101
|
Khalifa MKA, Salem HA, Shawky SM, Eassa HA, Elaidy AM. Enhancement of zaleplon oral bioavailability using optimized self-nano emulsifying drug delivery systems and its effect on sleep quality among a sample of psychiatric patients. Drug Deliv 2020; 26:1243-1253. [PMID: 31752566 PMCID: PMC6882476 DOI: 10.1080/10717544.2019.1687613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of this work is to develop self-nano emulsifying drug delivery system (SNEDDS) to enhance the oral bioavailability of zaleplon (Zal) as a poorly water-soluble drug. Moreover, the bioavailability and the effect on the quality of sleep among a sample of psychiatric patients is to be assessed. D-optimal mixture design was used for optimization. Optimized SNEDDS formulation was evaluated for droplet size, transmission electron microscope (TEM) and in-vitro dissolution test. Zal bioavailability was evaluated by determining its serum concentration and pharmacokinetic parameters in 8 patients after oral administration. Effect on sleep quality was assessed among 40 psychiatric patients. Patients’ sleep quality was assessed in 40 psychiatric patients before and after medication using the Arabic version of the Pittsburgh Sleep Quality Index (PSQI). Zal- SNEDDS appeared as nano-sized spherical vesicles. Moreover, Zal was completely dissolved from optimized formulation after 45 min indicating improved dissolution rate. Zal-SNEDDS showed significantly higher Cmax, Tmax and AUC0→∞ compared to commercial product after oral administration. Zal-SNEDDS significantly improved the total score of PSQIs (p < .001) with higher subjective sleep quality, reduced sleep latency, improved day time function and sleep disturbance (p < .001). Using sleep medication was reduced significantly (p = .027). However, it did not modify sleep duration or sleep efficiency. SNEDDS have improved Zal solubility and enhanced its bioavailability. Furthermore, Zal-SNEDDS have improved the total score of PSQIs and may be considered a good choice to enhance the quality of sleep among psychiatric patients.
Collapse
Affiliation(s)
- Maha K A Khalifa
- Department of Pharmaceutics and industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Hoda A Salem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Seham M Shawky
- Department of Pharmaceutics and industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Heba A Eassa
- Department of Pharmaceutics and industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Asmaa M Elaidy
- Department of Psychiatry, Faculty of Medicine for girls, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
102
|
Khattab WM, Zein El-Dein EE, El-Gizawy SA. Formulation of lyophilized oily-core poly-Ɛ-caprolactone nanocapsules to improve oral bioavailability of Olmesartan Medoxomil. Drug Dev Ind Pharm 2020; 46:795-805. [DOI: 10.1080/03639045.2020.1753763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Waleed M. Khattab
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Esmat E. Zein El-Dein
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Tanta University, Tanta, Egypt
| | - Sanaa A. El-Gizawy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Tanta University, Tanta, Egypt
| |
Collapse
|
103
|
Development of Topical/Transdermal Self-Emulsifying Drug Delivery Systems, Not as Simple as Expected. Sci Pharm 2020. [DOI: 10.3390/scipharm88020017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) originated as an oral lipid-based drug delivery system with the sole purpose of improving delivery of highly lipophilic drugs. However, the revolutionary drug delivery possibilities presented by these uniquely simplified systems in terms of muco-adhesiveness and zeta-potential changing capacity lead the way forward to ground-breaking research. Contrarily, SEDDSs destined for topical/transdermal drug delivery have received limited attention. Therefore, this review is focused at utilising principles, established during development of oral SEDDSs, and tailoring them to fit evaluation strategies for an optimised topical/transdermal drug delivery vehicle. This includes a detailed discussion of how the authentic pseudo-ternary phase diagram is employed to predict phase behaviour to find the self-emulsification region most suitable for formulating topical/transdermal SEDDSs. Additionally, special attention is given to the manner of characterising oral SEDDSs compared to topical/transdermal SEDDSs, since absorption within the gastrointestinal tract and the multi-layered nature of the skin are two completely diverse drug delivery territories. Despite the advantages of the topical/transdermal drug administration route, certain challenges such as the relatively undiscovered field of skin metabolomics as well as the obstacles of choosing excipients wisely to establish skin penetration enhancement might prevail. Therefore, development of topical/transdermal SEDDSs might be more complicated than expected.
