101
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Hogl S, Narayanan U, Zhang L, McHarg S, Xu J, Gong D, Kennedy J, Barry B, Choong YS, Phillips ARJ, Cooper GJS. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 2014; 13:100. [PMID: 24927960 PMCID: PMC4070334 DOI: 10.1186/1475-2840-13-100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. METHODS Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student's t-tests or ANOVA and p-values of < 0.05 have been considered significant. RESULTS Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks' diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). CONCLUSIONS Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM.
Collapse
Affiliation(s)
- Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Hong Liu
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Greeshma V Amarsingh
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Carlos C H Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Sebastian Hogl
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Umayal Narayanan
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Lin Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Selina McHarg
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, and the Centre for Diabetes and Endocrinology, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, UK
| | - Jingshu Xu
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Deming Gong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - John Kennedy
- National Isotope Centre, GNS Science, Gracefield, Wellington, New Zealand
| | - Bernard Barry
- National Isotope Centre, GNS Science, Gracefield, Wellington, New Zealand
| | - Yee Soon Choong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, and the Centre for Diabetes and Endocrinology, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, UK
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
102
|
Alexanian I, Parissis J, Farmakis D, Athanaselis S, Pappas L, Gavrielatos G, Mihas C, Paraskevaidis I, Sideris A, Kremastinos D, Spiliopoulou C, Anastasiou-Nana M, Lekakis J, Filippatos G. Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin Res Cardiol 2014; 103:938-49. [PMID: 24908339 DOI: 10.1007/s00392-014-0735-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
AIM Emerging evidence suggests a pathophysiological role of micronutrient dyshomeostasis in heart failure, including promotion of adverse remodeling and clinical deterioration. We sought to evaluate serum copper (Cu) and zinc (Zn) levels in acute (AHF) and chronic (CHF) heart failure. METHODS We studied 125 patients, 71 % male, aged 69 ± 11 years, 37 % with preserved left ventricular ejection fraction (LVEF ≥40 %) (HFPEF), including 81 with AHF and 44 with CHF; 21 healthy volunteers served as controls. Serum Cu and Zn levels were determined using air-acetylene flame atomic absorption spectrophotometry. RESULTS Serum Cu levels were significantly higher in AHF (p = 0.006) and CHF (p = 0.002) patients compared to controls after adjusting for age, gender and comorbidities, whereas they did not differ between AHF and CHF (p = 0.840). Additionally, serum Cu in patients with LVEF <40 % was significantly higher compared to both controls (p < 0.001) and HFPEF patients (p = 0.003). Serum Zn was significantly lower in AHF (p < 0.001) and CHF (p = 0.039) compared to control after adjusting for the above-mentioned variables. Moreover, serum Zn was significantly lower in AHF than in CHF (p = 0.015). In multiple linear regression, LVEF (p = 0.033) and E/e ratio (p = 0.006) were independent predictors of serum Cu in total heart failure population, while NYHA class (p < 0.001) and E/e ratio (p = 0.007) were independent predictors of serum Zn. CONCLUSION Serum Cu was increased both in AHF and CHF and correlated with LV systolic and diastolic function. Serum Zn, in contrast, was decreased both in AHF and CHF and independently predicted by clinical status and LV diastolic function.
Collapse
Affiliation(s)
- Ioannis Alexanian
- Department of Cardiology, Athens University Hospital Attikon, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Evaluating the anticancer properties of liposomal copper in a nude xenograft mouse model of human prostate cancer: formulation, in vitro, in vivo, histology and tissue distribution studies. Pharm Res 2014; 31:3106-19. [PMID: 24848339 DOI: 10.1007/s11095-014-1403-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/28/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE Although Cu complexes have been investigated as anticancer agents, there has been no description of Cu itself as a cancer killing agent. A stealth liposomal Cu formulation (LpCu) was studied in vitro and in vivo. METHODS LpCu was evaluated in prostate cancer origin PC-3 cells by a metabolic cytotoxicity assay, by monitoring ROS, and by flow cytometry. LpCu efficacy was evaluated in vivo using intratumoral and intravenous injections into mice bearing PC-3 xenograft tumors. Toxicology was assessed by performing hematological and blood biochemistry assays, and tissue histology and Cu distribution was investigated by elemental analysis. RESULTS LpCu and free Cu salts displayed similar levels of cell metabolic toxicity and ROS. Flow cytometry indicated that the mechanisms of cell death were both apoptosis and necrosis. Animals injected i.t. with 3.5 mg/kg or i.v. with 3.5 and 7.0 mg/kg LpCu exhibited significant tumor growth inhibition. Kidney and eye were the main organs affected by Cu-mediated toxicities, but spleen and liver were the major organs of Cu deposition. CONCLUSIONS LpCu was effective at reducing tumor burden in the xenograft prostate cancer model. There was histological evidence of Cu toxicity in kidneys and eyes of animals treated at the maximum tolerated dose of LpCu 7.0 mg/kg.
