101
|
Zhang L, Shen C, Chu J, Zhang R, Li Y, Li L. Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer's disease. Int J Biol Sci 2014; 10:181-91. [PMID: 24550686 PMCID: PMC3927130 DOI: 10.7150/ijbs.6232] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 12/24/2013] [Indexed: 11/25/2022] Open
Abstract
Objective: The purpose of this study was to investigate the effects and pharmacological mechanisms of icariin, which is the main component in the traditional Chinese herb Epimedium, on β-amyloid (Aβ) production in an amyloid precursor protein (APP) transgenic (Tg) mouse model of Alzheimer's disease (AD). Methods: APPV717I Tg mice were randomly divided into a model group and icariin-treated (30 and 100 μmol/kg per day) groups. Learning-memory abilities were determined by Morris water maze and object recognition tests. Aβ contents were measured by enzyme-linked immunosorbent assays and immunohistochemistry. Amyloid plaques were detected by Congo red staining and Bielschowsky silver staining. The levels of expression of APP and β-site APP-cleaving enzyme 1 (BACE-1) were measured by western blotting and immunohistochemistry. Results: Ten-month-old Tg mice showed obvious learning-memory impairments, and significant increases in Aβ contents, amyloid plaques, and APP and BACE-1 levels in the hippocampus. The intragastric administration of icariin to Tg mice for 6 months (from 4 to 10 months of age) improved the learning-memory abilities and significantly decreased the Aβ contents, amyloid plaques, and APP and BACE-1 levels in the hippocampus. Conclusion: Icariin reduced the Aβ burden and amyloid plaque deposition in the hippocampus of APP transgenic mice by decreasing the APP and BACE-1 levels. These novel findings suggest that icariin may be a promising treatment in patients with AD.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Cong Shen
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Jin Chu
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Ruyi Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
102
|
Soyasaponin I improved neuroprotection and regeneration in memory deficient model rats. PLoS One 2013; 8:e81556. [PMID: 24324703 PMCID: PMC3852400 DOI: 10.1371/journal.pone.0081556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 10/21/2013] [Indexed: 01/09/2023] Open
Abstract
Soy (Glycine Max Merr, family Leguminosae) has been reported to possess anti-cancer, anti-lipidemic, estrogen-like, and memory-enhancing effects. We investigated the memory-enhancing effects and the underlying mechanisms of soyasaponin I (soya-I), a major constituent of soy. Impaired learning and memory were induced by injecting ibotenic acid into the entorhinal cortex of adult rat brains. The effects of soya-I were evaluated by measuring behavioral tasks and neuronal regeneration of memory-deficient rats. Oral administration of soya-I exhibited significant memory-enhancing effects in the passive avoidance, Y-maze, and Morris water maze tests. Soya-Ι also increased BrdU incorporation into the dentate gyrus and the number of cell types (GAD67, ChAT, and VGluT1) in the hippocampal region of memory-deficient rats, whereas the number of reactive microglia (OX42) decreased. The mechanism underlying memory improvement was assessed by detecting the differentiation and proliferation of neural precursor cells (NPCs) prepared from the embryonic hippocampus (E16) of timed-pregnant Sprague-Dawley rats using immunocytochemical staining and immunoblotting analysis. Addition of soya-Ι in the cultured NPCs significantly elevated the markers for cell proliferation (Ki-67) and neuronal differentiation (NeuN, TUJ1, and MAP2). Finally, soya-I increased neurite lengthening and the number of neurites during the differentiation of NPCs. Soya-Ι may improve hippocampal learning and memory impairment by promoting proliferation and differentiation of NPCs in the hippocampus through facilitation of neuronal regeneration and minimization of neuro-inflammation.
