101
|
Li ZH, Xiong QY, Xu L, Duan P, Yang QO, Zhou P, Tu JH. miR-29a regulated ER-positive breast cancer cell growth and invasion and is involved in the insulin signaling pathway. Oncotarget 2018; 8:32566-32575. [PMID: 28427228 PMCID: PMC5464809 DOI: 10.18632/oncotarget.15928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
Increasing amounts of evidence show that insulin can activate different insulin signaling pathways to promote breast cancer growth and invasion. miR-29a plays crucial roles in decreasing glucose-stimulated insulin secretion, as well as in regulating breast cancer cell proliferation and EMT. However, the mechanism responsible for the regulatory effects of miR-29a on breast cancer growth and invasion and the relationship between these effects and insulin signaling remains unclear. Herein, we showed that human insulin increased miR-29a expression in ER-positive breast cancer cells and that miR-29a facilitated the ability of insulin to promote breast cancer cell proliferation and migration. We found that miR-29a-induced cell proliferation and metastasis acceleration occurred primarily through ERK phosphorylation. The IGF-1R is the upstream target gene of miR-29a, while CDC42 and p85α are the downstream target genes of miR-29a. These results have provided us with information regarding the molecular mechanisms by which hyperinsulinemia promotes breast cancer occurrence and development and thus leads to a poor prognosis in breast cancer patients and indicate that miR-29a plays an important role in breast cancer development and invasion.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Qiu-Yun Xiong
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Peng Duan
- Department of Endocrinology, The Third Hospital of Nanchang City, Nanchang Key Laboratory of Diabetes, Nanchang, JiangXi 330009, People's Republic of China
| | - Qianwen Ou Yang
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Ping Zhou
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Key Laboratory of Breast Diseases in Jiangxi Province, Nanchang, JiangXi 330009, People's Republic of China
| | - Jian-Hong Tu
- Pathology Department, The Third Hospital of Nanchang City, JiangXi Breast Specialist Hospital, Nanchang, JiangXi 330009, People's Republic of China
| |
Collapse
|
102
|
Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev 2018; 36:525-545. [PMID: 28836104 DOI: 10.1007/s10555-017-9692-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18-23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
103
|
MiRNA-Regulated Changes in Extracellular Matrix Protein Levels Associated With a Severe Decline in Lung Function Induced by Silica Dust. J Occup Environ Med 2018; 60:316-321. [DOI: 10.1097/jom.0000000000001268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
104
|
Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members. Int J Mol Sci 2018; 19:ijms19040958. [PMID: 29570632 PMCID: PMC5979352 DOI: 10.3390/ijms19040958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.
Collapse
|
105
|
Liu J, Li M, Liu X, Liu F, Zhu J. miR-27a-3p promotes the malignant phenotypes of osteosarcoma by targeting ten-eleven translocation 1. Int J Oncol 2018; 52:1295-1304. [PMID: 29484426 DOI: 10.3892/ijo.2018.4275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma has become one of the most common primary malignant tumors affecting children and adolescents. Although increasing evidence has indicated that microRNAs (miRNAs or miRs) play important roles in the development of osteosarcoma, the expression of miR‑27a‑3p and its effects on osteosarcoma are not yet fully understood. In the present study, our data demonstrated that the expression of miR‑27a‑3p in osteosarcoma cell lines was significantly higher than that in the normal human osteoblastic cell line, hFOB 1.19 cell (P<0.01). In order to explore the role of miR‑27a‑3p in the development and progression of osteosarcoma, the expression of miR‑27a‑3p was inhibited by transfection of the MG-63 cells with miR‑27a‑3p inhibitor. The results revealed that the cell proliferative ability significantly decreased (P<0.01), the number of apoptotic cells significantly increased (P<0.01) and the number of cells passing through the Transwell membrane was significantly reduced in the group transfected with the miR‑27a‑3p inhibitor (P<0.01). At the same time, the expression of E-cadherin and α-catenin was significantly upregulated (P<0.01), while the expression of vimentin was significantly downregulated in the group transfected with the miR‑27a‑3p inhibitor (P<0.01). Our results also revealed that the mRNA expression of ten-eleven translocation 1 (TET1) in the osteosarcoma cells was significantly downregulated compared with that in the hFOB 1.19 cells (P<0.01). Luciferase reporter system analysis indicated that miR‑27a‑3p recognized the TET1 3'-UTR. The protein expression of TET1 significantly increased in the group transfected with the miR‑27a‑3p inhibitor. The results from CCK-8 assay, flow cytometric assay and Transwell invasion analysis revealed that TET1 knockdown inhibited the biological effects induced by the downregulation of miR‑27a‑3p. Taken together, the findings of this study indicate that miR‑27a‑3p is upregulated, while TET1 is downregulated in human osteosarcoma cells. miR‑27a‑3p inhibition suppresses the proliferation and invasion of osteosarcoma cells, and promotes cell apoptosis via the negative regulation of TET1. miR‑27a‑3p/TET1 may thus be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jin Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingpeng Li
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiancheng Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
106
|
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 2018; 7:42683-42697. [PMID: 26967056 PMCID: PMC5173166 DOI: 10.18632/oncotarget.7977] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a severe problem throughout the world and requires identification of novel targets for its treatment. This multifactorial disease accounts for about 15% of the all diagnosed leukemia cases. Mitogen-activated protein kinase (MAPK) signaling pathway is crucial for the cell survival and its dysregulation is being implicated in various types of cancers. In here, we have discussed the potential role of various miRNAs that are found involved in regulating the proteins cascades of MAPK signaling pathway associated with CML. An emphasis has been paid to summarize the influence of various miRNAs in elevating or suppressing the expression level of significant proteins such as miR-203, miR-196a, miR-196b, miR-30a, miR-29b, miR-138 in BCR-ABL tyrosine kinase; miR-126, miR-221, miR-128, miR-15a, miR-188-5p, miR-17 in CRK family proteins; miR-155, miR-181a with SOS proteins; miR-155, miR-19a, with KRAS proteins; miR-19a with RAF1 protein; and miR-17, miR-19a, miR-17-92 cluster with MAPK/ERK proteins. In light of ever-increasing importance and ever-widening regulatory roles of miRNAs in cells, we have reviewed the recent progress in the field of miRNAs and have tried to suggest them as controlling targets for various protein cascades of MAPK signaling pathway. An understanding of the supervisory mechanism of MAPK by miRNAs might provide novel targets for treating CML.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| |
Collapse
|
107
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
108
|
Butrym A, Rybka J, Baczyńska D, Poręba R, Kuliczkowski K, Mazur G. Clinical response to azacitidine therapy depends on microRNA-29c (miR-29c) expression in older acute myeloid leukemia (AML) patients. Oncotarget 2017; 7:30250-7. [PMID: 26862847 PMCID: PMC5058678 DOI: 10.18632/oncotarget.7172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with different clinical course and prognosis. microRNA-29 (miR-29) family of non-coding small RNAs can play an important role in pathogenesis of AML, but also can influence response to therapy. The purpose of the study was to evaluate miR-29c expression in AML patients in relationship to clinical parameters and response to chemotherapy, including azacitidine.