Collapse
|
104
|
Ghosh D, Singh SK, Khursheed R, Pandey NK, Kumar B, Kumar R, Kumari Y, Kaur G, Clarisse A, Awasthi A, Gulati M, Jain SK, Porwal O, Bayrakdar E, Sheet M, Gowthamarajan K, Gupta S, Corrie L, Gunjal P, Gupta RK, Singh TG, Sinha S. Impact of solidification on micromeritic properties and dissolution rate of self-nanoemulsifying delivery system loaded with docosahexaenoic acid. Drug Dev Ind Pharm 2020; 46:597-605. [DOI: 10.1080/03639045.2020.1742143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Omji Porwal
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Bayrakdar
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Muath Sheet
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - K. Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ooty, India
| | - Saurabh Gupta
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradnya Gunjal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajneesh Kumar Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shibanand Sinha
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
105
|
Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020; 321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy of orally administered drugs is often restricted by their inherent limited oral bioavailability. Low water solubility, limited permeability through the intestinal barrier, instability in harsh environment of the gastrointestinal (GI) tract and being substrate of the efflux pumps and the cytochrome P450 (CYP) can impair oral drug bioavailability resulting in erratic and variable plasma drug profile. As more drugs with low membrane permeability are developed, new interest is growing to enhance their intestinal permeability and bioavailability. A wide variety of nanosystems have been developed to improve drug transport and absorption. Sufficient evidence exists to suggest that nanoparticles are able to increase the transepithelial transport of drug molecules. However, key questions remained unanswered. What types of nanoparticles are more efficient? What are preclinical (or clinical) achievements of each type of nanoformulation in terms of pharmacokinetic (PK) parameters? Addressing this issue in this paper, we have reviewed the current literature regarding permeability enhancement, permeability assessment methods and changes in PK parameters following administration of various nanoformulations. Although permeability enhancement by various nanoformulations holds great promise for oral drug delivery, many challenges still need to be addressed before development of more clinically successful nanoproducts.
Collapse
Affiliation(s)
- Delaram Babadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
106
|
Ansari MJ, Alshetaili A, Aldayel IA, Alablan FM, Alsulays B, Alshahrani S, Alalaiwe A, Ansari MN, Ur Rehman N, Shakeel F. Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020; 14:1386-1401. [DOI: 10.1080/16583655.2020.1812269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ibrahim Abdulaziz Aldayel
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Faisal Mohammed Alablan
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bader Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saad Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
107
|
Kim HT, Won DH, Ho MJ, Hwang HD, Jang SW, Kim M, Kang MJ. Effect of Oily Ingredients and Solid Adsorbents on the Chemical Stability of a Solid Dosage Form of Lubiprostone. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyung Tae Kim
- College of PharmacyDankook University, Cheonan Chungnam 31116 South Korea
| | - Dong Han Won
- Dong‐A Pharmaceutical Co. Ltd. Yongin Gyeonggi 17073 South Korea
- College of PharmacyPusan National University Busan 46241 South Korea
| | - Myoung Jin Ho
- College of PharmacyDankook University, Cheonan Chungnam 31116 South Korea
| | - Hyung Don Hwang
- Dong‐A Pharmaceutical Co. Ltd. Yongin Gyeonggi 17073 South Korea
| | - Sun Woo Jang
- Dong‐A Pharmaceutical Co. Ltd. Yongin Gyeonggi 17073 South Korea
| | - Min‐Soo Kim
- College of PharmacyPusan National University Busan 46241 South Korea
| | - Myung Joo Kang
- College of PharmacyDankook University, Cheonan Chungnam 31116 South Korea
| |
Collapse
|
108
|
Kumar R, Khursheed R, Kumar R, Awasthi A, Sharma N, Khurana S, Kapoor B, Khurana N, Singh SK, Gowthamarajan K, Wadhwani A. Self-nanoemulsifying drug delivery system of fisetin: Formulation, optimization, characterization and cytotoxicity assessment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101252] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
109
|
Madan JR, Patil K, Awasthi R, Dua K. Formulation and evaluation of solid self-microemulsifying drug delivery system for azilsartan medoxomil. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1695206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jyotsana R. Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | - Kajal Patil
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
