101
|
A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int Immunopharmacol 2021; 103:108433. [PMID: 34922248 DOI: 10.1016/j.intimp.2021.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022]
Abstract
Nanosized drug carriers have received a major attention in cancer therapeutics and theranostics. The immuno-nanomedicine is a combination of monoclonal antibody (mAb)/mAb-drug-nanoparticles. The immuno-nanomedicine offers a promising strategy to target cancer cells. However, the understating of nanotechnology, cancer biology, immunomedicine, and nanoparticle surface chemistry has provided a better clue to prepare the effective immuno-nanomedicine for cancer therapy. Moreover, the selection of nanoparticles type and its composition is essential for development of efficient drug delivery system (DDS) to target the cancer cell site. Immuno-nanomedicine works in the ligand-receptor binding mechanism through the interaction of mAb conjugated nanoparticles and specific antigen over expressed on target cancer cells. Therefore, the selection of specific receptors in the cancer cell and their ligand is important to prepare the active immuno-nanomedicines. Moreover, the factors such as drug loading, entrapment efficiency, size, shape, and ligand conjugation of a nanocarrier are considered as major factors for a better cancer cell, internalization, drug release, and cancer cell ablation. The target-based over-expression of antigen, mAb is engineered and conjugated with nanoparticles for successful targeting of the cancer cells without causing adverse effects to normal cells. Therefore, this review analyzed the fundamental factors in the immuno-nanomedicine for breast cancer and its technical challenges in the fabrication of the antibody alone/and drug conjugated nanoparticles.
Collapse
|
102
|
Huang S, Huang X, Yan H. Peptide dendrimers as potentiators of conventional chemotherapy in the treatment of pancreatic cancer in a mouse model. Eur J Pharm Biopharm 2021; 170:121-132. [PMID: 34801706 DOI: 10.1016/j.ejpb.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
Chemotherapy is the recommended treatment for patients with advanced pancreatic ductal adenocarcinoma (PDAC). However, efficacy of traditional chemotherapy is not satisfactory due to the presence of a dense dysplastic tumor stroma which prevents drug accumulation in and deep penetration into tumors. To overcome these obstacles, we designed and synthesized peptide dendrimers as potentiators of conventional chemotherapy. The dendrimers markedly promoted free doxorubicin accumulation and penetration deeply into 3D multicellular PDAC tumor cultures upon co-incubation. Co-administration of the dendrimer and doxorubicin into PDAC tumor xenograft-bearing mice greatly increased the doxorubicin concentration in the tumor. In addition, the dendrimer also promoted free doxorubicin internalization into PDAC cells upon co-incubation in media mimicking tumor microenvironment. Finally, a significant enhancement in the anticancer efficacy of doxorubicin and gemcitabine when either of the drugs was individually co-administered with the dendrimer into PDAC tumor xenograft-bearing mice was observed. This was especially pronounced for the combination treatment with the dendrimer and gemcitabine, resulting in a tumor weight decrease to 12.9% compared to the treatment with gemcitabine alone. This can be attributed to the combination of the multi-functionalities of the dendrimer, i.e., promoting free drug accumulation and penetration deeply into tumors and internalization into cancer cells.
Collapse
Affiliation(s)
- Sijin Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|
103
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
104
|
Wang B, Han Z, Song B, Yu L, Ma Z, Xu H, Qiao M. Effective drug delivery system based on hydrophobin and halloysite clay nanotubes for sustained release of doxorubicin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
105
|
Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles. Colloids Surf B Biointerfaces 2021; 208:112123. [PMID: 34571468 DOI: 10.1016/j.colsurfb.2021.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022]
Abstract
The capability of HeLa cells to internalize large spherical microparticles has been evaluated by using inorganic, magnetic microparticles of 1 and 2.8 µm of diameter. In both absence but especially under the action of a magnet, both types of particles were uptaken, in absence of cytotoxicity, by a significant percentage of cells, in a non-endosomal process clearly favored by the magnetic field. The engulfed particles efficiently drive inside the cells chemically associated proteins such as GFP and human alpha-galactosidase A, without any apparent loss of protein functionalities. While 1 µm particles are completely engulfed, at least a fraction of 2.8 µm particles remain embedded into the cell membrane, with only a fraction of their surface in cytoplasmic contact. The detected tolerance to endosomal-independent cell penetration of microscale objects is not then restricted to organic, soft materials (such as bacterial inclusion bodies) as previously described, but it is a more general phenomenon also applicable to inorganic materials. In this scenario, the use of magnetic particles in combination with external magnetic fields can represent a significant improvement in the internalization efficiency of such agents optimized as drug carriers. This fact offers a wide potential in the design and engineering of novel particulate vehicles for therapeutic, diagnostic and theragnostic applications.