Collapse
|
104
|
Chen W, Ye D, Wang H, Lin D, Huang J, Sun H, Zhong W. Binding of oxo-Cu2 clusters to ferric ion-binding protein A from Neisseria gonorrhoeae: a structural insight. Metallomics 2014; 5:1430-9. [PMID: 23884152 DOI: 10.1039/c3mt00091e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion-binding protein A (FbpA), a member of transferrin superfamily, is a periplasmic iron transporter employed by many Gram-negative pathogens. Our experiments indicated copper(ii) could bind with Neisseria gonorrhoeae FbpA (NgFbpA), and the binding constant reached up to (8.7 ± 0.2) × 10(8) M(-1)via UV-vis titration. The crystal structure of recombinant Cu-NgFbpA at 2.1 Å revealed that the oxo-Cu2 clusters (dinuclear centres) assembled in the iron binding cleft and were bound to the two adjacent tyrosine residues (Y195 and Y196) of the protein, two Cu ions coordinated with two tyrosines, Y195 and Y196, respectively, which was different from the binding model of Fe ion with FbpA, in which Y195 and Y196 coordinated together with one Fe ion. While this was similar to the binding of Zr and Hf ion clusters, Y195 and Y196 coordinated with two metal ions and the μ-oxo-bridges linking the metal ions. Structural superimposition demonstrated that oxo-Cu2-NgFbpA still keeping an open conformation, similar to the apo-form of NgFbpA. The structure presented additional information towards an understanding of the function of FbpA, and provided a detailed binding model for FbpA protein with the possible metal ions in a biological system.
Collapse
Affiliation(s)
- Weijing Chen
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
105
|
Öhrvik H, Thiele DJ. How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci 2014; 1314:32-41. [PMID: 24697869 PMCID: PMC4158275 DOI: 10.1111/nyas.12371] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The copper transporter 1, Ctr1, is part of a major pathway for cellular copper (Cu) uptake in the intestinal epithelium, in hepatic and cardiac tissue, and likely in many other mammalian cells and tissues. Here, we summarize what is currently known about how extracellular Cu travels across the plasma membrane to enter the cytoplasm for intracellular distribution and for use by proteins and enzymes, the physiological roles of Ctr1, and its regulation. As a critical Cu importer, Ctr1 occupies a strategic position to exert a strong modifying influence on diseases and pathophysiological states caused by imbalances in Cu homeostasis. A more thorough understanding of the mechanisms that regulate Ctr1 abundance, trafficking, and function will provide new insights and opportunities for disease therapies.
Collapse
Affiliation(s)
- Helena Öhrvik
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| |
Collapse
|
106
|
Piekuse L, Kreile M, Zarina A, Steinberga Z, Sondore V, Keiss J, Lace B, Krumina A. Association between inherited monogenic liver disorders and chronic hepatitis C. World J Hepatol 2014; 6:92-97. [PMID: 24575168 PMCID: PMC3935058 DOI: 10.4254/wjh.v6.i2.92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/16/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the frequencies of mutations that cause inherited monogenic liver disorders in patients with chronic hepatitis C.
METHODS: This study included 86 patients with chronic hepatitis C (55 men, 31 women; mean age at diagnosis, 38.36 ± 14.52 years) who had undergone antiviral therapy comprising pegylated interferon and ribavirin. Viral load, biochemical parameter changes, and liver biopsy morphological data were evaluated in all patients. The control group comprised 271 unrelated individuals representing the general population of Latvia for mutation frequency calculations. The most frequent mutations that cause inherited liver disorders [gene (mutation): ATP7B (H1069Q), HFE (C282Y, H63D), UGT1A1 (TA)7, and SERPINA1 (PiZ)] were detected by polymerase chain reaction (PCR), bidirectional PCR allele-specific amplification, restriction fragment length polymorphism analysis, and sequencing.