110
|
Shevalkar G, Vavia P. Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
111
|
Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, Pottoo FH, Bolla SR. A novel self-nanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation. 3 Biotech 2019; 9:360. [PMID: 31544014 DOI: 10.1007/s13205-019-1885-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this study was to develop and evaluate self-nanoemulsifying drug delivery system (SNEDDS) of curcumin (Cur) to enhance their solubility as well as improve skin permeation; and evaluate wound healing potential of Cur via SNEDDS in comparison with standards pure eucalyptus oil-SNEDDS (Euc-SNEDDS), pure curcumin suspension (Cur-S), and standard fusidic acid followed by their anti-inflammatory action. Curcumin-loaded different SNEDDS formulations were formulated through aqueous phase titration method and the zones of SNEDDS were recognized by the construction of phase diagrams. Eucalyptus oil, Tween 80 (surfactant), and Transcutol HP (co-surfactant) were selected on the basis of their solubility and highest nanoemulsion region. Characterization of thermodynamic stability for Cur-loaded SNEDDS was evaluated by its globule size, zeta potential, polydispersity index, viscosity, % transmittance, refractive index, and surface morphology. Cur-SNEDDS (Cur-SN4) was optimized and selected on the basis of their excellent physicochemical parameters for in vivo activity. The particle size (59.56 ± 0.94 nm), % transmittance (99.08 ± 0.07%), and PDI (0.207 ± 0.011 were observed for optimized Cur-SNEDDS. TEM and SEM showed their smooth and spherical shape of the morphological characterization with zeta potential (- 21.41 ± 0.89), refractive index (1.341 ± 0.06), and viscosity (11.64 ± 1.26 cp) for optimized Cur-SNEDDS. Finally, optimized Cur-SNEDDS was used to enhance skin permeation with improvement in the solubility of Cur. However, optimized Cur-SNEDDS showed significant wound healing activity as compared with pure eucalyptus oil and Cur-S on topical application. Optimized Cur-SNEDDS showed healing of wound as compared to standard fusidic acid. Optimized Cur-SNEDDS exhibited no signs of inflammatory cells on the histopathological studies of treated rats which were recommended the safety and non-toxicity of Cur-SNEDDS. Newly developed Cur-SNEDDS could be successfully used to enhance Cur-solubility and skin permeation, as well as suggested a potential role of Cur-SNEDDS for better improvement of wound healing activity followed by anti-inflammatory action of Cur via topical application.
Collapse
Affiliation(s)
- Niyaz Ahmad
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
- 2Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Rizwan Ahmad
- 3Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ali Al-Qudaihi
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Salman Edrees Alaseel
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ibrahim Zuhair Fita
- 1Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Mohammed Saifuddin Khalid
- 4Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Faheem Hyder Pottoo
- 4Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Srinivasa Rao Bolla
- 5Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
112
|
Patel MH, Sawant KK. Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: In vitro, Caco-2 cell line and in vivo evaluation. Eur J Pharm Sci 2019; 138:105027. [PMID: 31377133 DOI: 10.1016/j.ejps.2019.105027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
The global aim of this research was to develop and evaluate self-microemulsifying drug delivery system (SMEDDS) to improve oral bioavailability of Lurasidone Hydrochloride (LH). A chylomicron flow blocking approach was used to evaluate lymphatic drug transport. The developed LH-SMEDDS was composed of Capmul MCM C8 (oil), Cremophor EL (surfactant) and Transcutol HP (co-surfactant). Highest microemulsifying area was obtained at 3:1 ratio (surfactant:cosurfactant) and mean globule size was found to be 49.22 ± 1.60 nm. More than 98% drug release was obtained with LH-SMEDDS in phosphate buffer pH 6.8. Confocal microscopy and flow cytometry studies revealed higher fluorescence indicating deeper penetration across Caco-2 cells with Coumarin-6 SMEDDS as compared to Coumarin-6 solution. Mean Fluorescence Intensity (MFI) with Coumarin-6 loaded SMEDDS was increased 25.57 times with respect to Coumarin-6 solution. The permeability across Caco-2 cells was enhanced 3 times with LH-SMEDDS as compared to LH-suspension. Furthermore, Area Under Curve with LH-SMEDDS was found to be 2.92 times higher than that of LH suspension indicating improved bioavailability after formulating SMEDDS. Lymphatic transport in oral absorption of LH-SMEDDS was proved via lymphatic uptake study. All the findings suggest the effectiveness of lipid-based formulation i.e. SMEDDS of LH to augment the oral bioavailability via intestinal lymphatic pathway.
