. Nanotechnology based formulations via intranasal (IN) routes of administration
have shown to improve therapeutic efficacy of several therapeutics via circumventing blood-brain barrier and
limited peripheral exposure. Instead of numerous research on polymeric and lipid-based nanocarriers in the improvement
of therapeutic chemicals and peptides in preclinical research, a step towards clinical studies still requires
wide-ranging data on safety and efficacy. This review has focused on current approaches of nanocarrierbased
therapies on Alzheimer’s disease (AD) via the IN route for polymeric and lipid-based nanocarriers for the
improvement of therapeutic efficacy and safety. Moreover, the clinical application of IN nanocarrier-based delivery
of therapeutics to the brain needs a long run; however, proper attention towards AD therapy via this platform
could bring a new era for the AD patients.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, 47500, Malaysia
| | - Davinaa C. Rajeswary
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, 47500, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Santosh A. Kumbhar
- Department of Pharmaceutics, Marathwada Mitra Mandals, College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
112
|
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci 2020; 14:494. [PMID: 32581676 PMCID: PMC7297271 DOI: 10.3389/fnins.2020.00494] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer’s, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Archna Panghal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
113
|
Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu J, Gomez-Pinedo U, Mateos-Díaz JC. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front Bioeng Biotechnol 2020; 8:389. [PMID: 32432095 PMCID: PMC7214799 DOI: 10.3389/fbioe.2020.00389] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that the central nervous system (CNS) has a limited regenerative capacity and that many therapeutic molecules cannot cross the blood brain barrier (BBB). The use of biomaterials has emerged as an alternative to overcome these limitations. For many years, biomedical applications of chitosan have been studied due to its remarkable biological properties, biocompatibility, and high versatility. Moreover, the interest in this biomaterial for CNS biomedical implementation has increased because of its ability to cross the BBB, mucoadhesiveness, and hydrogel formation capacity. Several chitosan-based biomaterials have been applied with promising results as drug, cell and gene delivery vehicles. Moreover, their capacity to form porous scaffolds and to bear cells and biomolecules has offered a way to achieve neural regeneration. Therefore, this review aims to bring together recent works that highlight the potential of chitosan and its derivatives as adequate biomaterials for applications directed toward the CNS. First, an overview of chitosan and its derivatives is provided with an emphasis on the properties that favor different applications. Second, a compilation of works that employ chitosan-based biomaterials for drug delivery, gene therapy, tissue engineering, and regenerative medicine in the CNS is presented. Finally, the most interesting trends and future perspectives of chitosan and its derivatives applications in the CNS are shown.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Jorge Matias-Guiu
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gomez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Juan C Mateos-Díaz
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
114
|
Sun Y, Li L, Xie H, Wang Y, Gao S, Zhang L, Bo F, Yang S, Feng A. Primary Studies on Construction and Evaluation of Ion-Sensitive in situ Gel Loaded with Paeonol-Solid Lipid Nanoparticles for Intranasal Drug Delivery. Int J Nanomedicine 2020; 15:3137-3160. [PMID: 32440115 PMCID: PMC7210040 DOI: 10.2147/ijn.s247935] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Paeonol (PAE) is a potential central neuroprotective agent with poor water solubility and rapid metabolism in vivo. The key to improve the clinical application of PAE in the treatment of neurodegenerative diseases is to improve the brain delivery of it. The purpose of this study was to construct a paeonol-solid lipid nanoparticles-in situ gel (PAE-SLNs-ISG) drug delivery system based on nose-brain transport pathway. MATERIALS AND METHODS In this study, the stability of PAE in simulated biological samples was studied firstly in order to clarify the reasons for low oral bioavailability. Paeonol-solid lipid nanoparticles (PAE-SLNs) were prepared by high-temperature emulsification-low-temperature curing combined with ultrasound. The PAE-SLNs-ISG drug delivery system was constructed, and related formulation optimization, preparation characterization, cell evaluation and in vivo evaluation were performed. RESULTS The metabolic mechanism of PAE incubated in the liver microsomes metabolic system was in accordance with the first-order kinetics, and the half-life was 0.23 h. PAE-SLNs were polyhedral or spherical particles with good dispersion and the particle size was 166.79 nm ± 2.92 nm. PAE-SLNs-ISG solution was a Newtonian fluid with a viscosity of 44.36 mPa · S ± 2.89 mPa · S. The viscosity of PAE-SLNs-ISG gel was 1542.19 mPa · S ± 19.30 mPa · S, and the rheological evaluation showed that the gel was a non-Newtonian pseudoplastic fluid with shear thinning, thixotropy and yield value. The release mechanism of PAE from PAE-SLNs was drug diffusion; the release mechanism of PAE from PAE-SLNs-ISG was a synergistic effect of skeleton erosion and drug diffusion. The cell viabilities of PAE-SLNs and PAE-SLNs-ISG in the concentration range of 0.001 µg/mL to 10 µg/mL were higher than 90%, showing a low level of cytotoxicity. The geometric mean fluorescent intensities of RPMI 2650 cells incubated with fluorescein isothiocyanate-solid lipid nanoparticles (FITC-SLNs) for 1 h, 4 h and 6 h were 1841 ± 24, 2261 ± 27 and 2757 ± 22, respectively. Cyanine7 NHS ester-solid lipid nanoparticles-in situ gel (Cy7-SLNs-ISG) accumulated effectively in the brain area after administration through the olfactory area, and the fluorescence response was observed in olfactory bulb, cerebellum and striatum. CONCLUSION SLNs-ISG nose-brain drug delivery system can effectively deliver SLNs to brain regions, and it is a potentially effective strategy to realize the brain region delivery of PAE.
