101
|
Yuan K, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry 2019; 26:2309-2326. [PMID: 31682040 DOI: 10.1002/chem.201903475] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Micromotors are man-made nano/microscale devices capable of transforming energy into mechanical motion. The accessibility and force offered by micromotors hold great promise to solve complex biomedical challenges. This Review highlights current progress and prospects in the use of nano and micromotors for diagnosis and treatment of infectious diseases and cancer. Motion-based sensing and fluorescence switching detection strategies along with therapeutic approaches based on direct cell capture; killing by direct contact or specific drug delivery to the affected site, will be comprehensively covered. Future challenges to translate the potential of nano/micromotors into practical applications will be described in the conclusions.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhengjin Jiang
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Chemical Research Institute "Andres M. Del Rio", University of Alcala, 28805, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Chemical Research Institute "Andres M. Del Rio", University of Alcala, 28805, Madrid, Spain
| |
Collapse
|
102
|
Li H, Sun Z, Jiang S, Lai X, Böckler A, Huang H, Peng F, Liu L, Chen Y. Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model. NANO LETTERS 2019; 19:8749-8757. [PMID: 31671944 DOI: 10.1021/acs.nanolett.9b03456] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the natural motors capable of performing multiple tasks in complex living environments, synthetic nanomotors emerge as a potential vehicle for revolutionizing biomedical processes. Yet current motors suffer from decreased and even completely hindered motion in a complex physiological environment, shadowing the future of this booming field. To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. Such a molecular nanomotor possesses tadpole-like asymmetry and is able to overcome Brownian motion, and demonstrates strong directional propulsion (linear and coiled cyclic trajectories) in a viscous tumor microenvironment gel model at an ultralow hydrogen peroxide level of 2 mM (0.006%). In addition, the molecular nanomotor exhibits superior stability in serum containing cell medium and good biocompatibility in blood. Such molecular bottlebrush based nanomotors may represent a unique platform for overcoming the tissue penetration barrier.
Collapse
Affiliation(s)
- Huaan Li
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Ziyang Sun
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Suqiu Jiang
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xinyi Lai
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Andreas Böckler
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Huahua Huang
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Fei Peng
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lixin Liu
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yongming Chen
- School of Materials Science and Engineering, and Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
103
|
Gao C, Zhou C, Lin Z, Yang M, He Q. Surface Wettability-Directed Propulsion of Glucose-Powered Nanoflask Motors. ACS NANO 2019; 13:12758-12766. [PMID: 31621286 DOI: 10.1021/acsnano.9b04708] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically driven colloidal motors capable of implementing different movements under a common environment are of great importance for various complex tasks. However, the key parameters underlying different motion behaviors are incompletely understood. Here, we demonstrate that carbonaceous nanoflask (CNF) motors move spontaneously in glucose powered by the cascade reaction of glucose oxidase and catalase, and their directional propulsion can be premeditated by controlling the surface wettability of nanomotors. The hydrophilic CNF motors move from the round-bottom to the opening neck (backward), whereas the hydrophobic CNF motors swim from the opening neck to the round-bottom (forward). We demonstrate that the backward motion of the hydrophilic CNF motors is driven by the local glucose gradient due to self-diffusiophoresis, and the forward movement of the hydrophobic CNF motors is caused by the locally produced glucose acid gradient. The fluid simulation reveals that the hydrophilic and hydrophobic CNF motors correspond to the puller and pusher models, respectively. Our study offers a minimal strategy to manipulate the direction of motion of motors for specific applications and to change the hydrodynamic behaviors of glucose-powered motors.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre , Harbin Institute of Technology , Yi Kuang Jie 2 , Harbin 150080 , China
| | - Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre , Harbin Institute of Technology , Yi Kuang Jie 2 , Harbin 150080 , China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre , Harbin Institute of Technology , Yi Kuang Jie 2 , Harbin 150080 , China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre , Harbin Institute of Technology , Yi Kuang Jie 2 , Harbin 150080 , China
| |
Collapse
|
104
|
Qamar SA, Asgher M, Khalid N, Sadaf M. Nanobiotechnology in health sciences: Current applications and future perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
105
|
Sonntag L, Simmchen J, Magdanz V. Nano-and Micromotors Designed for Cancer Therapy. Molecules 2019; 24:E3410. [PMID: 31546857 PMCID: PMC6767050 DOI: 10.3390/molecules24183410] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Research on nano- and micromotors has evolved into a frequently cited research area with innovative technology envisioned for one of current humanities' most deadly problems: cancer. The development of cancer targeting drug delivery strategies involving nano-and micromotors has been a vibrant field of study over the past few years. This review aims at categorizing recent significant results, classifying them according to the employed propulsion mechanisms starting from chemically driven micromotors, to field driven and biohybrid approaches. In concluding remarks of section 2, we give an insight into shape changing micromotors that are envisioned to have a significant contribution. Finally, we critically discuss which important aspects still have to be addressed and which challenges still lie ahead of us.