Collapse
Affiliation(s)
- Mitali H Patel
- Drug Delivery Research Laboratory, Shri G. H. Patel Pharmacy Building, Faculty of Pharmacy, The M. S. University of Baroda, Fatehgunj, Vadodara 390002, Gujarat, India
| | - Krutika K Sawant
- Drug Delivery Research Laboratory, Shri G. H. Patel Pharmacy Building, Faculty of Pharmacy, The M. S. University of Baroda, Fatehgunj, Vadodara 390002, Gujarat, India.
| |
Collapse
|
113
|
Preparation and Characterization of Self Nano-Emulsifying Drug Delivery System Loaded with Citraland Its Antiproliferative Effect on Colorectal Cells In Vitro. NANOMATERIALS 2019; 9:nano9071028. [PMID: 31323842 PMCID: PMC6669672 DOI: 10.3390/nano9071028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
Abstract
Citral is an active compound naturally found in lemongrass, lemon, and lime. Although this pale-yellow liquid confers low water solubility, the compound has been reported to possess good therapeutic features including antiproliferative and anticancer modalities. The self nano-emulsifying drug delivery system (SNEDDS) is a type of liquid-lipid nanocarrier that is suitable for the loading of insolubilized oil-based compound such as Citral. This study reports the design and optimization of a SNEDDS formulation, synthesis and characterization as well as loading with Citral (CIT-SNEDDS). Further assessment of theantiproliferative effects of CIT-SNEDDS towards colorectal cancer cells was also conducted. SNEDDS composed of coconut oil, dimethyl sulfoxide (DMSO) and Tween 80. CIT-SNEDDS was prepared via gentle agitation of SNEDDS with 0.5% Citral for 72 h at room temperature. Physicochemical characterization was performed using several physicochemical analyses. The average particle size of CIT-SNEDDS was16.86 ± 0.15 nm, zeta potential of 0.58 ± 0.19 mV, and polydispersity index (PDI) of 0.23 ± 0.01. In vitro drug release of Citral from CIT-SNEDDS was 79.25% of release, and for Citral the release percentage was 93.56% over 72 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done to determine the cytotoxicity effect of CIT-SNEDDS in human colorectal cancer cell lines HT29 and SW620. The half maximal inhibitory concentrations (IC50) for 72 hof CIT-SNEDDS and Citral on SW620 were 16.50 ± 0.87 µg/mL and 22.50 ± 2.50 µg/mL, respectively. The IC50 values of CIT-SNEDDS and Citral after 72 h of treatment on HT29 were 34.10 ± 0.30 µg/mL and 21.77 ± 0.23 µg/mL, respectively. This study strongly suggests that CIT-SNEDDS has permitted the sustained release of Citral and that CIT-SNEDDS constitutes a potential soluble drug nanocarrier that is effective against colorectal cancer cells.