Collapse
|
106
|
Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
107
|
Controlled pDNA Release in Gemini Cationic Lipoplexes by Femtosecond Laser Irradiation of Gold Nanostars. NANOMATERIALS 2021; 11:nano11061498. [PMID: 34198842 PMCID: PMC8229200 DOI: 10.3390/nano11061498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
The design of nanovectors able to overcome biological barriers is one of the main challenges in biomedicine. Gemini cationic lipids are considered potential candidates for gene therapy due to their high biocompatibility and capacity to condense nucleic acids safely in the form of lipoplexes. However, this approach presents difficulties regarding genetic unpacking and, therefore, control over this process becomes crucial to ensure successful transfection. In this work, gemini cationic lipoplexes were prepared in the presence of plasmonic gold nanostars (AuNSs) to afford a nanovector that efficiently releases plasmid DNA (pDNA) upon irradiation with near-infrared femtosecond laser pulses. A critical AuNSs concentration of 50 pM and optimized laser power density of 400 mW led to successful pDNA release, whose efficiency could be further improved by increasing the irradiation time. Agarose gel electrophoresis was used to confirm pDNA release. UV-Vis-NIR spectroscopy and transmission electron microscopy studies were performed to monitor changes in the morphology of the AuNSs and lipoplexes after irradiation. From a physicochemical point of view, this study demonstrates that the use of AuNSs combined with gemini cationic lipoplexes allows control over pDNA release under ultrafast laser irradiation.
Collapse
|
108
|
Horodecka K, Düchler M. CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. Int J Mol Sci 2021; 22:6072. [PMID: 34199901 PMCID: PMC8200053 DOI: 10.3390/ijms22116072] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
The establishment of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology for eukaryotic gene editing opened up new avenues not only for the analysis of gene function but also for therapeutic interventions. While the original methodology allowed for targeted gene disruption, recent technological advancements yielded a rich assortment of tools to modify genes and gene expression in various ways. Currently, clinical applications of this technology fell short of expectations mainly due to problems with the efficient and safe delivery of CRISPR/Cas9 components to living organisms. The targeted in vivo delivery of therapeutic nucleic acids and proteins remain technically challenging and further limitations emerge, for instance, by unwanted off-target effects, immune reactions, toxicity, or rapid degradation of the transfer vehicles. One approach that might overcome many of these limitations employs extracellular vesicles as intercellular delivery devices. In this review, we first introduce the CRISPR/Cas9 system and its latest advancements, outline major applications, and summarize the current state of the art technology using exosomes or microvesicles for transporting CRISPR/Cas9 constituents into eukaryotic cells.
Collapse
Affiliation(s)
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland;
| |
Collapse
|
109
|
Penna C, Femminò S, Caldera F, Rubin Pedrazzo A, Cecone C, Alfì E, Comità S, Higashiyama T, Trotta F, Pagliaro P, Cavalli R. Cyclic Nigerosyl-Nigerose as Oxygen Nanocarrier to Protect Cellular Models from Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Int J Mol Sci 2021; 22:ijms22084208. [PMID: 33921614 PMCID: PMC8073687 DOI: 10.3390/ijms22084208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023] Open
Abstract
Heart failure (HF) prevalence is increasing among the aging population, and the mortality rate remains unacceptably high despite improvements in therapy. Myocardial ischemia (MI) and, consequently, ischemia/reperfusion injury (IRI), are frequently the basis of HF development. Therefore, cardioprotective strategies to limit IRI are mandatory. Nanocarriers have been proposed as alternative therapy for cardiovascular disease. Controlled reoxygenation may be a promising strategy. Novel nanocarriers, such as cyclic nigerosyl-nigerose (CNN), can be innovative tools for oxygen delivery in a controlled manner. In this study we analyzed new CNN-based formulations as oxygen nanocarriers (O2-CNN), and compared them with nitrogen CNN (N2-CNN). These different CNN-based formulations were tested using two cellular models, namely, cardiomyoblasts (H9c2), and endothelial (HMEC) cell lines, at different concentrations. The effects on the growth curve during normoxia (21% O2, 5% CO2 and 74% N2) and their protective effects during hypoxia (1% O2, 5% CO2 and 94% N2) and reoxygenation (21% O2, 5% CO2 and 74% N2) were studied. Neither O2-CNN nor N2-CNN has any effect on the growth curve during normoxia. However, O2-CNN applied before hypoxia induces a 15–30% reduction in cell mortality after hypoxia/re-oxygenation when compared to N2-CNN. O2-CNN showed a marked efficacy in controlled oxygenation, which suggests an interesting potential for the future medical application of soluble nanocarrier systems for MI treatment.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Claudio Cecone
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Edoardo Alfì
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Takanobu Higashiyama
- Hayashibara CO., LTD./Nagase Group 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan;
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
- Correspondence: (F.T.); (P.P.); (R.C.)
