101
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
102
|
Amponsem S, Wolverson E, Clarke C. The meaning and experience of hope by people living with dementia as expressed through poetry. DEMENTIA 2022; 22:125-143. [DOI: 10.1177/14713012221137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Narratives of dementia can undermine the ability of people to live well. Positive psychology, concerned with the cultivation of personal strengths, is a model through which people’s capacity to have positive experiences can be researched. This study explored the meanings and experiences of hope, a positive psychological construct found to facilitate well-being, in people with dementia. Methods People with dementia submitted poems about the meanings and their experiences of hope through an online platform. The submitted poems ( n = 29) underwent thematic analysis. Findings There were three main themes: (1) “ hope is light in the darkness” encapsulated the meaning ascribed to hope as a resource that spotlights what is still possible, (2) “ poetry gives voice to experiences of hope” captured the role of poetry in communicating the otherwise elusive concept of hope, and (3 )“peers uphold hope and cast away the darkness” captured that participants’ hope was blocked by stigmatising views held and expressed by others but facilitated through positive social interactions. Conclusions People are capable of having hope in the context of dementia, with hope being a uniquely functional strength that supports wellbeing. Health professionals, family and society have a clear role in supporting people with dementia to maintain their hope.
Collapse
Affiliation(s)
- Sheriffa Amponsem
- Department of Psychological Health, Wellbeing and Social Work, University of Hull, Hull, UK
| | - Emma Wolverson
- Department of Psychological Health, Wellbeing and Social Work, University of Hull, Hull, UK
| | | |
Collapse
|
103
|
Holden JM. Memantine decreases measures of sign-tracking and increases measures of goal-tracking in male Sprague Dawley rats. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
104
|
Yun D, Wang Y, Zhang Y, Jia M, Xie T, Zhao Y, Yang C, Chen W, Guo R, Liu X, Dai X, Liu Z, Yuan T. Sesamol Attenuates Scopolamine-Induced Cholinergic Disorders, Neuroinflammation, and Cognitive Deficits in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13602-13614. [PMID: 36239029 DOI: 10.1021/acs.jafc.2c04292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, characterized by memory loss and cognitive deficits accompanied by neuronal damage and cholinergic disorders. Sesamol, a lignan component in sesame oil, has been proven to have neuroprotective effects. This research aimed to investigate the preventive effects of sesamol on scopolamine (SCOP)-induced cholinergic disorders in C57BL/6 mice. The mice were pretreated with sesamol (100 mg/kg/d, p.o.) for 30 days. Behavioral tests indicated that sesamol supplement prevented SCOP-induced cognitive deficits. Sesamol enhanced the expression of neurotrophic factors and postsynaptic density (PSD) in SCOP-treated mice, reversing neuronal damage and synaptic dysfunction. Importantly, sesamol could balance the cholinergic system by suppressing the AChE activity and increasing the ChAT activity and M1 mAChR expression. Sesamol treatment also inhibited the expression of inflammatory factors and overactivation of microglia in SCOP-treated mice. Meanwhile, sesamol improved the antioxidant enzyme activity and suppressed oxidative stress in SCOP-treated mice and ameliorated the oxidized cellular status and mitochondrial dysfunction in SCOP-treated SH-SY5Y cells. In conclusion, these results indicated that sesamol attenuated SCOP-induced cognitive dysfunction via balancing the cholinergic system and reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Duo Yun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi712100, China
| |
Collapse
|
105
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
106
|
Basile MS, Bramanti P, Mazzon E. Inosine in Neurodegenerative Diseases: From the Bench to the Bedside. Molecules 2022; 27:molecules27144644. [PMID: 35889517 PMCID: PMC9316764 DOI: 10.3390/molecules27144644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress can be strongly involved in neurodegenerative diseases, the potential use of inosine, known for its antioxidant properties, in this context deserves particular attention. The protective action of inosine treatment could be mediated by its metabolite urate. Here, we review the current preclinical and clinical studies investigating the use of inosine in AD, PD, ALS, and MS. The most important properties of inosine seem to be its antioxidant action and its ability to raise urate levels and to increase energetic resources by improving ATP availability. Inosine appears to be generally safe and well tolerated; however, the possible formation of kidney stones should be monitored, and data on its effectiveness should be further explored since, so far, they have been controversial. Overall, inosine could be a promising potential strategy in the management of neurodegenerative diseases, and additional studies are needed in order to further investigate its safety and efficacy and its use as a complementary therapy along with other approved drugs.
Collapse
|