Collapse
Affiliation(s)
- Aleksandra Butrym
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Rybka
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Kazimierz Kuliczkowski
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
109
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
110
|
Khamisipour G, Mansourabadi E, Naeimi B, Moazzeni A, Tahmasebi R, Hasanpour M, Mohammadi MM, Mansourabadi Z, Shamsian S. Knockdown of microRNA-29a regulates the expression of apoptosis-related genes in MCF-7 breast carcinoma cells. Mol Clin Oncol 2017; 8:362-369. [PMID: 29435304 DOI: 10.3892/mco.2017.1528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNA (miR), as non-coding small RNA, are key regulators of cancer-related biological cell processes and contribute to tumor growth through regulation of groups of pro- and anti-apoptotic genes. The present study aimed to investigate the effects of miR-29a on the expression of genes involved in apoptosis, including p21, B-cell lymphoma 2 (BCL-2), p53 and survivin. The MCF-7 breast cancer cell line was transfected with anti-miR-29a and treated with Taxol in subdivided treatment groups including: Scramble; anti-miR-29a; anti-miR-29a + Taxol; Taxol; and control. Expression levels of p21, BCL-2, p53 and survivin were evaluated using reverse transcription-quantitative polymerase chain reaction. miR-29a knockdown resulted in p21 and p53 upregulation and a decrease in survivin expression. These results indicated that miR-29a inhibition regulates apoptosis. The present data suggested that miR-29a inhibition may be a promising strategy for the induction of apoptosis of tumor cells.
Collapse
Affiliation(s)
- Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr 75189577, Iran.,The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Elham Mansourabadi
- Student Research Committee, Vice-Chancellery Research and Technology Affairs, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Behrouz Naeimi
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Ali Moazzeni
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Rahim Tahmasebi
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Mojtaba Hasanpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Majid Mosahebi Mohammadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115331, Iran
| | - Zahra Mansourabadi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| | - Shakib Shamsian
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 75189577, Iran
| |
Collapse
|
111
|
Wang H, An X, Yu H, Zhang S, Tang B, Zhang X, Li Z. MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget 2017; 8:102119-102133. [PMID: 29254230 PMCID: PMC5731940 DOI: 10.18632/oncotarget.22183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
MiR-29b has been reported to be both a suppressor and a promoter in breast cancer (BC) cells proliferation and metastasis. Significant efforts have been made to explain the seemingly contradictory effects of miR-29b on BC, but no answer has yet been clearly verified. In this study, we overexpressed and knocked down miR-29b in BC cell lines, modulated expression of its downstream target gene TET1 and downregulated a downstream target gene of TET1, ZEB2, to explore the regulatory mechanism of miR-29b in BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Our results showed lower expression of miR-29b in BC samples and cell lines. Functional assays showed that miR-29b overexpression resulted in a higher cell proliferation, greater colony formation, higher migration rate and EMT. A dual luciferase assay identified TET1 as a direct target of miR-29b. As the promoting effects of miR-29b in the proliferation and metastasis of MDA-MB-231 and MCF-7, knockdown of TET1 also led to increased proliferation, colony formation, invasion and EMT. Further, we found that TET1 bound to the promoter of ZEB2, and siTET1 enhanced ZEB2 expression. Disruption of ZEB2 expression inhibited BC cells proliferation, colony formation and invasion. Our results establish the miR-29b/TET1/ZEB2 pathway in BC cell proliferation, migration and provide a theoretical basis for further research on the molecular mechanisms and new clinical treatments for BC.
Collapse
Affiliation(s)
- Hua Wang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- The First Bethune Hospital, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
112
|
|
113
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
114
|
The miR-29 transcriptome in endocrine-sensitive and resistant breast cancer cells. Sci Rep 2017; 7:5205. [PMID: 28701793 PMCID: PMC5507892 DOI: 10.1038/s41598-017-05727-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant microRNA expression contributes to breast cancer progression and endocrine resistance. We reported that although tamoxifen stimulated miR-29b-1/a transcription in tamoxifen (TAM)-resistant breast cancer cells, ectopic expression of miR-29b-1/a did not drive TAM-resistance in MCF-7 breast cancer cells. However, miR-29b-1/a overexpression significantly repressed TAM-resistant LCC9 cell proliferation, suggesting that miR-29b-1/a is not mediating TAM resistance but acts as a tumor suppressor in TAM-resistant cells. The target genes mediating this tumor suppressor activity were unknown. Here, we identify miR-29b-1 and miR-29a target transcripts in both MCF-7 and LCC9 cells. We find that miR-29b-1 and miR-29a regulate common and unique transcripts in each cell line. The cell-specific and common downregulated genes were characterized using the MetaCore Gene Ontology (GO) enrichment analysis algorithm. LCC9-sepecific miR-29b-1/a-regulated GO processes include oxidative phosphorylation, ATP metabolism, and apoptosis. Extracellular flux analysis of cells transfected with anti- or pre- miR-29a confirmed that miR-29a inhibits mitochondrial bioenergetics in LCC9 cells. qPCR,luciferase reporter assays, and western blot also verified the ATP synthase subunit genes ATP5G1 and ATPIF1 as bone fide miR29b-1/a targets. Our results suggest that miR-29 repression of TAM-resistant breast cancer cell proliferation is mediated in part through repression of genes important in mitochondrial bioenergetics.
Collapse
|
115
|
|
116
|
Naz S, Kolmert J, Yang M, Reinke SN, Kamleh MA, Snowden S, Heyder T, Levänen B, Erle DJ, Sköld CM, Wheelock ÅM, Wheelock CE. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J 2017. [PMID: 28642310 PMCID: PMC5898938 DOI: 10.1183/13993003.02322-2016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD. Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I–II/A–B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography–high resolution mass spectrometry metabolomics platform. Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10−7). Sex stratification indicated that the separation was driven by females (p=2.4×10−7) relative to males (p=4.0×10−4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10−3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung. These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin–lysoPA axis, are associated with disease mechanisms and/or prevalence. Oxidative stress and the autotaxin–lysoPA axis evidence sex-associated metabotypes in the serum of COPD patientshttp://ow.ly/kAeE309MpdI
Collapse
Affiliation(s)
- Shama Naz
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Division of Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Instituet, Stockholm, Sweden
| | - Mingxing Yang
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stacey N Reinke
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Anas Kamleh
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stuart Snowden
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tina Heyder
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Levänen
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David J Erle
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine and Lung Biology Center, University of California San Francisco, San Francisco, CA, USA
| | - C Magnus Sköld
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Both authors contributed equally
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden .,Both authors contributed equally
| |
Collapse
|
117
|
Bruzgielewicz A, Osuch-Wojcikiewicz E, Niemczyk K, Sieniawska-Buccella O, Siwak M, Walczak A, Nowak A, Majsterek I. Altered Expression of miRNAs Is Related to Larynx Cancer TNM Stage and Patients' Smoking Status. DNA Cell Biol 2017; 36:581-588. [PMID: 28430523 DOI: 10.1089/dna.2016.3464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been reported that microRNAs (miRNAs) are responsible for acquiring all the hallmarks of cancer cells, as well as have a significant impact on the clinical management of cancers at every stage, including prognosis, remission, relapse, and metastasis. In this study, we investigated the association of miR-29a-3p, miR-202-3p, miR-3713, miR-4768-3p, and miR-548aa expression with clinicopathologic features in patients suffering from laryngeal cancer (LC) and determined the potential role of studied miRNAs in the progression of LC. The study group consisted of 48 patients with untreated primary tumors of head and neck cancer localized in the larynx. Expression of the selected miRNAs was verified by the qRT-PCR technique. We showed that the expression of miR-29a as well as miR-548aa was positively correlated with tumor stage and lymph node metastasis, whereas the expression of miR-4768-3p was negatively correlated with lymph node metastasis. Furthermore, we investigated that exposure to cigarette smoke altered miRNA expression profile in LC. The expression level of miR-202-3p was significantly increased in smoking patients compared with nonsmokers, whereas the miR-4768-3p, miR-548aa, and miR-3713 were markedly decreased. Our research contributed toward better elucidating the mechanisms underlying the progression of LC as well as the use of miRNAs inhibitors as novel agents against progression and metastasis of LC.