Collapse
|
114
|
Usmani A, Mishra A, Arshad M, Jafri A. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with Nigella Sativa oil against human hepatocellular carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:933-944. [PMID: 30888204 DOI: 10.1080/21691401.2019.1581791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The development of self nano emulsifying co-delivery system of doxorubicin and Nigella sativa oil for potentiating the anticancer effects against HepG2 cell lines. MATERIALS AND METHODS SNEDDS were formulated by using Labrafil and N. sativa oil (3:2% w/w), Kolliphor RH40 (15% w/w), glycerol (5% w/w) as oil phase, surfactant and co-surfactant while deionized water (75% v/v) used as an aqueous phase. Optimized SNEDDS was evaluated for drug release and in vitro anticancer efficacy in liver cancer (HepG2) cell line. RESULTS AND DISCUSSION The selected formulation (F6) has a mean particle size of 79.7 nm with PDI 0.098 and the minimum viscosity of 16.42 cps with % transmittance of 1.332 with maximum drug release of 96.968% in 32 h as compared to DOX alone. Stability data showed stable emulsion in both 250C and -40C. F6 showed improved efficacy in HepG2 cells by cytotoxicity, showed significant results p<.05 with 2.5 μg/ml of (inhibitory concentration) IC50. CONCLUSION The overall study displayed that co-delivery of DOX and Nigella sativa oil in the form of SNEDDS may be an efficient carrier for further in vivo studies using oral delivery in human hepatocellular carcinoma in mammals.
Collapse
Affiliation(s)
- Afreen Usmani
- a Faculty of Pharmacy , Integral University , Lucknow , Uttar Pradesh , India
| | - Anuradha Mishra
- a Faculty of Pharmacy , Integral University , Lucknow , Uttar Pradesh , India
| | - Md Arshad
- b Molecular Endocrinology Lab, Department of Zoology , University of Lucknow , Lucknow , Uttar Pradesh , India
| | - Asif Jafri
- b Molecular Endocrinology Lab, Department of Zoology , University of Lucknow , Lucknow , Uttar Pradesh , India
| |
Collapse
|
115
|
17-α Hydroxyprogesterone Nanoemulsifying Preconcentrate-Loaded Vaginal Tablet: A Novel Non-Invasive Approach for the Prevention of Preterm Birth. Pharmaceutics 2019; 11:pharmaceutics11070335. [PMID: 31337153 PMCID: PMC6680947 DOI: 10.3390/pharmaceutics11070335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Preterm birth (PTB) is a major cause of infant mortality in the United States and around the globe. Makena®—once-a-week intramuscular injection of 17-α Hydroxyprogesterone caproate (17P)—is the only FDA approved treatment for the prevention of PTB. Invasive delivery of 17P requires hospitalization and expert personnel for injection. Vaginal delivery of 17P would be preferable, because of high patient compliance, reduced systemic exposure, fewer side effects, and no need for hospitalization. The objective of the present study was to prepare and evaluate a self-nanoemulsifying vaginal tablet of 17P. A solid self-nanoemulsifying preconcentrate (S-SNEDDS) of 17P and dimethylacetamide (DMA) was developed using medium chain triglycerides, a non- immunogenic surfactant, and co-processed excipient (PVA-F100). The tablet prepared was characterized for emulsification time, particle size, solid state properties, and drug release. The formulation showed >50% inhibition of TNF-α release from LPS-stimulated RAW 264.7 cells. Importantly, there were significant differences in rates of PTB and average time to delivery between control and vaginal 17P-treated groups in LPS-stimulated timed pregnant E15.5 mice. Considering the lacuna of therapeutic approaches in this area, vaginal delivery of 17P for the prevention of preterm birth has significant clinical relevance.