RESULTS: The viral genotype was detected in 80 of the 86 patients. Viral genotypes 1, 2, and 3 were present in 61 (76%), 7 (9%), and 12 (15%) patients, respectively. Among all 86 patients, 50 (58%) reached an early viral response and 70 (81%) reached a sustained viral response. All 16 patients who did not reach a sustained viral response had viral genotype 1. Case-control analysis revealed a statistically significant difference in only the H1069Q mutation between patients and controls (patients, 0.057; controls, 0.012; odds ratio, 5.514; 95%CI: 1.119-29.827, P = 0.022). However, the H1069Q mutation was not associated with antiviral treatment outcomes or biochemical indices. The (TA) 7 mutation of the UGT1A1 gene was associated with decreased ferritin levels (beta regression coefficient = -295.7, P = 0.0087).
CONCLUSION: Genetic mutations that cause inherited liver diseases in patients with hepatitis C should be studied in detail.
Collapse
|
107
|
Forbes N, Goodwin S, Woodward K, Morgan DG, Brady L, Coulthart MB, Tarnopolsky MA. Evidence for synergistic effects of PRNP and ATP7B mutations in severe neuropsychiatric deterioration. BMC MEDICAL GENETICS 2014; 15:22. [PMID: 24555712 PMCID: PMC3996179 DOI: 10.1186/1471-2350-15-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 02/12/2014] [Indexed: 11/13/2022]
Abstract
Background Wilson’s disease (WD), a rare cause of neuropsychiatric deterioration, is associated with mutations in the ATP7B gene. Prion diseases are also rare causes of neuropsychiatric deterioration that can occur sporadically without an identifiable cause, or can be attributed to mutations in the PRNP gene. Case presentation Here we describe a biological “experiment of nature” in which a patient presented with severe neuropsychiatric decline and strong biochemical evidence of WD. Genetic analysis revealed that he was a compound heterozygote for two ATP7B sequence variants (c.2165dupT, p.Arg723Glufs*32; and c.4039G > A, p.Gly1347Ser), the first having been reported once previously, and the second being novel. In addition, the patient was heterozygous for a PRNP variant, c.160G > A, p.Gly54Ser, that has been reported in a neuropsychiatric patient only once previously in association with a similarly severe clinical course of neuropsychiatric disease and early age of onset, but no accompanying information on ATP7B genotype. Of particular interest was the observation that the patient’s older sister, who carried the same ATP7B genotype and laboratory evidence for biochemical WD but was clinically asymptomatic, lacked the PRNP variant allele. Conclusions We propose that synergism may occur between at least some allelic variants of ATP7B and PRNP, possibly exerted through effects on cellular copper metabolism.
Collapse
|
108
|
Semisch A, Ohle J, Witt B, Hartwig A. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol 2014; 11:10. [PMID: 24520990 PMCID: PMC3943586 DOI: 10.1186/1743-8977-11-10] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. Methods The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Results Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. Conclusions The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive.
Collapse
Affiliation(s)
| | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Adenauerring 20a, Karlsruhe 76131, Germany.
| |
Collapse
|
109
|
Repiščák P, Erhardt S, Rena G, Paterson MJ. Biomolecular mode of action of metformin in relation to its copper binding properties. Biochemistry 2014; 53:787-95. [PMID: 24433134 DOI: 10.1021/bi401444n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metformin (Metf), the most commonly used type 2 diabetes drug, is known to affect the cellular housekeeping of copper. Recently, we discovered that the structurally closely related propanediimidamide (PDI) shows a cellular behavior different from that of Metf. Here we investigate the binding of these compounds to copper, to compare their binding strength. Furthermore, we take a closer look at the electronic properties of these compounds and their copper complexes such as molecular orbital interactions and electrostatic potential surfaces. Our results clearly show that the copper binding energies cannot alone be the cause of the biochemical differentiation between Metf and PDI. We conclude that other factors such as pKa values and hydrophilicity of the compounds play a crucial role in their cellular activity. Metf in contrast to PDI can occur as an anion in aqueous medium at moderate pH, forming much stronger complexes particularly with Cu(II) ions, suggesting that biguanides but not PDI may induce easy oxidation of Cu(I) ions extracted from proteins. The higher hydrophobicity and the lack of planarity of PDI may further differentiate it from biguanides in terms of their molecular recognition characteristics. These different properties could hold the key to metformin's mitochondrial activity because they suggest that the drug could act at least in part as a pro-oxidant of accessible protein-bound Cu(I) ions.