Collapse
Affiliation(s)
| | | | - Kazimierz Niemczyk
- 1 Department of Otolaryngology, Medical University of Warsaw , Warsaw, Poland
| | | | - Mateusz Siwak
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Anna Walczak
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Alicja Nowak
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Ireneusz Majsterek
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
118
|
Kollinerová S, Dostál Z, Modrianský M. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol In Vitro 2017; 40:289-296. [DOI: 10.1016/j.tiv.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
|
119
|
Peng H, Lan C, Zheng Y, Hutvagner G, Tao D, Li J. Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite. BMC Bioinformatics 2017; 18:193. [PMID: 28340554 PMCID: PMC5366146 DOI: 10.1186/s12859-017-1605-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. METHODS AND RESULTS We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. CONCLUSIONS With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.
Collapse
Affiliation(s)
- Hui Peng
- Advanced Analytics Institute, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia
| | - Chaowang Lan
- Advanced Analytics Institute, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia
| | - Yi Zheng
- Advanced Analytics Institute, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia
| | - Gyorgy Hutvagner
- Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia
| | - Dacheng Tao
- School of Information Technologies and the Faculty of Engineering and Information Technologies, University of Sydney, J12/318 Cleveland St, Darlington, 2008, NSW, Australia
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia.
| |
Collapse
|
120
|
Dalan AB, Gulluoglu S, Tuysuz EC, Kuskucu A, Yaltirik CK, Ozturk O, Ture U, Bayrak OF. Simultaneous analysis of miRNA-mRNA in human meningiomas by integrating transcriptome: A relationship between PTX3 and miR-29c. BMC Cancer 2017; 17:207. [PMID: 28327132 PMCID: PMC5361823 DOI: 10.1186/s12885-017-3198-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/15/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although meningioma is a common disease, there is a lack of understanding of the underlying molecular mechanisms behind its initiation and progression. We used combined miRNA-mRNA transcriptome analysis to discover dysregulated genes and networks in meningiomas. METHODS Fourteen fresh-frozen meningioma samples and one human meningeal cell line were analyzed by using miRNA and whole transcriptome microarray chips. Data was filtered and analyzed. Candidate miRNAs and mRNAs were selected for validation in fifty-eight patient samples. miRNA and target mRNA relationships were assessed by inhibiting miRNA in meningioma cells. Apoptosis and viability assays were also used as functional tests. RESULTS With the whole transcriptome microarray, 3753 genes were found to be dysregulated, and 891 miRNAs were found to be dysregulated as a result of miRNA microarray. Results were combined and analyzed with bioinformatics tools. Top differential pathways included those of inflammation, cancer, and cellular growth and survival. The oncosupressor PTX3 was constitutively low in meningioma samples. Moreover, PTX3 negatively correlated with miR-29c in our samples. Inhibiting miR-29c upregulated the PTX3 level, induced apoptosis of meningioma cells, and decreased cell viability. CABIN1, miR-29c, TMOD1, PTX3, RPL22, SPARCL1 and RELA were correlated with clinicopathological features in patient samples. CONCLUSIONS Our results present the first integrated mRNA-miRNA analysis in meningiomas. miR-29c-3p and PTX3 are inversely correlated in tissues and meningioma cells, hinting that PTX3 can be regulated by miR-29c-3p. Furthermore, we determined potential clinicopathological markers.
Collapse
Affiliation(s)
- Altay Burak Dalan
- Department of Biochemistry, Yeditepe University Medical School, Istanbul, Turkey
| | - Sukru Gulluoglu
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey
| | - Cumhur Kaan Yaltirik
- Department of Neurosurgery, Yeditepe University Medical School, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Capa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Ugur Ture
- Department of Neurosurgery, Yeditepe University Medical School, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey
- Yeditepe Universitesi Hastanesi Genetik Tani Merkezi, Koftuncu Sokak Acıbadem mahallesi Istek Vakfi 3. Kat 34718 No: 57/1, Kadikoy, Istanbul, Turkey
| |
Collapse
|
121
|
Ru P, Guo D. microRNA-29 mediates a novel negative feedback loop to regulate SCAP/SREBP-1 and lipid metabolism. RNA & DISEASE 2017; 4. [PMID: 28664184 DOI: 10.14800/rd.1525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The membrane-bound transcription factors, SREBPs (sterol regulatory element-binding proteins), play a central role in regulating lipid metabolism. The transcriptional activation of SREBPs requires the key protein SCAP (SREBP-cleavage activating protein) to translocate their precursors from the endoplasmic reticulum to the Golgi for subsequent proteolytic activation, a process tightly regulated by a cholesterol-mediated negative feedback loop. Our previous work showed that the SCAP/SREBP-1 pathway is significantly upregulated in human glioblastoma (GBM), the most deadly brain cancer, and that glucose-mediated N-glycosylation of SCAP is a prerequisite step for SCAP/SREBP trafficking. More recently, we demonstrated that microRNA-29 (miR-29) mediates a previously unrecognized negative feedback loop in SCAP/SREBP-1 signaling to control lipid metabolism. We found that SREBP-1, functioning as a transcription factor, promotes the expression of the miR-29 family members, miR-29a, -29b and -29c. In turn, the miR-29 isoforms reversely repress the expression of SCAP and SREBP-1. Moreover, treatment with miR-29 mimics effectively suppressed GBM tumor growth by inhibiting SCAP/SREBP-1 and de novo lipid synthesis. These findings, recently published in Cell Reports, strongly suggest that delivery of miR-29 in vivo may be a promising approach to treat cancer and metabolic diseases by suppressing SCAP/SREBP-1-regulated lipid metabolism.
Collapse
Affiliation(s)
- Peng Ru
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
122
|
Do DN, Li R, Dudemaine PL, Ibeagha-Awemu EM. MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci Rep 2017; 7:44605. [PMID: 28317898 PMCID: PMC5357959 DOI: 10.1038/srep44605] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/09/2017] [Indexed: 01/30/2023] Open
Abstract
The study examined microRNA (miRNA) expression and regulatory patterns during an entire bovine lactation cycle. Total RNA from milk fat samples collected at the lactogenesis (LAC, day1 [D1] and D7), galactopoiesis (GAL, D30, D70, D130, D170 and D230) and involution (INV, D290 and when milk production dropped to 5 kg/day) stages from 9 cows was used for miRNA sequencing. A total of 475 known and 238 novel miRNAs were identified. Fifteen abundantly expressed miRNAs across lactation stages play regulatory roles in basic metabolic, cellular and immunological functions. About 344, 366 and 209 miRNAs were significantly differentially expressed (DE) between GAL and LAC, INV and GAL, and INV and LAC stages, respectively. MiR-29b/miR-363 and miR-874/miR-6254 are important mediators for transition signals from LAC to GAL and from GAL to INV, respectively. Moreover, 58 miRNAs were dynamically DE in all lactation stages and 19 miRNAs were significantly time-dependently DE throughout lactation. Relevant signalling pathways for transition between lactation stages are involved in apoptosis (PTEN and SAPK/JNK), intracellular signalling (protein kinase A, TGF-β and ERK5), cell cycle regulation (STAT3), cytokines, hormones and growth factors (prolactin, growth hormone and glucocorticoid receptor). Overall, our data suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.