Collapse
Affiliation(s)
- Luisa Sonntag
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | | |
Collapse
|
106
|
Bhuyan T, Dutta D, Bhattacharjee M, Singh AK, Ghosh SS, Bandyopadhyay D. Acoustic Propulsion of Vitamin C Loaded Teabots for Targeted Oxidative Stress and Amyloid Therapeutics. ACS APPLIED BIO MATERIALS 2019; 2:4571-4582. [DOI: 10.1021/acsabm.9b00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tamanna Bhuyan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Deepanjalee Dutta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mitradip Bhattacharjee
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
107
|
Wei F, Yin C, Zheng J, Zhan Z, Yao L. Rise of cyborg microrobot: different story for different configuration. IET Nanobiotechnol 2019; 13:651-664. [PMID: 31573533 PMCID: PMC8676360 DOI: 10.1049/iet-nbt.2018.5374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 04/05/2024] Open
Abstract
By integrating organic parts achieved through evolution and inorganic parts developed by human civilisation, the cyborg microrobot is rising by taking advantage of the high flexibility, outstanding energy efficiency, extremely exquisite structure in the natural components and the fine upgradability, nice controllability in the artefact parts. Compared to the purely synthetic microrobots, the cyborg microrobots, due to the exceptional biocompatibility and biodegradability, have already been utilised in in situ diagnosis, precise therapy and other biomedical applications. In this review, through a thorough summary of recent advances of cyborg microrobots, the authors categorise the cyborg microrobots into four major classes according to the configuration between biomaterials and artefact materials, i.e. microrobots integrated inside living cell, microrobots modified with biological debris, microrobots integrated with single cell and microrobots incorporated with multiple cells. Cyborg microrobots with the four types of configurations are introduced and summarised with the combination approaches, actuation mechanisms, applications and challenges one by one. Moreover, they conduct a comparison among the four different cyborg microrobots to guide the actuation force promotion, locomotion control refinement and future applications. Finally, conclusions and future outlook of the development and potential applications of the cyborg microrobots are discussed.
Collapse
Affiliation(s)
- Fanan Wei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | - Chao Yin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Jianghong Zheng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ziheng Zhan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
108
|
Kroupa T, Hermanová S, Mayorga-Martinez CC, Novotný F, Sofer Z, Pumera M. Micromotors as "Motherships": A Concept for the Transport, Delivery, and Enzymatic Release of Molecular Cargo via Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10618-10624. [PMID: 31322356 DOI: 10.1021/acs.langmuir.9b01192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nano/micromotors based on biodegradable and biocompatible polymers represent a progressively developing group of self-propelled artificial devices capable of delivering biologically active compounds to target sites. The majority of these machines are micron sized, and biologically active compounds are simply attached to their surface. Micron-sized devices cannot enter cells, but they provide rapid velocity, which scales down with the size of the device; nanosized devices can enter cells, but their velocity is negligible. An advanced hierarchical design of the micro/nanodevices is an important tool in the development of functional biocompatible transport systems and their implementation in real in vivo applications. In this work, we demonstrate a "mothership" concept, whereby self-propelled microrobots transport smaller cargo-carrying nanorobots that are released by enzymatic degradation.
Collapse
Affiliation(s)
- Tomáš Kroupa
- Department of Polymers, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
| | - Soňa Hermanová
- Department of Polymers, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
| | - Filip Novotný
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 16628 Prague , Czech Republic
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
- Future Energy and Innovation Laboratory, Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno , CZ-616 00 , Czech Republic
| |
Collapse
|
109
|
Ceylan H, Yasa IC, Kilic U, Hu W, Sitti M. Translational prospects of untethered medical microrobots. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2516-1091/ab22d5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
110
|
Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q. Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23392-23400. [PMID: 31252507 DOI: 10.1021/acsami.9b07979] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer therapeutic strategy, which typically kills cancer cells through converting nontoxic oxygen into reactive oxygen species using photosensitizers (PSs). However, the existing PDTs are still limited by the tumor hypoxia and poor targeted accumulation of PSs. To address these challenges, we here report an acoustically powered and magnetically navigated red blood cell-mimicking (RBCM) micromotor capable of actively transporting oxygen and PS for enhanced PDT. The RBCM micromotors consist of biconcave RBC-shaped magnetic hemoglobin cores encapsulating PSs and natural RBC membrane shells. Upon exposure to an acoustic field, they are able to move in biological media at a speed of up to 56.5 μm s-1 (28.2 body lengths s-1). The direction of these RBCM micromotors can be navigated using an external magnetic field. Moreover, RBCM micromotors can not only avoid the serum fouling during the movement toward the targeted cancer cells but also possess considerable oxygen- and PS-carrying capacity. Such fuel-free RBCM micromotors provide a new approach for efficient and rapid active delivery of oxygen and PSs in a biofriendly manner for future PDT.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Hui Xie
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), State Laboratory of Robotics and System (HIT) , Harbin Institute of Technology , Yikuangjie 2 , Harbin 150080 , China
| |
Collapse
|
111
|
Halder A, Sun Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 2019; 139:111334. [PMID: 31128479 DOI: 10.1016/j.bios.2019.111334] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Micro/Nano robots have shown enormous potential for diverse biomedical applications, such as targeted delivery, in vivo biosensing, minimally invasive surgery and cell manipulation through extending their area of operation to various previously inaccessible locations. The motion of these small-scale robots can be either self-propelled or remotely controlled by some external power sources. However, in order to use them for biomedical applications, optimization of biocompatible propulsion and precise controllability are highly desirable. In this article, the recent progress about the biocompatible propulsion (e.g. self-propulsion, external stimuli based propulsion and bio-hybrid propulsion) techniques for these micro/nano robotic devices are summarized along with their applications, with a special focus on the advantages and disadvantages of different propulsion techniques. The current challenges and future perspectives of these small-scale devices are discussed in the final section.