Collapse
Affiliation(s)
- Peter Repiščák
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University , Edinburgh, United Kingdom EH14 4AS
| | | | | | | |
Collapse
|
110
|
Chaturvedi KS, Henderson JP. Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 2014; 4:3. [PMID: 24551598 PMCID: PMC3909829 DOI: 10.3389/fcimb.2014.00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu(+)) in its reduced form and copper (II) (Cu(2+)) in its oxidized form under physiologic conditions. Cu(+) is significantly more bactericidal than Cu(2+) due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it.
Collapse
Affiliation(s)
- Kaveri S Chaturvedi
- Division of Infectious Diseases, Department of Internal Medicine, Center for Women's Infectious Diseases Research, Washington University School of Medicine St. Louis, MO, USA
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Internal Medicine, Center for Women's Infectious Diseases Research, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
111
|
Wadwa J, Chu YH, Nguyen N, Henson T, Figueroa A, Llanos R, Ackland ML, Michalczyk A, Fullriede H, Brennan G, Mercer JFB, Linder MC. Effects of ATP7A overexpression in mice on copper transport and metabolism in lactation and gestation. Physiol Rep 2014; 2:e00195. [PMID: 24744874 PMCID: PMC3967678 DOI: 10.1002/phy2.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 12/11/2022] Open
Abstract
Placentae and mammary epithelial cells are unusual in robustly expressing two copper “pumps”, ATP7A and B, raising the question of their individual roles in these tissues in pregnancy and lactation. Confocal microscopic evidence locates ATP7A to the fetal side of syncytiotrophoblasts, suggesting a role in pumping Cu towards the fetus; and to the basolateral (blood) side of lactating mammary epithelial cells, suggesting a role in recycling Cu to the blood. We tested these concepts in wild‐type C57BL6 mice and their transgenic counterparts that expressed hATP7A at levels 10–20× those of endogenous mAtp7a. In lactation, overexpression of ATP7A reduced the Cu concentrations of the mammary gland and milk ~50%. Rates of transfer of tracer 64Cu to the suckling pups were similarly reduced over 30–48 h, as was the total Cu in 10‐day ‐old pups. During the early and middle periods of gestation, the transgenic litters had higher Cu concentrations than the wild‐type, placental Cu showing the reverse trend; but this difference was lost by the first postnatal day. The transgenic mice expressed ATP7A in some hepatocytes, so we investigated the possibility that metalation of ceruloplasmin (Cp) might be enhanced. Rates of 64Cu incorporation into Cp, oxidase activity, and ratios of holo to apoceruloplasmin were unchanged. We conclude that in the lactating mammary gland, the role of ATP7A is to return Cu to the blood, while in the placenta it mediates Cu delivery to the fetus and is the rate‐limiting step for fetal Cu nutrition during most of gestation in mice. Copper transport to the fetus and newborn via the placenta and milk is critical for life and development. Cells in placenta and mammary epithelium are somewhat unique in expressing both ATP7A and ATP7B, which participate in copper transport. Using transgenic mice overexpressing ATP7A, our studies show that in placenta, ATP7A is rate‐limiting for copper transport to the fetus, while in the mammary epithelium it returns excess copper to the blood.
Collapse
Affiliation(s)
- Jarrod Wadwa
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Yu-Hsiang Chu
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Nhu Nguyen
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Thomas Henson
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Alyssa Figueroa
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Roxana Llanos
- Centre for Cellular and Molecular Biology, Deakin University, Burwood, 3125, Victoria, Australia
| | - Margaret Leigh Ackland
- Centre for Cellular and Molecular Biology, Deakin University, Burwood, 3125, Victoria, Australia
| | - Agnes Michalczyk
- Centre for Cellular and Molecular Biology, Deakin University, Burwood, 3125, Victoria, Australia
| | - Hendrik Fullriede
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Grant Brennan
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| | - Julian F B Mercer
- Centre for Cellular and Molecular Biology, Deakin University, Burwood, 3125, Victoria, Australia
| | - Maria C Linder
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, 92834-6866, California
| |
Collapse
|
112
|
Hanikenne M, Baurain D. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). FRONTIERS IN PLANT SCIENCE 2014; 4:544. [PMID: 24575101 PMCID: PMC3922081 DOI: 10.3389/fpls.2013.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/12/2013] [Indexed: 05/22/2023]
Abstract
Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium, and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialization into either monovalent (Cu) or divalent (Zn, Cd…) metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterized in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms.