Collapse
Affiliation(s)
- Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada.,Department of Animal Science, McGill University, 21111, Lakeshore Road, Ste-Anne-de Bellevue, Quebec, J1M 0C8, Canada
| | - Ran Li
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada.,College of Animal Science and Technology, Northwest A&F University, Xinong road 22, Shaanxi, 712100, China
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| |
Collapse
|
123
|
Altered microRNA expression patterns during the initiation and promotion stages of neonatal diethylstilbestrol-induced dysplasia/neoplasia in the hamster (Mesocricetus auratus) uterus. Cell Biol Toxicol 2017; 33:483-500. [PMID: 28265775 DOI: 10.1007/s10565-017-9389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Treatment of Syrian hamsters on the day of birth with the prototypical endocrine disruptor and synthetic estrogen, diethylstilbestrol (DES), leads to 100% occurrence of uterine hyperplasia/dysplasia in adulthood, a large proportion of which progress to neoplasia (endometrial adenocarcinoma). Consistent with our prior gene expression analyses at the mRNA and protein levels, we now report (based on microarray, real-time polymerase chain reaction, and in situ hybridization analyses) that progression of the neonatal DES-induced dysplasia/neoplasia phenomenon in the hamster uterus also includes a spectrum of microRNA expression alterations (at both the whole-organ and cell-specific level) that differ during the initiation (upregulated miR-21, 200a, 200b, 200c, 29a, 29b, 429, 141; downregulated miR-181a) and promotion (downregulated miR-133a) stages of the phenomenon. The biological processes targeted by those differentially expressed miRNAs include pathways in cancer and adherens junction, plus regulation of the cell cycle, apoptosis, and miRNA functions, all of which are consistent with our model system phenotype. These findings underscore the need for continued efforts to identify and assess both the classical genetic and the more recently recognized epigenetic mechanisms that truly drive this and other endocrine disruption phenomena.
Collapse
|
124
|
Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin Cancer Biol 2017; 46:146-157. [PMID: 28185862 DOI: 10.1016/j.semcancer.2017.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways.
Collapse
|
125
|
Guerra L, Odorisio T, Zambruno G, Castiglia D. Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biol 2017; 63:1-10. [PMID: 28126522 DOI: 10.1016/j.matbio.2017.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a skin fragility disease caused by mutations that affect the function and/or the amount of type VII collagen (C7), the major component of anchoring fibrils. Hallmarks of RDEB are unremitting blistering and chronic wounds leading to tissue fibrosis and scarring. Nearly all patients with severe RDEB develop highly metastatic squamous cell carcinomas (SCC) which are the main cause of death. Accumulating evidence from a murine RDEB model and human RDEB cells demonstrates that lack of C7 also directly alters the wound healing process. Non-healing RDEB wounds are characterized by increased inflammation, high transforming growth factor-β1 (TGF-β1) levels and activity, and are heavily populated by myofibroblasts responsible for enhanced fibrogenesis and matrix stiffness. These changes make the RDEB stroma a microenvironment prone to cancer initiation, where cells with features of cancer-associated fibroblasts are found. Here, we discuss recent knowledge on microenvironment alterations in RDEB, highlighting possible therapeutic targets to prevent and/or delay fibrosis and SCC development.
Collapse
Affiliation(s)
- Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area and Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
126
|
Duan YF, Sun DL, Chen J, Zhu F, An Y. MicroRNA-29a/b/c targets iNOS and is involved in protective remote ischemic preconditioning in an ischemia-reperfusion rat model of non-alcoholic fatty liver disease. Oncol Lett 2017; 13:1775-1782. [PMID: 28454323 DOI: 10.3892/ol.2017.5623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/24/2016] [Indexed: 01/23/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) protects against the injury that is incurred by ischemia and reperfusion (IR); however, the role of RIPC in liver IR injury in non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, a NAFLD rat model was utilized in a series of different surgical procedures and molecular experiments. Rats of the IR group and the RIPC+IR group exhibited more severe injury than NAFLD control rats (in which the liver was prodded following a median-incision laparotomy). The liver condition, measured by serum alanine transaminase and aspartate transaminase levels, of the RIPC+IR group was better than that of the IR group. In addition, alanine transaminase and aspartate transaminase levels were lower in the RIPC+IR group compared with the IR group (P<0.001). Flow cytometry revealed that the cell apoptosis ratio was significantly lower in the RIPC+IR group than in the IR group (P<0.001). Reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess miR-29a/b/c levels, revealing that they were significantly reduced in the RIPC and RIPC+IR groups, but did not vary in the IR group compared with the control group. RT-qPCR also revealed that iNOS mRNA levels were not significantly different among any of the NAFLD groups; however, western blot analysis indicated that iNOS protein levels were increased in the RIPC group and the RIPC+IR group compared with the control and IR groups. A luciferase reporter assay demonstrated that transfection with miR-29a/b/c mimics significantly decreased the luciferase activities of plasmids containing the wild-type iNOS 3'-untranslated region (UTR) (relative fluorescence intensity: 0.47±0.06 for miR-29a, 0.36±0.07 for miR-29b, 0.41±0.04 for miR-29c; P<0.001), whereas the activities of plasmids containing the mutant iNOS 3'-UTR sequence were not markedly affected [relative fluorescence intensity: 0.99±0.08 for miR-29a (P=0.1349), 0.99±0.09 for miR-29b (P=0.1607), 0.97±0.07 for miR-29c (P=0.1824)]. This suggested that miR-29a/b/c downregulates iNOS by directly targeting its 3'-UTR. In summary, the results suggest that RIPC has a protective effect in NAFLD liver IR injury, which may be due to reduced miR-29a/b/c levels in the skeletal muscle, leading to increased iNOS and, therefore, nitric oxide.
Collapse
Affiliation(s)
- Yun-Fei Duan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Dong-Lin Sun
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jing Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Feng Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yong An
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
127
|
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules 2017; 7:biom7010003. [PMID: 28067760 PMCID: PMC5372715 DOI: 10.3390/biom7010003] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chromatin can adopt a decondensed state linked to gene transcription (euchromatin) and a condensed state linked to transcriptional repression (heterochromatin). These states are controlled by epigenetic modulators that are active on either the DNA or the histones and are tightly associated to each other. Methylation of both DNA and histones is involved in either the activation or silencing of genes and their crosstalk. Since DNA/histone methylation patterns are altered in cancers, molecules that target these modifications are interesting therapeutic tools. We present herein a vast panel of DNA methyltransferase inhibitors classified according to their mechanism, as well as selected histone methyltransferase inhibitors sharing a common mode of action.
Collapse
Affiliation(s)
- Omar Castillo-Aguilera
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Patrick Depreux
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| | - Ludovic Halby
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
| | - Paola B Arimondo
- FRE3600 Epigenetic Targeting of Cancer, CNRS, 31035 Toulouse, France.
- Churchill College, Cambridge CB3 0DS, UK.
| | - Laurence Goossens
- Univ. Lille, ICPAL, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, 3 rue du Pr. Laguesse, F-59000 Lille, France.