Collapse
|
116
|
Development and Permeability Testing of Self-Emulsifying Atorvastatin Calcium Pellets and Tablets of Compressed Pellets. Processes (Basel) 2019. [DOI: 10.3390/pr7060365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Self-emulsifying pellets (SEPs) of Atorvastatin Calcium (AtrCa) were developed and processed into tablets (SETs). Self-emulsifying drug delivery system (SEDDS) composed of oleic acid, Tween 20, Span 80 and N-Methyl-2-pyrolidone gave great solubility improvement and was used as oil in water emulsion for the preparation of SEPs. Due to the high 60% w/w SEDDS content required to achieve a therapeutic dose in the final tablet form, sonication was necessary to improve fluidity and stability. Colloidal silicon dioxide (CSD) and microcrystalline cellulose (MCC) were the solids in the pellet formulation employed at a ratio 7:3, which enabled production of pellets with high SEDDS content and acceptable friability as well. Emulsions were characterized physico-chemically, SEPs for physical properties and reconstitution, and tablets of compressed pellets for mechanical strength, disintegration into pellets and drug release. SEPs compressed with 30% MCC at 60 MPa gave tablets of adequate strength that disintegrated rapidly into pellets within 1 min. Emulsion reconstitution took longer than drug release due to adsorption of SEDDS on CSD, implying dissolution at the pellet surface in parallel to that from the dispersed droplets. Compared to the commercial tablet, drug release from the self-emulsifying forms was faster at pH 1.2 where the drug solubility is poor, but slower at pH 6.8 where the solubility is higher. Permeability and cytotoxicity were also studied using Caco-2 cells. The results showed that drug transport from the apical to basolateral compartment of the test well was 1.27 times greater for SEPs than commercial tablets, but 0.86 times lower in the opposite direction. Statistical analysis confirmed the significance of these results. Toxicity was slightly reduced. Therefore, the increased permeability in conjunction with the protection of the drug being dissolved in the SEDDS droplets, may reduce the overall effect of presystemic metabolism and enhance bioavailability.
Collapse
|
117
|
Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S, Rafay M, Chaudhry MT, Yasinzai M, Shahnaz G. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Improved Oral Bioavailability of Chlorpromazine: In Vitro and In Vivo Evaluation. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E210. [PMID: 31137751 PMCID: PMC6572212 DOI: 10.3390/medicina55050210] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Lipid-based self-nanoemulsifying drug delivery systems (SNEDDS) have resurged the eminence of nanoemulsions by modest adjustments and offer many valuable opportunities in drug delivery. Chlorpromazine, an antipsychotic agent with poor aqueous solubility-with extensive first-pass metabolism-can be a suitable candidate for the development of SNEDDS. The current study was designed to develop triglyceride-based SNEDDS of chlorpromazine to achieve improved solubility, stability, and oral bioavailability. Materials and Methods: Fifteen SNEDDS formulations of each short, medium, and long chain, triglycerides were synthesized and characterized to achieve optimized formulation. The optimized formulation was characterized for several in vitro and in vivo parameters. Results: Particle size, zeta potential, and drug loading of the optimized SNEDDS (LCT14) were found to be 178 ± 16, -21.4, and 85.5%, respectively. Long chain triglyceride (LCT14) showed a 1.5-fold increased elimination half-life (p < 0.01), up to 6-fold increased oral bioavailability, and 1.7-fold decreased plasma clearance rate (p < 0.01) compared to a drug suspension. Conclusion: The findings suggest that SNEDDS based on long-chain triglycerides (LCT14) formulations seem to be a promising alternative for improving the oral bioavailability of chlorpromazine.
Collapse
Affiliation(s)
- Jeand Baloch
- Sulaiman Bin Abdullah Aba Al-Khail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), International Islamic University, Islamabad 44000, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore 54770, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Hafiz Shaib Sarwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore 54770, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Maria Hassan Kiani
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarwat Jahan
- Department of Animal Sciences, Quaid-i- Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Rafay
- Department of Forester, Range and Wild life management, College f Agriculture and Environmental Sciences, The Islamia University, Bahawalpur 63100, Pakistan.
| | - Muhammad Tausif Chaudhry
- Environmental Analytical Lab, NPSL, Pakistan Council of Scientific and Industrial Research (PCSIR), Islamabad 45710, Pakistan.
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al-Khail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), International Islamic University, Islamabad 44000, Pakistan.