Collapse
Affiliation(s)
- Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, Center for Protein Engineering (CIP), University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Denis Baurain
- PhytoSYSTEMS, University of LiègeLiège, Belgium
- Eukaryotic Phylogenomics, Department of Life Sciences, University of LiègeLiège, Belgium
| |
Collapse
|
113
|
Zheng G, Zhang J, Xu Y, Shen X, Song H, Jing J, Luo W, Zheng W, Chen J. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells. Toxicol Lett 2013; 225:110-8. [PMID: 24316150 DOI: 10.1016/j.toxlet.2013.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022]
Abstract
The blood-cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular (64)Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of (64)Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the (64)Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular (64)Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jieqiong Zhang
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Xu
- Department of Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Han Song
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jinfei Jing
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
114
|
Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc Natl Acad Sci U S A 2013; 110:E4279-88. [PMID: 24167251 DOI: 10.1073/pnas.1311749110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Copper is an essential catalytic cofactor for enzymatic activities that drive a range of metabolic biochemistry including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Copper dysregulation is associated with fatal infantile disease, liver, and cardiac dysfunction, neuropathy, and anemia. Here we report that mammals regulate systemic copper acquisition and intracellular mobilization via cleavage of the copper-binding ecto-domain of the copper transporter 1 (Ctr1). Although full-length Ctr1 is critical to drive efficient copper import across the plasma membrane, cleavage of the ecto-domain is required for Ctr1 to mobilize endosomal copper stores. The biogenesis of the truncated form of Ctr1 requires the structurally related, previously enigmatic copper transporter 2 (Ctr2). Ctr2(-/-) mice are defective in accumulation of truncated Ctr1 and exhibit increased tissue copper levels, and X-ray fluorescence microscopy demonstrates that copper accumulates as intracellular foci. These studies identify a key regulatory mechanism for mammalian copper transport through Ctr2-dependent accumulation of a Ctr1 variant lacking the copper- and cisplatin-binding ecto-domain.
Collapse
|
115
|
Fujimoto S, Itsumura N, Tsuji T, Anan Y, Tsuji N, Ogra Y, Kimura T, Miyamae Y, Masuda S, Nagao M, Kambe T. Cooperative functions of ZnT1, metallothionein and ZnT4 in the cytoplasm are required for full activation of TNAP in the early secretory pathway. PLoS One 2013; 8:e77445. [PMID: 24204829 PMCID: PMC3799634 DOI: 10.1371/journal.pone.0077445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1(-/-) MT(-/-) ZnT4(-/-) cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1(-/-) MT(-/-) ZnT4(-/-) cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1(-/-) MT(-/-) ZnT4(-/-) cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.
Collapse
Affiliation(s)
- Shigeyuki Fujimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasumi Anan
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Natsuko Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, Machida, Tokyo, Japan
- High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Yusaku Miyamae
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seiji Masuda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaya Nagao
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
116
|
Abstract
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast.
Collapse
|
117
|
Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, Huijser P, Peñarrubia L, Puig S. The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. ACTA ACUST UNITED AC 2013; 54:1378-90. [DOI: 10.1093/pcp/pct088] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
118
|
Polishchuk R, Lutsenko S. Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol 2013; 140:285-95. [PMID: 23846821 DOI: 10.1007/s00418-013-1123-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2013] [Indexed: 01/06/2023]
Abstract
Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintains Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease.
Collapse
Affiliation(s)
- Roman Polishchuk
- Telethon Institute of Genetics and Medicine TIGEM, Via Pietro Castellino, 111, 80131 Naples, Italy.
| | | |
Collapse
|
119
|
Gauss GH, Kleven MD, Sendamarai AK, Fleming MD, Lawrence CM. The crystal structure of six-transmembrane epithelial antigen of the prostate 4 (Steap4), a ferri/cuprireductase, suggests a novel interdomain flavin-binding site. J Biol Chem 2013; 288:20668-82. [PMID: 23733181 DOI: 10.1074/jbc.m113.479154] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steap4 is a cell surface metalloreductase linked to obesity-associated insulin resistance. Initial characterization of its cell surface metalloreductase activity has been reported, but thorough biochemical characterization of this activity is lacking. Here, we report detailed kinetic analysis of the Steap4 cell surface metalloreductase activities. Steap4 shows physiologically relevant Km values for both Fe(3+) and Cu(2+) and retains activity at acidic pH, suggesting it may also function within intracellular organelles to reduce these metals. Flavin-dependent NADPH oxidase activity that was much greater than the equivalent Steap3 construct was observed for the isolated N-terminal oxidoreductase domain. The crystal structure of the Steap4 oxidoreductase domain was determined, providing a structural explanation for these differing activities. Structure-function work also suggested Steap4 utilizes an interdomain flavin-binding site to shuttle electrons between the oxidoreductase and transmembrane domains, and it showed that the disordered N-terminal residues do not contribute to enzymatic activity.