| |
Collapse
|
128
|
Muluhngwi P, Krishna A, Vittitow SL, Napier JT, Richardson KM, Ellis M, Mott JL, Klinge CM. Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Lett 2016; 388:230-238. [PMID: 27986463 DOI: 10.1016/j.canlet.2016.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Endocrine-resistance develops in ∼40% of breast cancer patients after tamoxifen (TAM) therapy. Although microRNAs are dysregulated in breast cancer, their contribution to endocrine-resistance is not yet understood. Previous microarray analysis identified miR-29a and miR-29b-1 as repressed by TAM in MCF-7 endocrine-sensitive breast cancer cells but stimulated by TAM in LY2 endocrine-resistant breast cancer cells. Here we examined the mechanism for the differential regulation of these miRs by TAM in MCF-7 versus TAM-resistant LY2 and LCC9 breast cancer cells and the functional role of these microRNAs in these cells. Knockdown studies revealed that ERα is responsible for TAM regulation of miR-29b-1/a transcription. We also demonstrated that transient overexpression of miR-29b-1/a decreased MCF-7, LCC9, and LY2 proliferation and inhibited LY2 cell migration and colony formation but did not sensitize LCC9 or LY2 cells to TAM. Furthermore, TAM reduced DICER1 mRNA and protein in LY2 cells, a known target of miR-29. Supporting this observation, anti-miR-29b-1 or anti-miR-29a inhibited the suppression of DICER by 4-OHT. These results suggest miR-29b-1/a has tumor suppressor activity in TAM-resistant cells and does not appear to play a role in mediating TAM resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Abirami Krishna
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Stephany L Vittitow
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Joshua T Napier
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kirsten M Richardson
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mackenzie Ellis
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Justin L Mott
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
129
|
Reza AMMT, Choi YJ, Yasuda H, Kim JH. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep 2016; 6:38498. [PMID: 27929108 PMCID: PMC5143979 DOI: 10.1038/srep38498] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
An enigmatic question exists concerning the pro- or anti-cancer status of mesenchymal stem cells (MSCs). Despite growing interest, this question remains unanswered, and the debate became intensified with new evidences backing each side. Here, we showed that human adipose MSC (hAMSC)-derived conditioned medium (CM) exhibited inhibitory effects on A2780 human ovarian cancer cells by blocking the cell cycle, and activating mitochondria-mediated apoptosis signalling. Explicitly, we demonstrated that exosomes, an important biological component of hAMSC-CM, could restrain proliferation, wound-repair and colony formation ability of A2780 and SKOV-3 cancer cells. Furthermore, hAMSC-CM-derived exosomes induced apoptosis signalling by upregulating different pro-apoptotic signalling molecules, such as BAX, CASP9, and CASP3, as well as downregulating the anti-apoptotic protein BCL2. More specifically, cancer cells exhibited reduced viability following fresh or protease-digested exosome treatment; however, treatment with RNase-digested exosomes could not inhibit the proliferation of cancer cells. Additionally, sequencing of exosomal RNAs revealed a rich population of microRNAs (miRNAs), which exhibit anti-cancer activities by targeting different molecules associated with cancer survival. Our findings indicated that exosomal miRNAs are important players involved in the inhibitory influence of hAMSC-CM towards ovarian cancer cells. Therefore, we believe that these comprehensive results will provide advances concerning ovarian cancer research and treatment.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| | - Hideyo Yasuda
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
130
|
Zhou M, Li C, Lu C, Zhang X, Pan Y, Liu X, Liu G, Zhao Z, Sun B. miRNA29 Promotes Viral Replication During Early Stage of PRRSV Infection In Vitro. DNA Cell Biol 2016; 35:636-642. [PMID: 27657906 DOI: 10.1089/dna.2015.3103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNAs are involved in various biological processes, such as host-virus interactions and antiviral immunity. In this study, we investigated the role of miR-29 on porcine reproductive and respiratory syndrome virus (PRRSV) replication and its target genes. At first, miR-29a/b-1/c expression was detected when porcine alveolar macrophages (PAMs) were infected with PRRSV at different infective doses by real time-quantitative polymerase chain reaction (RT-qPCR). The result showed that miR-29a/b-1 expression significantly increased after 6 h (p < 0.01), with the peak around 24 h, miR-29c expression in each period of PRRSV infection was very low. Then, pre-miR-29a/b-1 lentiviral vectors were constructed. Absolute RT-qPCR analysis showed that PAMs transfected with pre-miR-29a/b-1 lentiviral vectors significantly promoted PRRSV replication in PAM within 24 h (p < 0.01). The expression of the target genes (AKT3, TP53INP1, and RPS6KB1) of miR-29a significantly reduced (p < 0.01). Western blot analysis showed that AKT3 and TP53INP1 are reduced at miR-29a overexpression. To further validate the interaction between miR-29a and its target gene sites, the luciferase assay results demonstrated that miR-29a interacted with AKT3 3'UTR 1676 and 1261 sites, leading the inhibition of luciferase expression. Our findings support that miR-29a could promote PRRSV replication during early stage of virus infection in vitro and AKT3 could be the target gene of miR-29a.
Collapse
Affiliation(s)
- Mengjiao Zhou
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Chuanmin Li
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Chunyan Lu
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Xiaojun Zhang
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Yunzhi Pan
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Xin Liu
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Gang Liu
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Zhihui Zhao
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| | - Boxing Sun
- College of Animal Science, Jilin University , Changchun, Jilin, People's Republic of China
| |
Collapse
|
131
|
The microRNA signatures: aberrantly expressed microRNAs in head and neck squamous cell carcinoma. J Hum Genet 2016; 62:3-13. [PMID: 27557665 DOI: 10.1038/jhg.2016.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs) are responsible for fine tuning the normal expression of RNA networks in human cells. Accumulating studies have demonstrated that abnormally expressed miRNAs have pivotal roles in the development of head and neck squamous cell carcinoma (HNSCC). Specifically, expression signatures of miRNAs in HNSCC have revealed dysregulated production of miRNAs and the resultant abnormal production of mRNAs and proteins. In this review, we discuss current findings regarding aberrantly expressed miRNAs and their contribution to HNSCC molecular pathogenesis.
Collapse
|
132
|
Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2016; 62:15-24. [PMID: 27439682 DOI: 10.1038/jhg.2016.89] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the function of target genes at the post-transcriptional phase. miRNAs are considered to have roles in the development, progression and metastasis of cancer. Recent studies have indicated that particular miRNA signatures are correlated with tumor aggressiveness, response to drug therapy and patient outcome in breast cancer. On the other hand, in routine clinical practice, the treatment regimens for breast cancer are determined based on the intrinsic subtype of the primary tumor. Previous studies have shown that miRNA expression profiles of each intrinsic subtypes of breast cancer differ. In hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, miRNA expressions are found to be correlated with endocrine therapy resistance, progesterone receptor expression and heat shock protein activity. Some miRNAs are associated with resistance to HER2-targeted therapy and HER3 expression in HER2-positive breast cancer. In triple-negative breast cancer, miRNA expressions are found to be associated with BRCA mutations, immune system, epithelial-mesenchymal transition, cancer stem cell properties and androgen receptor expression. As it has been clarified that the expression levels and functions of miRNA differ among the various subtypes of breast cancer, and it is necessary to take account of the characteristics of each breast cancer subtype during research into the roles of miRNA in breast cancer. In addition, the discovery of the roles played by miRNAs in breast cancer might provide new opportunities for the development of novel strategies for diagnosing and treating breast cancer.
Collapse
|
133
|
Hudcova K, Raudenska M, Gumulec J, Binkova H, Horakova Z, Kostrica R, Babula P, Adam V, Masarik M. Expression profiles of miR-29c, miR-200b and miR-375 in tumour and tumour-adjacent tissues of head and neck cancers. Tumour Biol 2016; 37:12627-12633. [PMID: 27440205 DOI: 10.1007/s13277-016-5147-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Altered expression of microRNAs (miRNAs) has been shown in many types of malignancies including the head and neck squamous cell carcinoma (HNSCC). Although there are many new and innovative approaches in the treatment of HNSCC, a clear marker of this disease is still missing. Three candidate miRNAs (miR-29c-3p, miR-200b-5p and miR-375-3p) were studied in connection with HNSCC using quantitative real-time PCR expression levels in 42 tissue samples of HNSCC patients and histologically normal tumour-adjacent tissue samples of these patients. Primary HNSCC carcinoma tissues can be distinguished from histologically normal-matched noncancerous tumour-adjacent tissues based on hsa-miR-375-3p expression (sensitivity 87.5 %, specificity 65 %). Additionally, a significant decrease of hsa-miR-200b-5p expression was revealed in tumour-adjacent tissue samples of patients with node positivity. Lower expression of hsa-miR-200b-5p and hsa-miR-29c-3p in HNSCC tumour tissue was associated with higher tumour grade. Consequently, survival analysis was performed. Lower expression of hsa-miR-29c-3p in tumour-adjacent tissue was associated with worse overall and disease-specific survivals. Lower expression of miR-29c-3p in tumourous tissue was associated with worse relapse-free survival. hsa-miR-375-3p seems to be a relatively promising diagnostic marker in HNSCC but is not suitable for prognosis of patients. Furthermore, this study highlighted the importance of histologically normal tumour-adjacent tissue in HNSCC progress (significant decrease of hsa-miR-200b-5p expression in tumour-adjacent tissue of patients with node positivity and low expression of hsa-miR-29c-3p in HNSCC tumour-adjacent tissue associated with worse prognosis).