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
118
|
Abd-Elhakeem E, Teaima MHM, Abdelbary GA, El Mahrouk GM. Bioavailability enhanced clopidogrel -loaded solid SNEDDS: Development and in-vitro/in-vivo characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
119
|
Eid AM, Elmarzugi NA, Jaradat NA. Influence of sonication and in vitro evaluation of nifedipine self-nanoemulsifying drug delivery system. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000217497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Nagib A Elmarzugi
- Tripoli University & National Nanotechnology Project, Biotechnology Research Center, Libya
| | | |
Collapse
|
120
|
Flurbiprofen-Loaded Solid SNEDDS Preconcentrate for the Enhanced Solubility, In-Vitro Dissolution and Bioavailability in Rats. Pharmaceutics 2018; 10:pharmaceutics10040247. [PMID: 30487449 PMCID: PMC6321466 DOI: 10.3390/pharmaceutics10040247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to prepare and optimize a solid self-nanoemulsifying drug delivery system pre-concentrate (SSP) containing water-insoluble flurbiprofen (FL) using a novel pseudo-ternary phase diagram. The pseudo-ternary phase diagram, composed of FL as the drug and dispersion core, Kollisolv MCT 70 as the oil phase, and TPGS (tocopherol polyethylene glycol 1000 succinate) as the surfactant, was constructed for the determination of the SSP region. SSP was investigated in terms of particle size, physical state by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), in vitro dissolution and oral pharmacokinetics in rats. The determined SSP (FL/Kollisolv MCT 70/TPGS = 10/10/80, weight %) in the pseudo-ternary phase diagram had the melting point of 32.37 °C and uniform mean particle size of below 30 nm without any precipitation of FL in the dispersion. In the dissolution test, the SSP exhibited 95.70 ± 3.40% of release at 15 min, whereas the raw FL showed poor dissolution (i.e., 6.75 ± 1.30%) at that time point. In addition, the SSP showed the enhanced oral absorption (i.e., 1.93-fold increase in AUCinfinite) as compared to the suspension group of raw FL. Therefore, the developed SSP would be a promising drug delivery system with excellent solubilization, dissolution, and bioavailability for FL.
Collapse
|
121
|
Naseef MA, Ibrahim HK, Nour SAEK. Solid Form of Lipid-Based Self-Nanoemulsifying Drug Delivery Systems for Minimization of Diacerein Adverse Effects: Development and Bioequivalence Evaluation in Albino Rabbits. AAPS PharmSciTech 2018; 19:3097-3109. [PMID: 30109675 DOI: 10.1208/s12249-018-1138-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
This work aimed to enhance the oral bioavailability of diacerein. The drug was incorporated in self-nanoemulsifying drug delivery system. Ternary phase diagrams were constructed using Capryol™90, Miglyol®812 and isopropyl myristate as oils, Tween®80 and Tween®20 as surfactants and PEG 200 and PEG 300 as co-surfactants. Among a total of 432 formulae, 17 formulae were clear. They were assessed for mean droplet size, polydispersity index (PDI), saturation solubility and transmission electron microscopy. Solid granules were obtained by adsorption on Aeroperl®300. Results for DSC, PXRD, and SEM of prepared granules revealed that diacerein was molecularly dispersed within the formula. Desirability factor was adopted to find the granules with maximum solubility, maximum dissolution efficiency, maximum dissolution rate and percentage of drug dissolved at 5 min and minimum dissolution time and Carr's index. The optimized formula consisted of 10% Miglyol®812, 70% Tween®80 and 20% PEG 200 adsorbed to Aeroperl® 300 with a ratio of 2:1 preconcentrate:carrier. It recorded a 3.77-fold increase in bioavailability, compared to the marketed product. Such enhancement means lower doses and less gastrointestinal side effects.