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
- Correspondence: (F.T.); (P.P.); (R.C.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
- Correspondence: (F.T.); (P.P.); (R.C.)
| |
Collapse
|
110
|
Brossard C, Vlach M, Vène E, Ribault C, Dorcet V, Noiret N, Loyer P, Lepareur N, Cammas-Marion S. Synthesis of Poly(Malic Acid) Derivatives End-Functionalized with Peptides and Preparation of Biocompatible Nanoparticles to Target Hepatoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:958. [PMID: 33918663 PMCID: PMC8070460 DOI: 10.3390/nano11040958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction. The corresponding nanoparticles (NPs), varying by the nature of the peptide (GBVA10-9, CPB, and their scrambled peptides) and the absence or presence of poly(ethylene glycol) were also successfully formulated using nanoprecipitation technique. NPs were further characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and transmission electron microscopy (TEM), highlighting a diameter lower than 150 nm, a negative surface charge, and a more or less spherical shape. Moreover, a fluorescent probe (DiD Oil) has been encapsulated during the nanoprecipitation process. Finally, preliminary in vitro internalisation assays using HepaRG hepatoma cells demonstrated that CPB peptide-functionalized PMLABe NPs were efficiently internalized by endocytosis, and that such nanoobjects may be promising drug delivery systems for the theranostics of HCC.
Collapse
Affiliation(s)
- Clarisse Brossard
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
| | - Manuel Vlach
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| | - Elise Vène
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, F-35033 Rennes, France
| | - Catherine Ribault
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| | - Vincent Dorcet
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
| | - Nicolas Noiret
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
| | - Pascal Loyer
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| | - Nicolas Lepareur
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France
| | - Sandrine Cammas-Marion
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| |
Collapse
|
111
|
Oligonucleotide-Based Therapies for Renal Diseases. Biomedicines 2021; 9:biomedicines9030303. [PMID: 33809425 PMCID: PMC8001091 DOI: 10.3390/biomedicines9030303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of chronic kidney disease (CKD) is increasing every year and represents a great cost for public healthcare systems, as the majority of these diseases are progressive. Therefore, there is an urgent need to develop new therapies. Oligonucleotide-based drugs are emerging as novel and promising alternatives to traditional drugs. Their expansion corresponds with new knowledge regarding the molecular basis underlying CKD, and they are already showing encouraging preclinical results, with two candidates being evaluated in clinical trials. However, despite recent technological advances, efficient kidney delivery remains challenging, and the presence of off-targets and side-effects precludes development and translation to the clinic. In this review, we provide an overview of the various oligotherapeutic strategies used preclinically, emphasizing the most recent findings in the field, together with the different strategies employed to achieve proper kidney delivery. The use of different nanotechnological platforms, including nanocarriers, nanoparticles, viral vectors or aptamers, and their potential for the development of more specific and effective treatments is also outlined.