Collapse
|
103
|
Alobuia WM, Xia W, Vohra BPS. Axon degeneration is key component of neuronal death in amyloid-β toxicity. Neurochem Int 2013; 63:782-9. [PMID: 24083988 PMCID: PMC3918889 DOI: 10.1016/j.neuint.2013.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 11/29/2022]
Abstract
Depending upon the stimulus, neuronal cell death can either be triggered from the cell body (soma) or the axon. We investigated the origin of the degeneration signal in amyloid β (Aβ) induced neuronal cell death in cultured in vitro hippocampal neurons. We discovered that Aβ1-42 toxicity-induced axon degeneration precedes cell death in hippocampal neurons. Overexpression of Bcl-xl inhibited both axonal and cell body degeneration in the Aβ-42 treated neurons. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) blocks axon degeneration in a variety of paradigms, but it cannot block neuronal cell body death. Therefore, if the neuronal death signals in Aβ1-42 toxicity originate from degenerating axons, we should be able to block neuronal death by inhibiting axon degeneration. To explore this possibility we over-expressed Nmnat1 in hippocampal neurons. We found that inhibition of axon degeneration in Aβ1-42 treated neurons prevented neuronal cell death. Thus, we conclude that axon degeneration is the key component of Aβ1-42 induced neuronal degeneration, and therapies targeting axonal protection can be important in finding a treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Wilson M Alobuia
- Biology Department, University of Central Arkansas, Conway, AR 72035, United States
| | | | | |
Collapse
|
104
|
Maarouf CL, Kokjohn TA, Whiteside CM, Macias MP, Kalback WM, Sabbagh MN, Beach TG, Vassar R, Roher AE. Molecular Differences and Similarities Between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. BIOCHEMISTRY INSIGHTS 2013; 6:1-10. [PMID: 25210460 PMCID: PMC4154482 DOI: 10.4137/bci.s13025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transgenic (Tg) mouse models of Alzheimer’s disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA. ; Department of Microbiology, Midwestern University School of Medicine, Glendale, AZ, USA
| | - Charisse M Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - MiMi P Macias
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Walter M Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Marwan N Sabbagh
- Roberts Clinical Center, Banner Sun Health Research Institute Sun City, AZ, USA. ; University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Thomas G Beach
- Harold Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| |
Collapse
|
105
|
Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer's disease. J Neurosci 2013; 33:13505-17. [PMID: 23946409 DOI: 10.1523/jneurosci.0918-13.2013] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via upregulation of BDNF in both Aβ-treated hippocampal neurons and cultured APP/PS1 mouse hippocampal neurons. Photoactivation of transcription factor CRE-binding protein (CREB) increased both BDNF mRNA and protein expression, since knockdown CREB blocked the effects of LLLT. Furthermore, CREB-regulated transcription was in an ERK-dependent manner. Inhibition of ERK attenuated the DNA-binding efficiency of CREB to BDNF promoter. In addition, dendrite growth was improved after LLLT, characterized by upregulation of Rac1 activity and PSD-95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT by activation of ERK/CREB pathway can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of AD.
Collapse
|
106
|
Rongve A, Årsland D, Graff C. [Alzheimer's disease and genetics]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:1449-52. [PMID: 23929292 DOI: 10.4045/tidsskr.12.0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Alzheimer's disease is the most frequent cause of dementia. Recent knowledge reveals several new risk genes. We wish to summarise the knowledge of genetic factors related to Alzheimer's disease. METHOD This article is based on findings in Alzgene, a database that summarises genetic association studies in Alzheimer's disease, a literature search in PubMed and the authors' own experience in dementia research. RESULTS Several mutations of the genes APP, PSEN1 and PSEN2 are described. These cause around half of all cases of the rare early onset autosomal dominant form of Alzheimer's disease. Heritability, or how much of the development of the disease in an individual that is explained by genetics, is between 60 and 80% in the most common late onset form of Alzheimer's disease. APOE ε4 is the most robust risk gene for the development of this form of the disease, but recently ten new genes that increase the risk of developing Alzheimer's disease were identified by applying genome-wide association studies. These genes code for proteins that are central in the metabolism of cholesterol, activation of the immune system and synaptic cell membrane processes. INTERPRETATION New hypotheses on the disease mechanisms for Alzheimer's disease are suggested based on the identification of new risk genes. These hypotheses partly replace and partly supplement the previously dominant amyloid pathway hypothesis. The new risk genes point to the potential for new biomarkers for specific disease processes and to possible new targets for future disease modifying therapies.