Collapse
Affiliation(s)
- Arnab Halder
- Department of Health Technology, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
112
|
Chen X, Zhou C, Wang W. Colloidal Motors 101: A Beginner's Guide to Colloidal Motor Research. Chem Asian J 2019; 14:2388-2405. [DOI: 10.1002/asia.201900377] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xi Chen
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| | - Chao Zhou
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| | - Wei Wang
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| |
Collapse
|
113
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019; 58:7992-7996. [DOI: 10.1002/anie.201900697] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
114
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
115
|
Wang S, Liu K, Wang F, Peng F, Tu Y. The Application of Micro‐ and Nanomotors in Classified Drug Delivery. Chem Asian J 2019; 14:2336-2347. [DOI: 10.1002/asia.201900274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shuanghu Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Kun Liu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| |
Collapse
|
116
|
Mathur D, Medintz IL. The Growing Development of DNA Nanostructures for Potential Healthcare-Related Applications. Adv Healthc Mater 2019; 8:e1801546. [PMID: 30843670 PMCID: PMC9285959 DOI: 10.1002/adhm.201801546] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Indexed: 12/21/2022]
Abstract
DNA self-assembly has proven to be a highly versatile tool for engineering complex and dynamic biocompatible nanostructures from the bottom up with a wide range of potential bioapplications currently being pursued. Primary among these is healthcare, with the goal of developing diagnostic, imaging, and drug delivery devices along with combinatorial theranostic devices. The path to understanding a role for DNA nanotechnology in biomedical sciences is being approached carefully and systematically, starting from analyzing the stability and immune-stimulatory properties of DNA nanostructures in physiological conditions, to estimating their accessibility and application inside cellular and model animal systems. Much remains to be uncovered but the field continues to show promising results toward developing useful biomedical devices. This review discusses some aspects of DNA nanotechnology that makes it a favorable ingredient for creating nanoscale research and biomedical devices and looks at experiments undertaken to determine its stability in vivo. This is presented in conjugation with examples of state-of-the-art developments in biomolecular sensing, imaging, and drug delivery. Finally, some of the major challenges that warrant the attention of the scientific community are highlighted, in order to advance the field into clinically relevant applications.
Collapse
Affiliation(s)
- Divita Mathur
- Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory Code 6910WashingtonDC20375USA
- College of ScienceGeorge Mason UniversityFairfaxVA22030USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory Code 6907WashingtonDC20375USA
| |
Collapse
|
117
|
|
118
|
Wan X, Zhang S, Wang F, Fan W, Wu C, Mao K, Wang H, Hu Z, Yang YG, Sun T. Red blood cell-derived nanovesicles for safe and efficient macrophage-targeted drug delivery in vivo. Biomater Sci 2019; 7:187-195. [PMID: 30421747 DOI: 10.1039/c8bm01258j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RBC-derived nanovesicles are effective hydrophilic drug carriers and can effectively deliver drugs into macrophages both in vitro and in vivo.
Collapse
|
119
|
Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile Microrobots for Active Therapeutic Delivery. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800064] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pelin Erkoc
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Immihan C. Yasa
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Hakan Ceylan
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Oncay Yasa
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Yunus Alapan
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Metin Sitti
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| |
Collapse
|
120
|
Mateos-Maroto A, Guerrero-Martínez A, Rubio RG, Ortega F, Martínez-Pedrero F. Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29367-29377. [PMID: 30088905 DOI: 10.1021/acsami.8b09862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Some biological microorganisms can crawl or swim due to coordinated motions of their cytoskeleton or the flagella located inside their bodies, which push the cells forward through intracellular forces. To date, there is no demonstration of synthetic systems propelling at low Reynolds number via the precise actuation of the material confined within an enclosing lipid membrane. Here, we report lipid vesicles and other more complex self-assembled biohybrid structures able to propel due to the advection flows generated by the actuated rotation of the superparamagnetic particles they contain. The proposed swimming and release strategies, based on cooperative hydrodynamic mechanisms and near-infrared laser pulse-triggered destabilization of the phospholipid membranes, open new possibilities for the on-command transport of minute quantities of drugs, fluid or nano-objects. The lipid membranes protect the confined substances from the outside environment during transportation, thus enabling them to work in physiological conditions.
Collapse
Affiliation(s)
- A Mateos-Maroto
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - A Guerrero-Martínez
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - R G Rubio
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - F Ortega
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - F Martínez-Pedrero
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| |
Collapse
|
121
|
Gao C, Lin Z, Lin X, He Q. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| |
Collapse
|