Collapse
Affiliation(s)
- George H Gauss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
120
|
Palumaa P. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett 2013; 587:1902-10. [PMID: 23684646 DOI: 10.1016/j.febslet.2013.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Copper chaperones compose a specific class of proteins assuring safe handling and specific delivery of potentially harmful copper ions to a variety of essential copper proteins. Copper chaperones are structurally heterogeneous and can exist in multiple metal-loaded as well as oligomeric forms. Moreover, many copper chaperones can exist in various oxidative states and participate in redox catalysis, connected with their functioning. This review is focused on the analysis of the structural and functional properties of copper chaperones and their partners, which allowed us to define specific regulatory principles in copper metabolism connected with copper-induced conformational control of copper proteins.
Collapse
Affiliation(s)
- Peep Palumaa
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
121
|
Babich PS, Skvortsov AN, Rusconi P, Tsymbalenko NV, Mutanen M, Puchkova LV, Broggini M. Non-hepatic tumors change the activity of genes encoding copper trafficking proteins in the liver. Cancer Biol Ther 2013; 14:614-24. [PMID: 23792645 DOI: 10.4161/cbt.24594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To assess the statistical relationship between tumor growth and copper metabolism, we performed a metaanalysis of studies in which patients with neoplasms were characterized according to any of the copper status indexes (atomic copper serum concentration, serum oxidase activity, ceruloplasmin protein content). Our metaanalysis shows that in the majority of cases (more than 3100 patients), tumor growth positively correlates with the copper status indexes. Nude athymic CD-1 nu/nu mice with subcutaneous tumors of human origin, C57Bl/6J mice with murine melanoma and Apc(Min) mice with spontaneously developing adenomas throughout the intestinal tract were studied to experimentally determine the relationship between tumor progression, liver copper metabolism, and copper status indexes. We showed that the copper status indexes increased significantly during tumor growth. In the liver tissue of tumor-bearing mice, ceruloplasmin gene expression, as well as the expression of genes related to ceruloplasmin metallation (CTR1 and ATP7B), increased significantly. Moreover, the presence of an mRNA splice variant encoding a form of ceruloplasmin anchored to the plasma membrane by glycosylphosphatidyl inositol, which is atypical for hepatocytes, was also detected. The ATP7A copper transporter gene, which is normally expressed in the liver only during embryonic copper metabolism, was also activated. Depletion of holo-ceruloplasmin resulted in retardation of human HCT116 colon carcinoma cell growth in nude mice and induced DNA fragmentation in tumor cells. In addition, the concentration of cytochrome c increased significantly in the cytosol, while decreasing in the mitochondria. We discuss a possible trans-effect of developing tumors on copper metabolism in the liver.
Collapse
Affiliation(s)
- Polina S Babich
- Department of Biophysics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
122
|
Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 2013; 62:540-55. [DOI: 10.1016/j.neuint.2012.08.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/30/2012] [Indexed: 01/21/2023]
|
123
|
Říha M, Karlíčková J, Filipský T, Macáková K, Hrdina R, Mladěnka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J Inorg Biochem 2013; 123:80-7. [PMID: 23563391 DOI: 10.1016/j.jinorgbio.2013.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/06/2013] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
Abstract
Copper is an essential trace element involved in many physiological processes. Since disorder of copper homeostasis is observed in various pathologies, copper chelators may represent a promising therapeutic tool. This study was aimed at: 1) formation of an in vitro methodology for screening of copper chelators, and 2) detailed analysis of the interaction of copper with clinically used D-penicillamine (D-PEN), triethylenetetramine (trientine), experimentally tested 8-hydroxyquinolines, and the disodium salt of EDTA as a standard chelator. Methodology based on bathocuproinedisulfonic acid disodium salt (BCS), usable at (patho)physiologically relevant pHs (4.5-7.5), enabled assessment of both cuprous and cupric ions chelation and comparison of the relative affinities of the tested compounds for copper. In the case of potent chelators, the stoichiometry could be estimated too. Clioquinol, chloroxine and EDTA formed very stable complexes with Cu(+)/Cu(2+) at all tested pHs, while copper complexes with trientine were stable only under neutral or slightly acidic conditions. Non-substituted 8-hydroxyquinoline was a less efficient copper chelator, but still unequivocally more potent than D-PEN. Both 8-hydroxyquinoline and D-PEN chelation potencies, similarly to that of trientine, were pH-dependent and decreased with pH. Moreover, only D-PEN was able to reduce cupric ions. Conclusively, BCS assay represents a rapid, simple and precise method for copper chelation measurement. In addition, lower binding affinity of D-PEN compared with 8-hydroxyquinolines and trientine was demonstrated.