Collapse
Affiliation(s)
- Arvid Rongve
- Seksjon for alderspsykiatri, Klinikk for psykisk helsevern, Helse-Fonna, Haugesund, Norway.
| | | | | |
Collapse
|
107
|
Aβ increases neural stem cell activity in senescence-accelerated SAMP8 mice. Neurobiol Aging 2013; 34:2623-38. [PMID: 23796660 DOI: 10.1016/j.neurobiolaging.2013.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 04/10/2013] [Accepted: 05/12/2013] [Indexed: 02/08/2023]
Abstract
Neurogenesis persists in the adult brain as a form of plasticity due to the existence of neural stem cells (NSCs). Alterations in neurogenesis have been found in transgenic Alzheimer's disease (AD) mouse models, but NSC activity and neurogenesis in sporadic AD models remains to be examined. We herein describe a remarkable increase in NSC proliferation in the forebrain of SAMP8, a non-transgenic mouse strain that recapitulates the transition from healthy aging to AD. The increase in proliferation is transient, precedes AD-like symptoms such as amyloid beta 1-42 [Aβ(1-42)] increase or gliosis, and is followed by a steep decline at later stages. Interestingly, in vitro studies indicate that secreted Aβ(1-42) and PI3K signaling may account for the early boost in NSC proliferation. Our results highlight the role of soluble Aβ(1-42) peptide and PI3K in the autocrine regulation of NSCs, and further suggest that over-proliferation of NSCs before the appearance of AD pathology may underlie neurogenic failure during the age-related progression of the disease. These findings have implications for therapeutic approaches based on neurogenesis in AD.
Collapse
|
108
|
Trazzi S, Fuchs C, Valli E, Perini G, Bartesaghi R, Ciani E. The amyloid precursor protein (APP) triplicated gene impairs neuronal precursor differentiation and neurite development through two different domains in the Ts65Dn mouse model for Down syndrome. J Biol Chem 2013; 288:20817-20829. [PMID: 23740250 DOI: 10.1074/jbc.m113.451088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.
Collapse
Affiliation(s)
- Stefania Trazzi
- From the Department of Biomedical and Neuromotor Sciences and
| | - Claudia Fuchs
- From the Department of Biomedical and Neuromotor Sciences and
| | - Emanuele Valli
- the Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy and
| | - Giovanni Perini
- the Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy and; the Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | | | | |
Collapse
|
109
|
Hu Y, Hung AC, Cui H, Dawkins E, Bolós M, Foa L, Young KM, Small DH. Role of cystatin C in amyloid precursor protein-induced proliferation of neural stem/progenitor cells. J Biol Chem 2013; 288:18853-62. [PMID: 23671283 DOI: 10.1074/jbc.m112.443671] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) is well studied for its role in Alzheimer disease. However, little is known about its normal function. In this study, we examined the role of APP in neural stem/progenitor cell (NSPC) proliferation. NSPCs derived from APP-overexpressing Tg2576 transgenic mice proliferated more rapidly than NSPCs from the corresponding background strain (C57Bl/6xSJL) wild-type mice. In contrast, NSPCs from APP knock-out (APP-KO) mice had reduced proliferation rates when compared with NSPCs from the corresponding background strain (C57Bl/6). A secreted factor, identified as cystatin C, was found to be responsible for this effect. Levels of cystatin C were higher in the Tg2576 conditioned medium and lower in the APP-KO conditioned medium. Furthermore, immunodepletion of cystatin C from the conditioned medium completely removed the ability of the conditioned medium to increase NSPC proliferation. The results demonstrate that APP expression stimulates NSPC proliferation and that this effect is mediated via an increase in cystatin C secretion.
Collapse
Affiliation(s)
- Yanling Hu
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Lecanu L, Papadopoulos V. Modeling Alzheimer's disease with non-transgenic rat models. ALZHEIMERS RESEARCH & THERAPY 2013; 5:17. [PMID: 23634826 PMCID: PMC3706888 DOI: 10.1186/alzrt171] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), for which there is no cure, is the most common form of dementia in the elderly. Despite tremendous efforts by the scientific community, the AD drug development pipeline remains extremely limited. Animal models of disease are a cornerstone of any drug development program and should be as relevant as possible to the disease, recapitulating the disease phenotype with high fidelity, to meaningfully contribute to the development of a successful therapeutic agent. Over the past two decades, transgenic models of AD based on the known genetic origins of familial AD have significantly contributed to our understanding of the molecular mechanisms involved in the onset and progression of the disease. These models were extensively used in AD drug development. The numerous reported failures of new treatments for AD in clinical trials indicate that the use of genetic models of AD may not represent the complete picture of AD in humans and that other types of animal models relevant to the sporadic form of the disease, which represents 95% of AD cases, should be developed. In this review, we will discuss the evolution of non-transgenic rat models of AD and how these models may open new avenues for drug development.