Collapse
|
122
|
Beringhs AO, Minatovicz BC, Zhang GGZ, Chaudhuri B, Lu X. Impact of Porous Excipients on the Manufacturability and Product Performance of Solid Self-Emulsifying Drug Delivery Systems. AAPS PharmSciTech 2018; 19:3298-3310. [PMID: 30218264 DOI: 10.1208/s12249-018-1178-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
FDA-approved self-emulsifying medicines rely on liquid-based formulations, which can exhibit limited stability and short shelf-lives. Solid self-emulsifying drug delivery systems (SEDDS) can improve such issues, but there is still a great need for identifying suitable porous carriers to convert liquid SEDDS into solids without impairing their mechanical properties, functionality, and industrial feasibility. The impact of SEDDS adsorption on tableting is also poorly understood. Therefore, solid SEDDS were prepared by adsorbing liquid SEDDS onto ten commercially available porous excipients. Products were assessed with respect to mechanical behavior, tabletability, and product performance. Adsorbing SEDDS onto porous excipients led to satisfactory stability, with the exception of Zeopharm® 600 due to its high alkalinity, and Neusilin® US2/UFL2, which caused quercetin to crystallize out of the liquid concentrate. SEDDS adsorption reduced the elastic recovery of most excipients, making tableting achievable using Aeroperl® 300 and Aerosil® 200/300. The impact of SEDDS on elastic recovery provides additional understanding on solid SEDDS manufacture process. Acceptable tablets were made via direct compression but with slow disintegration. Addition of a superdisintegrant (crospovidone 5% w/w) ensured tablet manufacturing without impairment of product performance. Solid SEDDS displayed several technical advantages over their liquid counterparts, but attention must be given to the properties of the porous excipient chosen. Drug-excipient interactions play a significant role in drug degradation and crystallization in solid SEDDS. Improved mechanical behavior upon adsorption led to well-composed tablets that performed satisfactorily in vitro upon addition of a superdisintegrant. This study provides an insight on excipient-oriented rational development of solid SEDDS.
Collapse
|
123
|
Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics 2018; 10:pharmaceutics10010026. [PMID: 29473897 PMCID: PMC5874839 DOI: 10.3390/pharmaceutics10010026] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022] Open
Abstract
Miconazole nitrate (MIC) is an antifungal drug used for treatment of superficial fungal infections. However, it has low skin permeability. Hence, the objective of this study was to prepare miconazole nitrate using Transfersomes to overcome the barrier function of the skin. MIC Transfersomes were prepared using a thin lipid film hydration technique. The prepared Transfersomes were evaluated with respect to entrapment efficiency (EE%), particle size, and quantity of in vitro drug released to obtain an optimized formulation. The optimized formulation of MIC Transfersomes was incorporated into a Carbapol 934 gel base which was evaluated in comparison with a marketed product (Daktarin® cream 2%) for drug content, pH, spreadability, viscosity, in vitro permeation, and in vitro and in vivo antifungal activity. The prepared MIC Transfersomes had a high EE% ranging from (67.98 ± 0.66%) to (91.47 ± 1.85%), with small particle sizes ranging from (63.5 ± 0.604 nm) to (84.5 ± 0.684 nm). The in vitro release study suggested that there was an inverse relationship between EE% and in vitro release. The kinetic analysis of all release profiles was found to follow Higuchi's diffusion model. All independent variables had a significant effect on the dependent variables (p-values < 0.05). The prepared MIC transfersomal gel showed higher antifungal activity than Daktarin® cream 2%. Therefore, miconazole nitrate in the form of Transfersomes has the ability to penetrate the skin, overcoming the stratum corneum barrier.
Collapse
|
124
|
Ibrahim TM, Abdallah MH, El-Megrab NA, El-Nahas HM. Upgrading of dissolution and anti-hypertensive effect of Carvedilol via two combined approaches: self-emulsification and liquisolid techniques. Drug Dev Ind Pharm 2017; 44:873-885. [DOI: 10.1080/03639045.2017.1417421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tarek M. Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, Kingdom of Saudi Arabia
| | - Nagia A. El-Megrab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
125
|
Teaima MH, Abdelhalim SA, El-Nabarawi MA, Attia DA, Helal DA. Non-ionic surfactant based vesicular drug delivery system for topical delivery of caffeine for treatment of cellulite: design, formulation, characterization, histological anti-cellulite activity, and pharmacokinetic evaluation. Drug Dev Ind Pharm 2017; 44:158-171. [DOI: 10.1080/03639045.2017.1386206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A. Abdelhalim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia A. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Doaa A. Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Elfayoum University, Elfayoum, Egypt
| |
Collapse
|
126
|
Singh D, Bedi N, Tiwary AK. Enhancing solubility of poorly aqueous soluble drugs: critical appraisal of techniques. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0357-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
127
|
Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. Regul Toxicol Pharmacol 2016; 82:20-31. [DOI: 10.1016/j.yrtph.2016.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
|