Collapse
Affiliation(s)
- Kristyna Hudcova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Hana Binkova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Rom Kostrica
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
| |
Collapse
|
134
|
Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci Rep 2016; 6:28953. [PMID: 27356624 PMCID: PMC4928055 DOI: 10.1038/srep28953] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Osteosarcoma is a rare disease diagnosed as malignant bone tumor. It is generally refractory to chemotherapy, which contributes to its poor prognosis. The reversal of chemoresistance is a major clinical challenge to improve the prognostic outcome of osteosarcoma patients. We developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301 (telomelysin) and assessed its synergistic effects with chemotherapeutic agents (cisplatin and doxorubicin) using human osteosarcoma cell lines and a xenograft tumor model. The molecular mechanism underlying the chemosensitizing effect of OBP-301 was evaluated in aspects of apoptosis induction. OBP-301 inhibits anti-apoptotic myeloid cell leukemia 1 (MCL1) expression, which in turn leads to chemosensitization in human osteosarcoma cells. The siRNA-mediated knockdown of MCL1 expression sensitized human osteosarcoma cells to common chemotherapeutic agents. We also found that upregulation of microRNA-29 targeting MCL1 via virally induced transcriptional factor E2F-1 activation was critical for the enhancement of chemotherapy-induced apoptosis in osteosarcoma cells. Telomerase-specific oncolytic adenovirus synergistically suppressed the viability of human osteosarcoma cells in combination with chemotherapeutic agents. The combination treatment also significantly inhibited tumor growth, as compared to monotherapy, in an osteosarcoma xenograft tumor model. Our data suggest that replicative virus-mediated tumor-specific MCL1 ablation may be a promising strategy to attenuate chemoresistance in osteosarcoma patients.
Collapse
|
135
|
Vanden Oever M, Muldoon D, Mathews W, McElmurry R, Tolar J. miR-29 Regulates Type VII Collagen in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2016; 136:2013-2021. [PMID: 27328306 DOI: 10.1016/j.jid.2016.05.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a complex inherited skin disorder caused by loss-of-function mutations in the COL7A1 gene. For an effective treatment of this disorder to be realized, both a thorough understanding of the regulation of COL7A1 and an understanding of the underlying nature of the complications of RDEB are needed. Currently, both posttranscriptional regulation of COL7A1 and the underlying causes of fibrosis in RDEB patients are poorly understood. Here, we describe a mechanism of regulation, to our knowledge previously unknown, by which micro RNA-29 (miR-29) regulates COL7A1 in a complex network: both directly through targeting its 3' untranslated region at two distinct seed regions and indirectly through targeting an essential transcription factor required for basal COL7A1 expression, SP1. In turn, miR-29 itself is regulated by SP1 activity and transforming growth factor-β signaling. RDEB mice express high levels of transforming growth factor-β and significantly lower miR-29 compared with wild-type cohorts. The sustained decrease in miR-29 in RDEB skin leads to an increase of miR-29 target genes expressed in the skin, including profibrotic extracellular matrix collagens. Collectively, we identify miR-29 as an important factor in both regulating COL7A1 and inhibiting transforming growth factor-β-mediated fibrosis.
Collapse
Affiliation(s)
- Michael Vanden Oever
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Muldoon
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wendy Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ron McElmurry
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
136
|
Abstract
MicroRNAs (miRNAs) are small, non-coding, RNA molecules that regulate gene expression. They have a long evolutionary history and are found in plants, viruses, and animals. Although initially discovered in 1993 in Caenorhabditis elegans, they were not appreciated as widespread and abundant gene regulators until the early 2000s. Studies in the last decade have found that miRNAs confer phenotypic robustness in the face of environmental perturbation, may serve as diagnostic and prognostic indicators of disease, underlie the pathobiology of a wide array of complex disorders, and represent compelling therapeutic targets. Pre-clinical studies in animal models have demonstrated that pharmacologic manipulation of miRNAs, mostly in the liver, can modulate metabolic phenotypes and even reverse the course of insulin resistance and diabetes. There is cautious optimism in the field about miRNA-based therapies for diabetes, several of which are already in various stages of clinical trials. This review will highlight both the promise and the most pressing challenges of therapeutic miRNA silencing in diabetes and related conditions.
Collapse
Affiliation(s)
- Praveen Sethupathy
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
137
|
Gao S, Cheng C, Chen H, Li M, Liu K, Wang G. IGF1 3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma. J Mol Histol 2016; 47:135-43. [PMID: 26759259 DOI: 10.1007/s10735-016-9659-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors in human worldwide. Angiogenesis is a pivotal process during osteosarcoma development. Insulin-like growth factor 1 (IGF1) has been reported to promote angiogenesis. However, the role of 3' untranslational region (3'UTR) of IGF1 mRNA in angiogenic activity in osteosarcomas is still unknown. In the present study, we performed gain-of-function assays to investigate the role of IGF1-3'UTR in angiogenesis. For the first time, we demonstrated that IGF1 3'UTR increased VEGF expression and promotes angiogenesis in osteosarcoma cells. In addition, RNA-immunoprecipitation and luciferase reporter assays showed that IGF1 3'UTR was a direct target of miR-29s. Our data also demonstrated that there existed a competition of miR-29s between IGF1-3'UTR and VEGF mRNA, and IGF1-3'UTR promoted angiogenesis at least in part via sponging miR-29s. Taken together, our study suggests that IGF1-3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29s in osteosarcoma.
Collapse
Affiliation(s)
- Shuming Gao
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Cai Cheng
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Hanwen Chen
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Min Li
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Kehun Liu
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Guangya Wang
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China.
| |
Collapse
|
138
|
Zhang M, Guo W, Qian J, Wang B. Negative regulation of CDC42 expression and cell cycle progression by miR-29a in breast cancer. Open Med (Wars) 2016; 11:78-82. [PMID: 28352771 PMCID: PMC5329802 DOI: 10.1515/med-2016-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022] Open
Abstract
Objective The inhibitory role of microRNA-29a (miR-29a) has been assessed in breast cancer cells. Herein, we analyze the underlying mechanisms of its role in cell cycle progression in breast cancer cells. Methods We applied real-time polymerase chain reaction (PCR) to detect the expression of miR-29 in breast cancer cell lines. Then one of the cell lines, MDA-MB-453, was transfected with mimics of miR-29a. The cell cycle was analyzed by fluorescence-activated cell sorting after staining the cells with propidium iodide. Real-time PCR, luciferase assay and western blot were used together to verify the regulation of the predicted target, cell division cycle 42 (CDC42) by miR-29a. Results MiR-29s were decreased in our selected mammary cell lines, among which miR-29a was the dominant isoform. Overexpression of miR-29a caused cell cycle arrest at the G0/G1 phase. We further found that miR-29a could target the expression of CDC42, which is a small GTPase associated with cell cycle progression. Conclusion We suggest that miR-29a exerts its tumor suppressor role in breast cancer cells partially by arresting the cell cycle through negative regulation of CDC42.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of AnHui Medical University, AnHui province, 230032 China
- Department of Oncology Surgery, The First Affiliated Hospital of BengBu Medical College, AnHui province, 233000 China
| | - Wei Guo
- Department of Oncology Surgery, The First Affiliated Hospital of BengBu Medical College, AnHui province, 233000 China
| | - Jun Qian
- Department of Oncology Surgery, The First Affiliated Hospital of BengBu Medical College, AnHui province, 233000 China
| | - Benzhong Wang
- Department of Breast Surgery, The First Affiliated Hospital of AnHui Medical University, AnHui province, 230032 China
| |
Collapse
|
139
|
Takeda T, Tanabe H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 2016; 471:454-8. [PMID: 26902119 DOI: 10.1016/j.bbrc.2016.02.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
Abstract
The microRNA miR-29 is widely distributed and highly expressed in adult mouse brain during the mouse's lifetime. We recently created conditional mutant mice whose miR-29 was brain-specifically knocked down through overexpression of an antisense RNA transgene against miR-29. To explore a role for brain miR-29 in maximizing organismal fitness, we assessed somatic growth, reproduction, and lifespan in the miR-29-knockdown (KD) mice and their wild-type (WT) littermates. The KD mice were developmentally indistinguishable from WT mice with respect to gross morphology and physical activity. Fertility testing revealed that KD males were subfertile, whereas KD females were hyperfertile, only in terms of reproductive success, when compared to their gender-matched WT correspondents. Another phenotypic difference between KD and WT animals appeared in their lifespan data; KD males displayed an overall increasing tendency in post-reproductive survival relative to WT males. In contrast, KD females were prone to shorter lifespans than WT females. These results clarify that brain-targeted miR-29 knockdown affects both lifespan and reproduction in a gender-dependent manner, and moreover that the reciprocal responsiveness to the miR-29 knockdown between these two phenotypes in both genders closely follow life-course models based on the classical trade-off prediction wherein elaborate early-life energetic investment in reproduction entails accelerated late-life declines in survival, and vice versa. Thus, this study identified miR-29 as the first mammalian miRNA that is directly implicated in the lifetime trade-off between the two major fitness components, lifespan and reproduction.