Collapse
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada ; Department of Medicine, McGill University, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada ; Department of Medicine, McGill University, Royal Victoria Hospital, 687 Pine avenue West, room L2-05, Montreal H3A 1A1, QC, Canada ; Departments of Biochemistry and Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Bldg, 3655 Promenade Sir-William-Osler, room 1325, Montreal Quebec, Canada H3G 1Y6
| |
Collapse
|
111
|
Tu Z, Keller MP, Zhang C, Rabaglia ME, Greenawalt DM, Yang X, Wang IM, Dai H, Bruss MD, Lum PY, Zhou YP, Kemp DM, Kendziorski C, Yandell BS, Attie AD, Schadt EE, Zhu J. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets. PLoS Genet 2012; 8:e1003107. [PMID: 23236292 PMCID: PMC3516550 DOI: 10.1371/journal.pgen.1003107] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/04/2012] [Indexed: 01/20/2023] Open
Abstract
Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6) and diabetes-susceptible (BTBR) mouse strains made genetically obese by the Leptinob/ob mutation (Lepob). High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle) were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein–protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes. Alzheimer's disease and type 2 diabetes are two common aging-related diseases. Numerous studies have shown that the two diseases are associated. However, the mechanisms of such connection are not clear. Both diseases are complex diseases that are induced by multiple genetic factors and the environment. To understand the molecular network regulated by complex genetic factors causing type 2 diabetes, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant and diabetic mouse strains. We measured genotypes, clinical traits, and expression profiling in five tissues for each mouse. We then performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait, and developed a novel method for inferring key regulators for regulating plasma insulin. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.
Collapse
Affiliation(s)
- Zhidong Tu
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chunsheng Zhang
- Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Xia Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - I-Ming Wang
- Merck Research Laboratories, Rahway, New Jersey, United States of America
| | - Hongyue Dai
- Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Matthew D. Bruss
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Pek Y. Lum
- Department of Genetics, Rosetta Inpharmatics, Merck, Seattle, Washington, United States of America
| | - Yun-Ping Zhou
- Merck Research Laboratories, Rahway, New Jersey, United States of America
| | - Daniel M. Kemp
- Merck Research Laboratories, Rahway, New Jersey, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- Graduate School of Biological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- Graduate School of Biological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
112
|
LI QIANG, CHEN MIN, LIU HONGMIN, YANG LIQUN, YANG GUIYING. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment. Mol Med Rep 2012; 6:1450-4. [DOI: 10.3892/mmr.2012.1102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/14/2012] [Indexed: 11/06/2022] Open
|
113
|
Fang Y, Bonini NM. Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol 2012; 28:575-97. [PMID: 22831639 DOI: 10.1146/annurev-cellbio-101011-155836] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axon degeneration is the pivotal pathological event of acute traumatic neural injury as well as many chronic neurodegenerative diseases. It is an active cellular program and yet molecularly distinct from cell death. Much effort is devoted toward understanding the nature of axon degeneration and promoting axon regeneration. However, the fundamental mechanisms of self-destruction of damaged axons remain unclear, and there are still few treatments for traumatic brain injury (TBI) or spinal cord injury (SCI). Genetically approachable model organisms such as Drosophila melanogaster, the fruit fly, have proven exceptionally successful in modeling human neurodegenerative diseases. More recently, this success has been extended into the field of acute axon injury and regeneration. In this review, we discuss recent findings, focusing on how these models hold promise for accelerating mechanistic insight into axon injury and identifying potential therapeutic targets for TBI and SCI.
Collapse
Affiliation(s)
- Yanshan Fang
- Howard Hughes Medical Institute and Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | | |
Collapse
|
114
|
Lukiw WJ. Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer's disease (AD). Expert Opin Emerg Drugs 2012; 17:10.1517/14728214.2012.672559. [PMID: 22439907 PMCID: PMC3399957 DOI: 10.1517/14728214.2012.672559] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Alzheimer's disease (AD) is a common, progressive neurological disorder whose incidence is reaching epidemic proportions. The prevailing "amyloid cascade hypothesis," which maintains that the aberrant proteolysis of beta-amyloid precursor protein (βAPP) into neurotoxic amyloid beta (Aβ) peptides is central to the etiopathology of AD, continues to dominate pharmacological approaches to the clinical management of this insidious disorder. This review is a compilation and update on current pharmacological strategies designed to down-regulate Aβ42 peptide generation in an effort to ameliorate the tragedy of AD. Areas covered: This review utilized online data searches at various open online-access websites including the Alzheimer Association, Alzheimer Research Forum; individual drug company databases; the National Institutes of Health (NIH) Medline; Pharmaprojects database; Scopus; inter-University research communications; and unpublished research data. Expert opinion: Anti-acetylcholinesterase-, chelation-, N-methyl-D-aspartate (NMDA) receptor antagonist-, statin-, Aβ immunization-, β-secretase-, γ-secretase-based, and other strategies to modulate βAPP processing, have dominated pharmacological approaches directed against AD-type neurodegenerative pathology. Cumulative clinical results of these efforts remain extremely disappointing, and have had little overall impact on the clinical management of AD. While a number of novel approaches are in consideration and development, to date there is still no effective treatment or cure for this expanding healthcare concern.