Collapse
Affiliation(s)
- Yue Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Lingjun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Yuzhen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Shuang Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Li Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Fumin Bo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Shanjing Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Anjie Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| |
Collapse
|
115
|
Kaur A, Nigam K, Bhatnagar I, Sukhpal H, Awasthy S, Shankar S, Tyagi A, Dang S. Treatment of Alzheimer's diseases using donepezil nanoemulsion: an intranasal approach. Drug Deliv Transl Res 2020; 10:1862-1875. [PMID: 32297166 DOI: 10.1007/s13346-020-00754-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer disease (AD) is very common among the older people. There are few medications available as oral and suspension dosage forms for the management of AD. Due to the rising cases of AD and the associated risks of the existing line of treatment, oil in water (o/w) nanoemulsion (NE) loaded with donepezil was prepared to explore intranasal route of administration. The NE was prepared using labrasol (10%), cetyl pyridinium chloride (1% in 80% water), and glycerol (10%), with a drug concentration of 1 mg/ml. The developed NE was characterized for particle size, polydispersity index (PDI), and zeta potential. In vitro release studies were conducted to observe the release of drug. Further in vivo studies of developed NE were done on Sprague Dawley rats using technetium pertechnetate (99mTc) labeled formulations to investigate the nose to brain drug delivery pathway. The nanoemulsion showed particle size of 65.36 nm with a PDI of 0.084 and zeta potential of -10.7 mV. In vitro release studies showed maximum release of 99.22% in 4 h in phosphate-buffered saline, 98% in 2 h in artificial cerebrospinal fluid, and 96% in 2 h in simulated nasal fluid. The cytotoxicity and antioxidant activity of the NE showed dose-dependent cytotoxicity and % radical scavenging activity (%RSA). The images of giemsa staining also confirmed that the developed formulation has no impact on the morphology of cells. Scintigrams showed maximum uptake of NE in the brain. The findings suggested that the developed NE loaded with donepezil hydrochloride could serve as a new approach for the treatment of Alzheimer via nose to brain drug delivery. Graphical abstract.
Collapse
Affiliation(s)
- Atinderpal Kaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Kuldeep Nigam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Ishita Bhatnagar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Himanshu Sukhpal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Stuti Awasthy
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Shivanika Shankar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Amit Tyagi
- Nuclear Medicine Division, INMAS, Defense Research and Development Organization, New Delhi, 110061, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India.