Collapse
Affiliation(s)
- Michal Říha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | | | | | | | | | | |
Collapse
|
124
|
M-M P, Weiskirchen R, Gassler N, Bosserhoff AK, Becker JS. Novel bioimaging techniques of metals by laser ablation inductively coupled plasma mass spectrometry for diagnosis of fibrotic and cirrhotic liver disorders. PLoS One 2013; 8:e58702. [PMID: 23505552 PMCID: PMC3591358 DOI: 10.1371/journal.pone.0058702] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/05/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Hereditary disorders associated with metal overload or unwanted toxic accumulation of heavy metals can lead to morbidity and mortality. Patients with hereditary hemochromatosis or Wilson disease for example may develop severe hepatic pathology including fibrosis, cirrhosis or hepatocellular carcinoma. While relevant disease genes are identified and genetic testing is applicable, liver biopsy in combination with metal detecting techniques such as energy-dispersive X-ray spectroscopy (EDX) is still applied for accurate diagnosis of metals. Vice versa, several metals are needed in trace amounts for carrying out vital functions and their deficiency due to rapid growth, pregnancy, excessive blood loss, and insufficient nutritional or digestive uptake results in organic and systemic shortcomings. Established in situ techniques, such as EDX-ray spectroscopy, are not sensitive enough to analyze trace metal distribution and the quantification of metal images is difficult. METHODS In this study, we developed a quantitative biometal imaging technique of human liver tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to compare the distribution of selected metals in cryo-sections of healthy and fibrotic/cirrhotic livers. RESULTS Most of the metals are homogeneous distributed within the normal tissue, while they are redirected within fibrotic livers resulting in significant metal deposits. Moreover, total iron and copper concentrations in diseased liver were found about 3-5 times higher than in normal liver samples. CONCLUSIONS Biometal imaging via LA-ICP-MS is a sensitive innovative diagnostic tool that will impact clinical practice in identification and evaluation of hepatic metal disorders and to detect subtle metal variations during ongoing hepatic fibrogenesis.
Collapse
Affiliation(s)
- Pornwilard M-M
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, Jülich, Germany
- Department of Chemistry and Center for Innovation in Chemistry, Mahidol University, Bangkok, Thailand
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Nikolaus Gassler
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany
| | - Anja K. Bosserhoff
- Institute of Pathology, University Hospital of Regensburg, Regensburg, Germany
| | - J. Sabine Becker
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
125
|
Abstract
Transition metals are frequently used as cofactors for enzymes and oxygen-carrying proteins that take advantage of their propensity to gain and lose single electrons. Metals are particularly important in mitochondria, where they play essential roles in the production of ATP and detoxification of reactive oxygen species. At the same time, transition metals (particularly Fe and Cu) can promote the formation of harmful radicals, necessitating meticulous control of metal concentration and subcellular compartmentalization. We summarize our current understanding of Fe and Cu in mammalian mitochondrial biology and discuss human diseases associated with aberrations in mitochondrial metal homeostasis.
Collapse
|
126
|
Charradi K, Elkahoui S, Karkouch I, Limam F, Hamdaoui G, Hassine FB, El May MV, El May A, Aouani E. Grape seed and skin extract alleviates high-fat diet-induced renal lipotoxicity and prevents copper depletion in rat. Appl Physiol Nutr Metab 2013; 38:259-67. [DOI: 10.1139/apnm-2012-0416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Obesity is a public health problem that contributes to morbidity and mortality from diabetes, heart disease, stroke, and cancers. The purpose of this investigation was to analyse the link between obesity-induced oxidative stress, renal steatosis, and kidney dysfunction, as well as the protective effect of grape seed and skin extract. Rats were fed a standard diet or a high-fat diet for 6 weeks and were either treated or not treated with grape seed and skin extract. Fat-induced oxidative stress was evaluated in the kidney with a special emphasis on transition metals. High-fat diet induced triglyceride deposition and disturbances in kidney function parameters, which are linked to an oxidative stress status and depletion of copper from the kidney. Grape seed and skin extract abrogated almost all fat-induced kidney disturbances. Grape seed and skin extract exerted potential protection against fat-induced kidney lipotoxicity and should find potential application in other kidney-related diseases.