Collapse
Affiliation(s)
- Walter J Lukiw
- Louisiana State University Health Sciences Center, LSU Neuroscience Center of Excellence, Ophthalmology and Human Genetics, , 2020 Gravier Street, Suite 904, New Orleans LA 70112-2272 , USA +1 504 599 0842 ; +1 504 568 5801 ;
| |
Collapse
|
115
|
Dehvari N, Mahmud T, Persson J, Bengtsson T, Graff C, Winblad B, Rönnbäck A, Behbahani H. Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor. Neurochem Int 2012; 60:533-42. [PMID: 22366649 DOI: 10.1016/j.neuint.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Aggresomes are cytoplasmic inclusions which are localized at the microtubule organizing center (MTOC) as a result of induced proteasome inhibition, stress or over-expression of certain proteins. Aggresomes are linked to the pathogenesis of many neurodegenerative diseases. Here we studied whether amyloid precursor protein (APP), a type-I transmembrane glycoprotein, is localized in aggresomes after exposure to stress condition. Using confocal microscopy we found that APP is located in aggresomes and co-localized with vimentin, γ-tubulin, 20S and ubiquitin at the MTOC in response to proteasome dysfunction. An interaction between vimentin and APP was found after proteasome inhibition suggesting that APP is an additional protein constituent of aggresomes. Suppression of the proteasome system in APP-HEK293 cells overexpressing APP or transfected with APP Swedish mutation caused an accumulation of stable, detergent-insoluble forms of APP containing poly-ubiquitinated proteins. In addition, brain homogenates from transgenic mice expressing human APP with the Arctic mutation demonstrated an interaction between APP and the aggresomal-marker vimentin. These data suggest that malfunctioning of the proteasome system caused by mutation or overexpression of pathological or non-pathological proteins may lead to the accumulation of stable aggresomes, perhaps contributing to the neurodegeneration.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Physiology, The Wenner-Gren Institute Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Lane RF, Shineman DW, Steele JW, Lee LBH, Fillit HM. Beyond amyloid: the future of therapeutics for Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:213-71. [PMID: 22840749 DOI: 10.1016/b978-0-12-394816-8.00007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the field is awaiting the results of several pivotal Phase III clinical Alzheimer's disease (AD) trials that target amyloid-β (Aβ). In light of the recent biomarker studies that indicate Aβ levels are at their most dynamic 5-10 years before the onset of clinical symptoms, it is becoming uncertain whether direct approaches to target Aβ will achieve desired clinical efficacy. AD is a complex neurodegenerative disease caused by dysregulation of numerous neurobiological networks and cellular functions, resulting in synaptic loss, neuronal loss, and ultimately impaired memory. While it is clear that Aβ plays a key role in the pathogenesis of AD, it may be a challenging and inefficient target for mid-to-late stage AD intervention. Throughout the course of AD, multiple pathways become perturbed, presenting a multitude of possible therapeutic avenues for design of AD intervention and prophylactic therapies. In this chapter, we sought to first provide an overview of Aβ-directed strategies that are currently in development, and the pivotal Aβ-targeted trials that are currently underway. Next, we delve into the biology and therapeutic designs associated with other key areas of research in the field including tau, protein trafficking and degradation pathways, ApoE, synaptic function, neurotrophic/neuroprotective strategies, and inflammation and energy utilization. For each area we have provided a comprehensive and balanced overview of the therapeutic strategies currently in preclinical and clinical development, which will shape the future therapeutic landscape of AD.
Collapse
Affiliation(s)
- Rachel F Lane
- Alzheimer's Drug Discovery Foundation, New York, NY, USA
| | | | | | | | | |
Collapse
|