| |
Collapse
|
116
|
Feng J, Rodríguez‐Abreu C, Esquena J, Solans C. A Concise Review on Nano‐emulsion Formation by the Phase Inversion Composition (PIC) Method. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jin Feng
- Inner Mongolia Vocational College of Chemical Engineering Hohhot China
| | - Carlos Rodríguez‐Abreu
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC‐CSIC) and CIBER en BioingenieríaBiomateriales y Nanomedicina, (CIBER‐BBN) Jordi‐Girona 18‐26 08034 Barcelona Spain
| | - Jordi Esquena
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC‐CSIC) and CIBER en BioingenieríaBiomateriales y Nanomedicina, (CIBER‐BBN) Jordi‐Girona 18‐26 08034 Barcelona Spain
| | - Conxita Solans
- Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas (IQAC‐CSIC) and CIBER en BioingenieríaBiomateriales y Nanomedicina, (CIBER‐BBN) Jordi‐Girona 18‐26 08034 Barcelona Spain
| |
Collapse
|
117
|
R David S, Akmar Binti Anwar N, Yian KR, Mai CW, Das SK, Rajabalaya R. Development and Evaluation of Curcumin Liquid Crystal Systems for Cervical Cancer. Sci Pharm 2020; 88:15. [DOI: 10.3390/scipharm88010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Curcumin is a hydrophobic compound with good anti-proliferative, anti-oxidative, and anti-cancer properties but has poor bioavailability. Liquid crystals (LC) can accommodate both hydrophilic and hydrophobic drugs. The aim of this study was to formulate and evaluate a novel vaginal drug delivery system for cervical cancer using a curcumin LC system. The curcumin LC system was formulated using surfactant, glycerol, and water together with curcumin. Three types of surfactants were used to optimize the formulation, i.e., Tween 80, Cremphor EL, and Labrasol. The optimized formulations were subjected to physicochemical analysis, and their efficacy was evaluated in HeLa cells. The pH of the formulations was in the range of 3.91–4.39. Environmental scanning electron microscopy (ESEM) observations revealed spherical as well as hexagonal micelles. In vitro release of LC curcumin from vaginal simulated fluid (VSF, pH 4.5) showed a release from 20.47% to 87.25%. The IC50 of curcumin in HeLa cells was 22.5 μg/mL, while the IC25 and IC75 were 6.5 μg/mL and 35μg/mL, respectively. The cytotoxicity of the formulations was determined in comparison with liquid crystals without curcumin and pure curcumin by performing a t-test based on a significance level of p less than or equal to 0.05 (p ≤ 0.05). The curcumin LC system was able to release the required amount of drug and was effective against the cervical cancer cell line examined.
Collapse
Affiliation(s)
- Sheba R David
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | - Nurul Akmar Binti Anwar
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Koh Rhun Yian
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Govt. of West Bengal, West Bengal 735101, India
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
118
|
Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:1-31. [PMID: 32211216 PMCID: PMC7076302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Intranasal (IN) delivery is a rapidly developing area for therapies with great potential for the treatment of central nervous system (CNS) diseases. Moreover, in vivo imaging is becoming an important part of therapy assessment, both clinically in humans and translationally in animals. IN drug delivery is an alternative to systemic administration that uses the direct anatomic pathway between the olfactory/trigeminal neuroepithelium of the nasal mucosa and the brain. Several drugs have already been approved for IN application, while others are undergoing development and testing. To better understand which imaging modalities are being used to assess IN delivery of therapeutics, we performed a literature search with the key words "Intranasal delivery" and "Imaging" and summarized these findings in the current review. While this review does not attempt to be fully comprehensive, we intend for the examples provided to allow a well-rounded picture of the imaging tools available to assess IN delivery, with an emphasis on the nose-to-brain delivery route. Examples of in vivo imaging, for both humans and animals, include magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), gamma scintigraphy and computed tomography (CT). Additionally, some in vivo optical imaging modalities, including bioluminescence and fluorescence, have been used more in experimental testing in animals. In this review, we introduce each imaging modality, how it is being utilized and outline its strengths and weaknesses, specifically in the context of IN delivery of therapeutics to the brain.
Collapse
Affiliation(s)
- Michael C Veronesi
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Mosa Alhamami
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Shelby B Miedema
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
- Department of Biomedical Engineering, Indiana University-Purdue University IndianapolisUSA
| | - Yeonhee Yun
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Miguel Ruiz-Cardozo
- Clinical Research Institute, Universidad Nacional de Colombia School of MedicineUSA
| | - Michael W Vannier
- Department of Radiology, University of Chicago School of MedicineUSA
| |
Collapse
|
119
|
AL Qtaish N, Gallego I, Villate-Beitia I, Sainz-Ramos M, López-Méndez TB, Grijalvo S, Eritja R, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Puras G, Pedraz JL. Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics 2020; 12:E198. [PMID: 32106545 PMCID: PMC7150807 DOI: 10.3390/pharmaceutics12030198] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
Non-viral vectors have emerged as a promising alternative to viral gene delivery systems due to their safer profile. Among non-viral vectors, recently, niosomes have shown favorable properties for gene delivery, including low toxicity, high stability, and easy production. The three main components of niosome formulations include a cationic lipid that is responsible for the electrostatic interactions with the negatively charged genetic material, a non-ionic surfactant that enhances the long-term stability of the niosome, and a helper component that can be added to improve its physicochemical properties and biological performance. This review is aimed at providing recent information about niosome-based non-viral vectors for gene delivery purposes. Specially, we will discuss the composition, preparation methods, physicochemical properties, and biological evaluation of niosomes and corresponding nioplexes that result from the addition of the genetic material onto their cationic surface. Next, we will focus on the in situ application of such niosomes to deliver the genetic material into immune-privileged tissues such as the brain cortex and the retina. Finally, as future perspectives, non-invasive administration routes and different targeting strategies will be discussed.