Collapse
Affiliation(s)
- Toru Takeda
- Department of Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hiroyuki Tanabe
- Department of Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
140
|
Pereira PA, Tomás JF, Queiroz JA, Figueiras AR, Sousa F. Recombinant pre-miR-29b for Alzheimer´s disease therapeutics. Sci Rep 2016; 6:19946. [PMID: 26818210 PMCID: PMC4730146 DOI: 10.1038/srep19946] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are arising as the next generation of diagnostic and therapeutic tools for gene silencing. Studies demonstrated that the miR-29 expression is decreased in Alzheimer’s disease (AD) patients displaying high levels of human β-secretase (hBACE1). Recent advances toward an effective therapy for AD intend to employ miR-29 to suppress hBACE1 expression and subsequent Amyloid-β (Aβ) peptide. However, delivery of mature miRNA has demonstrated modest efficacy in vitro; therefore, the preparation of highly pure and biologically active pre-miRNA arises as one of the most important challenges in the development of these therapeutic strategies. Recently, we described a new strategy based arginine-affinity chromatography to specifically purify the recombinant pre-miR-29b. Following this strategy, the purified pre-miR-29b was successfully encapsulated into polyplexes that were further delivered in cytoplasm. It was verified that Chitosan/pre-miR-29b and Polyethylenimine/pre-miR-29b systems efficiently delivered pre-miR-29b to N2a695 cells, thus reducing the hBACE1 protein expression (around 78% and 86%, respectively) and Aβ42 levels (approximately 44% and 47%, respectively). Furthermore, pre-miR-29b downregulates the hBACE1 mRNA expression in 80%. Overall, it was demonstrated that the recombinant pre-miR-29b using polyplexes allowed to decrease the hBACE1 and Aβ42 expression levels, improving the currently available methodologies of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Patrícia A Pereira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Joana F Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Ana R Figueiras
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal.,CNC - Center of Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, 3004-517, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|
141
|
Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther 2015; 9:99-109. [PMID: 26766915 PMCID: PMC4699545 DOI: 10.2147/ott.s92758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MiR-29c is frequently dysregulated in many cancers; however, the roles of miR-29c in pancreatic cancer (PC) and underlying mechanisms remain poorly understood. In this study, we investigated the role of miR-29c in PC. Using quantitative real-time polymerase chain reaction, we demonstrated that miR-29c was frequently downregulated in clinical PC tissues and cell lines. Overexpression of miR-29c significantly inhibited the proliferation, migration, and invasion of PC cells in vitro, which demonstrated that miR-29c acts as a tumor suppressor in PC cells. Further analysis revealed that ITGB1 is one of the functional target genes of miR-29c, and knockdown of ITGB1 inhibited the proliferation, migration, and invasion of PC cells, which was similar to the effects of overexpression of miR-29c. Taken together, our results highlight the significance of miR-29c–ITGB1 interaction in the development and progression of PC.
Collapse
Affiliation(s)
- Yebin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Juanjuan Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shengyu Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangya Deng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ming Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
142
|
Takayama KI, Inoue S. The emerging role of noncoding RNA in prostate cancer progression and its implication on diagnosis and treatment. Brief Funct Genomics 2015; 15:257-65. [DOI: 10.1093/bfgp/elv057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
143
|
MiRNAs and Other Epigenetic Changes as Biomarkers in Triple Negative Breast Cancer. Int J Mol Sci 2015; 16:28347-76. [PMID: 26633365 PMCID: PMC4691037 DOI: 10.3390/ijms161226090] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) is characterised by the lack of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2). Since it cannot be treated by current endocrine therapies which target these receptors and due to its aggressive nature, it has one of the worst prognoses of all breast cancer subtypes. The only treatments remain chemo- and/or radio-therapy and surgery and because of this, novel biomarkers or treatment targets are urgently required to improve disease outcomes. MicroRNAs represent an attractive candidate for targeted therapies against TNBC, due to their natural ability to act as antisense interactors and regulators of entire gene sets involved in malignancy and their superiority over mRNA profiling to accurately classify disease. Here we review the current knowledge regarding miRNAs as biomarkers in TNBC and their potential use as therapeutic targets in this disease. Further, we review other epigenetic changes and interactions of these changes with microRNAs in this breast cancer subtype, which may lead to the discovery of new treatment targets for TNBC.
Collapse
|
144
|
Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet 2015; 61:109-18. [PMID: 26490187 DOI: 10.1038/jhg.2015.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
In spite of considerable advances in multimodality therapy, including surgery, radiotherapy and chemotherapy, the overall survival rate for patients with head and neck squamous cell carcinoma (HNSCC) is very poor (only 15-45%). Understanding the molecular mechanisms of metastatic pathways underlying HNSCC using currently available genomic approaches might improve therapies for and prevention of the disease. Our previous studies showed that three tumor-suppressive microRNAs (miRNAs), miR-26a/b, miR-29a/b/c and miR-218, significantly inhibited cancer cell migration and invasion. Therefore, we hypothesized that these miRNAs-regulated target genes deeply contributed to cancer metastasis. These tumor-suppressive miRNAs directly regulate LOXL2 expression in HNSCC cells by using in silico analysis and luciferase reporter assays. Overexpressed LOXL2 was confirmed in HNSCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in HNSCC cell lines. Our present data showed that tumor-suppressive miRNAs regulation of LOXL2 will provide new insights into the novel molecular mechanisms of HNSCC metastasis.