Collapse
Affiliation(s)
- Kamel Charradi
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisie
- Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie
| | - Salem Elkahoui
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Ines Karkouch
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Ferid Limam
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Ghaith Hamdaoui
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisie
| | - Fethy Ben Hassine
- Laboratoire de Biochimie, Polyclinique de la CNSS d'El Khadra, Avenue Zobeir Ibn El Awam 1003 Cité El Khadra Tunis, Tunisie
| | | | - Ahmed El May
- Unité de recherche no. 01/UR/07-08, Faculty of Medicine of Tunis, Tunisia
| | - Ezzedine Aouani
- Laboratoire des Substances Bioactives (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisie
- Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie
| |
Collapse
|
127
|
Chen QL, Luo Z, Liu X, Song YF, Liu CX, Zheng JL, Zhao YH. Effects of waterborne chronic copper exposure on hepatic lipid metabolism and metal-element composition in Synechogobius hasta. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:301-15. [PMID: 23229194 DOI: 10.1007/s00244-012-9835-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/22/2012] [Indexed: 05/26/2023]
Abstract
The present study was conducted to determine hepatic lipid metabolism and metal-element composition in Synechogobius hasta exposed to waterborne chronic copper (Cu) concentrations of control, 57, and 118 μg Cu/l, respectively, for 30 days. Growth decreased, but hepatosomatic index, viscerosomatic index, and hepatic lipid content increased with increasing waterborne Cu levels. Staining with oil red O showed extensive steatosis in liver of Cu-exposed fish. Cu exposure increased hepatic 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, and malic enzyme activities, whereas fatty acid synthetase, isocitrate dehydrogenase, and carnitine palmitoyltransferases I activities remained unaffected. Cu, zinc, iron, and manganese contents were also changed in several tissues (gill, liver, spleen, gastrointestinal tract, and muscle) in a tissue-, dose-, and time-dependent manner. This was the first study to examine the effects of waterborne Cu exposure on several enzymatic activities mediating hepatic lipogenesis and lipolysis in fish as well as to show that waterborne Cu exposure could enhance the metabolism of lipid synthesis and consequently induce the increase of hepatic lipid deposition in S. hasta.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Fishery College, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
128
|
Vogt S, Ralle M. Opportunities in multidimensional trace metal imaging: taking copper-associated disease research to the next level. Anal Bioanal Chem 2013; 405:1809-20. [PMID: 23079951 PMCID: PMC3566297 DOI: 10.1007/s00216-012-6437-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/07/2012] [Accepted: 09/18/2012] [Indexed: 01/09/2023]
Abstract
Copper plays an important role in numerous biological processes across all living systems predominantly because of its versatile redox behavior. Cellular copper homeostasis is tightly regulated and disturbances lead to severe disorders such as Wilson disease and Menkes disease. Age-related changes of copper metabolism have been implicated in other neurodegenerative disorders such as Alzheimer disease. The role of copper in these diseases has been a topic of mostly bioinorganic research efforts for more than a decade, metal-protein interactions have been characterized, and cellular copper pathways have been described. Despite these efforts, crucial aspects of how copper is associated with Alzheimer disease, for example, are still only poorly understood. To take metal-related disease research to the next level, emerging multidimensional imaging techniques are now revealing the copper metallome as the basis to better understand disease mechanisms. This review describes how recent advances in X-ray fluorescence microscopy and fluorescent copper probes have started to contribute to this field, specifically in Wilson disease and Alzheimer disease. It furthermore provides an overview of current developments and future applications in X-ray microscopic methods.
Collapse
Affiliation(s)
- Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
| | - Martina Ralle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| |
Collapse
|
129
|
Abstract
Copper is an essential trace metal that is required for the catalysis of several important cellular enzymes. However, since an excess of copper can also harm cells due to its potential to catalyze the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. This chapter summarizes the current knowledge on the importance of copper for cellular processes and on the mechanisms involved in cellular copper uptake, storage and export. In addition, we will give an overview on disturbances of copper homeostasis that are characterized by copper overload or copper deficiency or have been connected with neurodegenerative disorders.
Collapse
Affiliation(s)
- Ivo Scheiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|