Collapse
Affiliation(s)
- Nuseibah AL Qtaish
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Tania Belén López-Méndez
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - Santiago Grijalvo
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain; (S.G.); (R.E.)
- Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramón Eritja
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain; (S.G.); (R.E.)
- Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Cristina Soto-Sánchez
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
| | - Gema Martínez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-03202 Elche, Spain
| | - Eduardo Fernández
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain; (C.S.-S.); (G.M.-N.); (E.F.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-03202 Elche, Spain
| | - Gustavo Puras
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel group, University of the Basque Country (UPV/EHU), E-01006 Vitoria-Gasteiz, Spain; (N.A.Q.); (I.G.); (I.V.-B.); (M.S.-R.); (T.B.L.-M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
120
|
Abstract
Nose-to-brain delivery represents a big challenge. In fact there is a large number of neurological diseases that require therapies in which the drug must reach the brain, avoiding the difficulties due to the blood-brain barrier (BBB) and the problems connected with systemic administration, such as drug bioavailability and side-effects. For these reasons the development of nasal formulations able to deliver the drug directly into the brain is of increasing importance. This Editorial regards the contributions present in the Special Issue "Nose-to-Brain Delivery".
Collapse
|
121
|
Altundag A, Temirbekov D, Haci C, Yildirim D, Cayonu M. Olfactory Cleft Width and Volume: Possible Risk Factors for Postinfectious Olfactory Dysfunction. Laryngoscope 2020; 131:5-9. [PMID: 32027030 DOI: 10.1002/lary.28524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/01/2020] [Accepted: 01/05/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Upper respiratory tract infections are a common cause of temporary and permanent olfactory dysfunction in the general population. Postviral or postinfectious olfactory loss (PIOL) develops only in rare cases. The aim of this study was to investigate the anatomical features of olfactory cleft (OC) in patients with PIOL to shed light on possible predisposing factors for PIOL. STUDY DESIGN Retrospective study. METHODS We retrospectively evaluated paranasal sinus computed tomography (CT) scan results of patients diagnosed with PIOL. A control group consisted of normosmic individuals who underwent paranasal sinus CT scans before septoplasty surgery. We compared the olfactory fossa depth, OC width, and volume on the CT scans of the PIOL and control groups. RESULTS In total, 71 individuals fulfilled the study criteria (PIOL group, n = 32; control group, n = 39). There was no statistically significant difference in the olfactory fossa depth in the two groups. The OC width and volume in the PIOL group was found to be significantly increased than that in the control group (P < .001 for both). CONCLUSIONS Patients with PIOL had increased OC width and volume than the healthy controls. An extra-wide olfactory cleft may be a predisposing factor in the pathogenesis of PIOL. LEVEL OF EVIDENCE 4 Laryngoscope, 131:5-9, 2021.
Collapse
Affiliation(s)
- Aytug Altundag
- Department of Otorhinolaryngology, Acibadem Taksim Hospital, Istanbul, Turkey.,Department of Otorhinolaryngology, Biruni University Medicine Faculty, Istanbul, Turkey
| | - Dastan Temirbekov
- Department of Otorhinolaryngology, Istanbul Aydın University, Medical Park Florya Hospital, Istanbul, Turkey
| | - Cemal Haci
- Department of Otorhinolaryngology, Acibadem Taksim Hospital, Istanbul, Turkey
| | - Duzgun Yildirim
- Department of Medical Imaging, Acibadem University, Vocational School of Health Sciences, Istanbul, Turkey
| | - Melih Cayonu
- Department of Otorhinolaryngology and Head & Neck Surgery, Ankara City Hospital, Bilkent, Turkey
| |
Collapse
|
122
|
Nirale P, Paul A, Yadav KS. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer's, Parkinson's and Prion's. Life Sci 2020; 245:117394. [PMID: 32017870 DOI: 10.1016/j.lfs.2020.117394] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases need the drugs to be delivered right inside the brain to maximizing the therapeutic effects. This can be achieved by use of novel targeted delivery systems such as nanoemulsions. Nanoemulsions (NE) are nano-sized emulsions that are manufactured for enhancing the delivery of drugs to the targeted site and minimize adverse effects and toxic reactions. Looking into the advanced pharmaceutical applications of NE, the present review gives an insight to the understanding of the application of NE in NDs like AD, PD and Prion's disease. The review also touches upon the pathophysiology of these ND diseases to have a clear understanding of the molecular aspects of the disease. Finally, the review sets a standpoint of nanoemulsion's significance in the treatment therapy of ND besides the drawbacks associated with the current drug therapy in NDs.