Collapse
|
112
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
113
|
Hagimori M, Mendoza-Ortega EE, Krafft MP. Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting. Beilstein J Org Chem 2021; 17:511-518. [PMID: 33727974 PMCID: PMC7934786 DOI: 10.3762/bjoc.17.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ligand-targeted microbubbles are focusing interest for molecular imaging and delivery of chemotherapeutics. Lipid-peptide conjugates (lipopeptides) that feature alternating serine-glycine (SG) n segments rather than classical poly(oxyethylene) linkers between the lipid polar head and a targeting ligand were proposed for the liposome-mediated, selective delivery of anticancer drugs. Here, we report the synthesis of perfluoroalkylated lipopeptides (F-lipopeptides) bearing two hydrophobic chains (C n F2 n +1, n = 6, 7, 8, 1-3) grafted through a lysine moiety on a hydrophilic chain composed of a lysine-serine-serine (KSS) sequence followed by 5 SG sequences. These F-lipopeptides are precursors of targeting lipopeptide conjugates. A hydrocarbon counterpart with a C10H21 chain (4) was synthesized for comparison. The capacity for the F-lipopeptides to spontaneously adsorb at the air/water interface and form monolayers when combined with dipalmitoylphosphatidylcholine (DPPC) was investigated. The F-lipopeptides 1-3 demonstrated a markedly enhanced tendency to form monolayers at the air/water interface, with equilibrium surface pressures reaching ≈7-10 mN m-1 versus less than 1 mN m-1 only for their hydrocarbon analog 4. The F-lipopeptides penetrate in the DPPC monolayers in both liquid expanded (LE) and liquid condensed (LC) phases without interfacial film destabilization. By contrast, 4 provokes delipidation of the interfacial film. The incorporation of the F-lipopeptides 1-3 in microbubbles with a shell of DPPC and dipalmitoylphosphatidylethanolamine-PEG2000 decreased their mean diameter and increased their stability, the best results being obtained for the C8F17-bearing lipopeptide 3. By contrast, the hydrocarbon lipopeptide led to microbubbles with a larger mean diameter and a significantly lower stability.
Collapse
Affiliation(s)
- Masayori Hagimori
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
- Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien Kyubancho, Nishinomiya 663-8179, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Estefanía E Mendoza-Ortega
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
114
|
del Castillo-Santaella T, Yang Y, Martínez-González I, Gálvez-Ruiz MJ, Cabrerizo-Vílchez MÁ, Holgado-Terriza JA, Selles-Galiana F, Maldonado-Valderrama J. Effect of Hyaluronic Acid and Pluronic-F68 on the Surface Properties of Foam as a Delivery System for Polidocanol in Sclerotherapy. Pharmaceutics 2020; 12:pharmaceutics12111039. [PMID: 33143001 PMCID: PMC7693533 DOI: 10.3390/pharmaceutics12111039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
The use of foams to deliver bioactive agents and drugs is increasing in pharmaceutics. One example is the use of foam as a delivery system for polidocanol (POL) in sclerotherapy, with the addition of bioactive compounds to improve the delivery system being a current subject of study. This work shows the influence of two bioactive additives on the structure and stability of POL foam: hyaluronic acid (HA) and Pluronic-F68 (F68). HA is a natural non-surface-active biopolymer present in the extracellular matrix while F68 is a surface-active poloxamer that is biocompatible with plasma-derived fluids. Both additives increase the bulk viscosity of the sample, improving foam stability. However, HA doubled and F68 quadruplicated the foam half lifetime of POL. HA reduced the size and polydispersity of the bubble size distribution and increased the surface elasticity with respect to POL. Both facts have a positive impact in terms of foam stability. F68 also altered bubble structure and increased surface elasticity, again contributing to the enhancement of foam stability. The surface characterization of these systems is important, as in foam sclerotherapy it is crucial to assure the presence of POL at the surface of the bubbles in order to deliver the sclerosant agent in the target vein.
Collapse
Affiliation(s)
- Teresa del Castillo-Santaella
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - Yan Yang
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - Inmaculada Martínez-González
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - María José Gálvez-Ruiz
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Miguel Ángel Cabrerizo-Vílchez
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
| | - Juan Antonio Holgado-Terriza
- Department of Software Engineering, University of Granada, C/Periodista Daniel Saucedo Aranda, sn, 18071 Granada, Spain;
| | | | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Campus de Fuentenueva, sn, 18071 Granada, Spain; (T.d.C.-S.); (Y.Y.); (I.M.-G.); (M.J.G.-R.); (M.Á.C.-V.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|