Collapse
|
145
|
miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3. Tumour Biol 2015; 37:3987-96. [DOI: 10.1007/s13277-015-4165-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022] Open
|
146
|
De Falco G, Ambrosio MR, Fuligni F, Onnis A, Bellan C, Rocca BJ, Navari M, Etebari M, Mundo L, Gazaneo S, Facchetti F, Pileri SA, Leoncini L, Piccaluga PP. Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation. BMC Cancer 2015; 15:668. [PMID: 26453442 PMCID: PMC4600215 DOI: 10.1186/s12885-015-1661-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/28/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The oncogenic transcription factor MYC is pathologically activated in many human malignancies. A paradigm for MYC dysregulation is offered by Burkitt lymphoma, where chromosomal translocations leading to Immunoglobulin gene-MYC fusion are the crucial initiating oncogenic events. However, Burkitt lymphoma cases with no detectable MYC rearrangement but maintaining MYC expression have been identified and alternative mechanisms can be involved in MYC dysregulation in these cases. METHODS We studied the microRNA profile of MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases in order to uncover possible differences at the molecular level. Data was validated at the mRNA and protein level by quantitative Real-Time polymerase chain reaction and immunohistochemistry, respectively. RESULTS We identified four microRNAs differentially expressed between the two groups. The impact of these microRNAs on the expression of selected genes was then investigated. Interestingly, in MYC translocation-negative cases we found over-expression of DNA-methyl transferase family members, consistent to hypo-expression of the hsa-miR-29 family. This finding suggests an alternative way for the activation of lymphomagenesis in these cases, based on global changes in methylation landscape, aberrant DNA hypermethylation, lack of epigenetic control on transcription of targeted genes, and increase of genomic instability. In addition, we observed an over-expression of another MYC family gene member, MYCN that may therefore represent a cooperating mechanism of MYC in driving the malignant transformation in those cases lacking an identifiable MYC translocation but expressing the gene at the mRNA and protein levels. CONCLUSIONS Collectively, our results showed that MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases are slightly different in terms of microRNA and gene expression. MYC translocation-negative Burkitt lymphoma, similarly to other aggressive B-cell non Hodgkin's lymphomas, may represent a model to understand the intricate molecular pathway responsible for MYC dysregulation in cancer.
Collapse
Affiliation(s)
- Giulia De Falco
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Maria Raffaella Ambrosio
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy.
| | - Anna Onnis
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Bruno Jim Rocca
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Mohsen Navari
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy.
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy.
| | - Lucia Mundo
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Sara Gazaneo
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Fabio Facchetti
- Unit of Pathology, Brescia University, Piazza del Mercato, 15, Brescia, Italy.
| | - Stefano A Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy.
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, University of Siena, Italy - Via delle Scotte, 6 - 53100, Siena, Italy.
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy.
| |
Collapse
|
147
|
Modulation of ALDH5A1 and SLC22A7 by microRNA hsa-miR-29a-3p in human liver cells. Biochem Pharmacol 2015; 98:671-80. [PMID: 26428001 DOI: 10.1016/j.bcp.2015.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 01/29/2023]
Abstract
Observed variations in drug responses among patients may result from differences in heritable genetic traits or from alterations in the epigenetic regulation of drug metabolizing enzymes and transporters (DMETs). MicroRNAs (miRNAs), a group of small non-coding RNAs, provide an epigenetic mechanism for fine-tuning the expression of targeted DMET genes by regulating the efficiency of protein translation and by decreasing mRNA stability via enhanced degradation. In the current study we systematically screened 374 important genes encoding DMETs for potential response elements to hsa-miR-29a-3p, a highly abundant miRNA in human liver. RNA electrophoresis mobility shift assays displayed direct interactions between hsa-miR-29a-3p and its cognate targets within the mRNA transcripts for the ABCC6, SLC22A7 and ALDH5A1 genes. The expression of luciferase reporter genes containing the 3'-UTRs of SLC22A7 or ALDH5A1 and the expression of endogenous SLC22A7 and ALDH5A1 were each suppressed by transfection with hsa-miR-29a-3p mimics. Importantly, chemically-induced up-regulation of hsa-miR-29a-3p correlated inversely with the expression of SLC22A7 and ALDH5A1. However, our studies failed to detect suppressive effects of hsa-miR-29a-3p on ABCC6 expression, which might be explained by the notion that the interaction of hsa-miR-29a-3p and ABCC6 mRNA was unable to recruit ribonucleoproteins to form a RNA-induced silencing complex.
Collapse
|
148
|
TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun 2015; 6:8219. [PMID: 26404510 DOI: 10.1038/ncomms9219] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Modulation of epigenetic patterns has promising efficacy for treating cancer. 5-Hydroxymethylated cytosine (5-hmC) is an epigenetic mark potentially important in cancer. Here we report that 5-hmC is an epigenetic hallmark of prostate cancer (PCa) progression. A member of the ten-eleven translocation (TET) proteins, which catalyse the oxidation of methylated cytosine (5-mC) to 5-hmC, TET2, is repressed by androgens in PCa. Androgen receptor (AR)-mediated induction of the miR-29 family, which targets TET2, are markedly enhanced in hormone refractory PCa (HRPC) and its high expression predicts poor outcome of PCa patients. Furthermore, decreased expression of miR-29b results in reduced tumour growth and increased TET2 expression in an animal model of HRPC. Interestingly, global 5-hmC modification regulated by miR-29b represses FOXA1 activity. A reduction in 5-hmC activates PCa-related key pathways such as mTOR and AR. Thus, DNA modification directly links the TET2-dependent epigenetic pathway regulated by AR to 5-hmC-mediated tumour progression.
Collapse
|
149
|
Ali SR, Humphreys KJ, McKinnon RA, Michael MZ. Impact of Histone Deacetylase Inhibitors on microRNA Expression and Cancer Therapy: A Review. Drug Dev Res 2015; 76:296-317. [PMID: 26303212 DOI: 10.1002/ddr.21268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromatin-modifying drugs, such as histone deacetylase inhibitors (HDACi), have shown potential as cancer therapeutics, either alone or in combination with other therapies. HDACi have the ability to reverse aberrant epigenetic modifications associated with cancer, namely dysregulated histone acetylation. There are currently three FDA approved HDACi; vorinostat, romidepsin, and panobinostat. Epigenetic modifications can regulate the expression of protein coding genes, and in addition can alter expression of microRNA (miRNA) genes. Many miRNAs play key roles in cell proliferation and apoptosis, and are commonly dysregulated in cancer states. A number of in vitro and in vivo studies have demonstrated the ability of chromatin-modifying drugs to alter miRNA expression, which may provide the basis for further investigation of miRNAs as therapeutic targets or as biomarkers of drug response. This review summarises findings from studies investigating the effects of HDACi on miRNA expression, as well as key clinical trials involving HDACi. Understanding how chromatin-modifying drugs epigenetically modulate miRNA genes provides further insight into the cellular mechanisms that deliver therapeutic responses, and may assist in refining treatment strategies.
Collapse
Affiliation(s)
- Saira R Ali
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Karen J Humphreys
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Gastroenterology and Hepatology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
150
|
Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Sci Rep 2015; 5:12911. [PMID: 26246194 PMCID: PMC4526858 DOI: 10.1038/srep12911] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators and potential therapeutic targets of metabolic disease. In this study we show by in vivo administration of locked nucleic acid (LNA) inhibitors that suppression of endogenous miR-29 lowers plasma cholesterol levels by ~40%, commensurate with the effect of statins, and reduces fatty acid content in the liver by ~20%. Whole transcriptome sequencing of the liver reveals 883 genes dysregulated (612 down, 271 up) by inhibition of miR-29. The set of 612 down-regulated genes are most significantly over-represented in lipid synthesis pathways. Among the up-regulated genes are the anti-lipogenic deacetylase sirtuin 1 (Sirt1) and the anti-lipogenic transcription factor aryl hydrocarbon receptor (Ahr), the latter of which we demonstrate is a direct target of miR-29. In vitro radiolabeled acetate incorporation assays confirm that pharmacologic inhibition of miR-29 significantly reduces de novo cholesterol and fatty acid synthesis. Our findings indicate that miR-29 controls hepatic lipogenic programs, likely in part through regulation of Ahr and Sirt1, and therefore may represent a candidate therapeutic target for metabolic disorders such as dyslipidemia.
Collapse
|