Collapse
Affiliation(s)
- Prabhuti Nirale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India
| | - Ankita Paul
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India.
| |
Collapse
|
123
|
Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E349. [PMID: 31940903 PMCID: PMC7014467 DOI: 10.3390/ma13020349] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
The rapid development of the production of materials containing metal nanoparticles and metal oxides is a potential risk to the environment. The degree of exposure of organisms to nanoparticles increases from year to year, and its effects are not fully known. This is due to the fact that the range of nanoparticle interactions on cells, tissues and the environment requires careful analysis. It is necessary to develop methods for testing the properties of nanomaterials and the mechanisms of their impact on individual cells as well as on entire organisms. The particular need to raise public awareness of the main sources of exposure to nanoparticles should also be highlighted. This paper presents the main sources and possible routes of exposure to metal nanoparticles and metal oxides. Key elements of research on the impact of nanoparticles on organisms, that is, in vitro tests, in vivo tests and methods of detection of nanoparticles in organisms, are presented.
Collapse
Affiliation(s)
| | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (A.S.); (O.D.); (J.P.-P.)
| |
Collapse
|
124
|
Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020; 148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Since health care systems dedicate substantial resources to Alzheimer's disease (AD), it poses an increasing challenge to scientists and health care providers worldwide, especially that many decades of research in the medical field revealed no optimal effective treatment for this disease. The intranasal administration route seems to be a preferable route of anti-AD drug delivery over the oral one as it demonstrates an ability to overcome the related obstacles reflected in low bioavailability, limited brain exposure and undesired pharmacokinetics or side effects. This delivery route can bypass the systemic circulation through the intraneuronal and extraneuronal pathways, providing truly needleless and direct brain drug delivery of the therapeutics due to its large surface area, porous endothelial membrane, the avoidance of the first-pass metabolism, and ready accessibility. Among the different nano-carrier systems developed, lipid-based nanosystems have become increasingly popular and have proven to be effective in managing the common symptoms of AD when administered via the nose-to-brain delivery route, which provides an answer to circumventing the BBB. The design of such lipid-based nanocarriers could be challenging since many factors can contribute to the quality of the final product. Hence, according to the authors, it is recommended to follow the quality by design methodology from the early stage of development to ensure high product quality while saving efforts and costs. This review article aims to draw attention to the up-to-date findings in the field of lipid-based nanosystems and the potential role of developing such forms in the management of AD by means of the nose-to-brain delivery route, in addition to highlighting the significant role of applying QbD methodology in this development.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
125
|
Pacheco C, Sousa F, Sarmento B. Chitosan-based nanomedicine for brain delivery: Where are we heading? REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
126
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
127
|
Kong Q, Kitaoka M, Tahara Y, Wakabayashi R, Kamiya N, Goto M. Solid-in-oil nanodispersions for intranasal vaccination: Enhancement of mucosal and systemic immune responses. Int J Pharm 2019; 572:118777. [PMID: 31678377 DOI: 10.1016/j.ijpharm.2019.118777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 02/03/2023]
Abstract
En masse vaccination is a promising strategy for combatting infectious diseases. Intranasal vaccination is a viable route of mass vaccination, and it could be performed easily via needle-free administration. However, it is not widely used because it tends not to evoke sufficient immunity. The aim of the present study was to improve the performance of intranasal vaccination by extending the amount of time that administered antigens remain in the nasal cavity, and enhancing immune responses via a nanocarrier-based adjuvant. A simple and safe solid-in-oil (S/O) system was investigated as a nanocarrier in intranasal vaccination. S/O nanodispersions are oil-based dispersions of antigens coated with surfactants. Because of the mucoadhesive capacities of surfactant and oil they have high potential to extend the amount of time that administered antigens remain in the nasal cavity, and can induce strong immune responses due to a nanocarrier-based adjuvant effect. In nasal absorption experiments antigens administered intranasally via S/O nanodispersions remained in the nasal cavity longer and induced strong mucosal and systemic immune responses. Histopathology analysis indicated that S/O nanodispersions did not modify the nasal epithelium or cilia, suggesting non-toxicity of the carrier. These results indicate the potential of intranasal vaccination using S/O nanodispersions for future vaccination.
Collapse
Affiliation(s)
- Qingliang Kong
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Momoko Kitaoka
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Yoshiro Tahara
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery Center, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery Center, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery Center, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan.
| |
Collapse
|
128
|
Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal Formulations for Nose-to-Brain Delivery: Recent Advances and Future Perspectives. Pharmaceutics 2019; 11:pharmaceutics11100540. [PMID: 31627301 PMCID: PMC6835450 DOI: 10.3390/pharmaceutics11100540] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Restricted drug entry to the brain that is closely associated with the existence of the blood brain barrier (BBB) has limited the accessibility of most potential active therapeutic compounds to the brain from the systemic circulation. Recently, evidences for the presence of direct nose-to-brain drug transport pathways have been accumulated by several studies and an intranasal drug administration route has gained attention as a promising way for providing direct access to the brain without the needs to cross to the BBB. Studies aiming for developing nanoparticles as an intranasal drug carrier have shown considerable promise in overcoming the challenges of intranasal drug delivery route. This review gives a comprehensive overview of works having investigated liposomes as a potential vehicle to deliver drugs to the brain through nose-to-brain route while considering the excellent biocompatibility and high potential of liposomes for clinical development. Herein, studies are reviewed with special emphasis on the impact of formulation factors, such as liposome composition and surface modification of liposomes with targeting moieties, in addition to intranasal environmental factors that may affect the extent/site of absorption of intranasally administered, liposome-encapsulated drugs.
Collapse
Affiliation(s)
- Soon-Seok Hong
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | - Kyung Taek Oh
- College of Pharmacy, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hangang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.
| | - Soo-Jeong Lim
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| |
Collapse
|
129
|
Alexander A, Agrawal M, Uddin A, Siddique S, Shehata AM, Shaker MA, Ata Ur Rahman S, Abdul MIM, Shaker MA. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019; 14:5895-5909. [PMID: 31440051 PMCID: PMC6679699 DOI: 10.2147/ijn.s210876] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
The treatment of central nervous system (CNS) disorders always remains a challenge for the researchers. The presence of various physiological barriers, primarily the blood-brain barrier (BBB) limits the accessibility of the brain and hinders the efficacy of various drug therapies. Hence, drug targeting to the brain, particularly to the diseased cells by circumventing the physiological barriers is essential to develop a promising therapy for the treatment of brain disorders. Presently, the investigations emphasize the role of different nanocarrier systems or surface modified target specific novel carrier system to improve the efficiency and reduce the side effects of the brain therapeutics. Such approaches supposed to circumvent the BBB or have the ability to cross the barrier function and thus increases the drug concentration in the brain. Although the efficacy of novel carrier system depends upon various physiological factors like active efflux transport, protein corona of the brain, stability, and toxicity of the nanocarrier, physicochemical properties, patient-related factors and many more. Hence, to develop a promising carrier system, it is essential to understand the physiology of the brain and BBB and also the other associated factors. Along with this, some alternative route like direct nose-to-brain drug delivery can also offer a better means to access the brain without exposure of the BBB. In this review, we have discussed the role of various physiological barriers including the BBB and blood-cerebrospinal fluid barrier (BCSFB) on the drug therapy and the mechanism of drug transport across the BBB. Further, we discussed different novel strategies for brain targeting of drug including, polymeric nanoparticles, lipidic nanoparticles, inorganic nanoparticles, liposomes, nanogels, nanoemulsions, dendrimers, quantum dots, etc. along with the intranasal drug delivery to the brain. We have also illustrated various factors affecting the drug targeting efficiency of the developed novel carrier system.
Collapse
Affiliation(s)
- Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Ajaz Uddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Sabahuddin Siddique
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal, Madhya Pradesh, India
| | - Ahmed M Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud A Shaker
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Syed Ata Ur Rahman
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| | - Mohi Iqbal M Abdul
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| | - Mohamed A Shaker
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| |
Collapse
|
130
|
Krajišnik D, Ilić T, Nikolić I, Savić S. Established and advanced adjuvants in vaccines' formulation: Mineral adsorbents, nanoparticulate carriers and microneedle delivery systems. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|