101
|
Figueira R, Brown DR, Ferreira D, Eldridge MJG, Burchell L, Pan Z, Helaine S, Wigneshweraraj S. Adaptation to sustained nitrogen starvation by Escherichia coli requires the eukaryote-like serine/threonine kinase YeaG. Sci Rep 2015; 5:17524. [PMID: 26621053 PMCID: PMC4664914 DOI: 10.1038/srep17524] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
The Escherichia coli eukaryote-like serine/threonine kinase, encoded by yeaG, is expressed in response to diverse stresses, including nitrogen (N) starvation. A role for yeaG in bacterial stress response is unknown. Here we reveal for the first time that wild-type E. coli displays metabolic heterogeneity following sustained periods of N starvation, with the metabolically active population displaying compromised viability. In contrast, such heterogeneity in metabolic activity is not observed in an E. coli ∆yeaG mutant, which continues to exist as a single and metabolically active population and thus displays an overall compromised ability to survive sustained periods of N starvation. The mechanism by which yeaG acts, involves the transcriptional repression of two toxin/antitoxin modules, mqsR/mqsA and dinJ/yafQ. This, consequently, has a positive effect on the expression of rpoS, the master regulator of the general bacterial stress response. Overall, results indicate that yeaG is required to fully execute the rpoS-dependent gene expression program to allow E. coli to adapt to sustained N starvation and unravels a novel facet to the regulatory basis that underpins adaptive response to N stress.
Collapse
Affiliation(s)
- Rita Figueira
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Daniel R Brown
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Delfim Ferreira
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Matthew J G Eldridge
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Lynn Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Zhensheng Pan
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Sophie Helaine
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | | |
Collapse
|
102
|
Augimeri RV, Varley AJ, Strap JL. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front Microbiol 2015; 6:1282. [PMID: 26635751 PMCID: PMC4646962 DOI: 10.3389/fmicb.2015.01282] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.
Collapse
Affiliation(s)
| | | | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of TechnologyOshawa, ON, Canada
| |
Collapse
|
103
|
Fan B, Li L, Chao Y, Förstner K, Vogel J, Borriss R, Wu XQ. dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One 2015; 10:e0142002. [PMID: 26540162 PMCID: PMC4634765 DOI: 10.1371/journal.pone.0142002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizosphere-mimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China
- * E-mail: (BF); (XW)
| | - Lei Li
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Yanjie Chao
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Konrad Förstner
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, 14195 Berlin, Germany
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China
- * E-mail: (BF); (XW)
| |
Collapse
|
104
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
105
|
Schu DJ, Zhang A, Gottesman S, Storz G. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 2015; 34:2557-73. [PMID: 26373314 DOI: 10.15252/embj.201591569] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/11/2015] [Indexed: 11/09/2022] Open
Abstract
Many bacteria use small RNAs (sRNAs) and the RNA chaperone Hfq to regulate mRNA stability and translation. Hfq, a ring-shaped homohexamer, has multiple faces that can bind both sRNAs and their mRNA targets. We find that Hfq has at least two distinct ways in which it interacts with sRNAs; these different binding properties have strong effects on the stability of the sRNA in vivo and the sequence requirements of regulated mRNAs. Class I sRNAs depend on proximal and rim Hfq sites for stability and turn over rapidly. Class II sRNAs are more stable and depend on the proximal and distal Hfq sites for stabilization. Using deletions and chimeras, we find that while Class I sRNAs regulate mRNA targets with previously defined ARN repeats, Class II sRNAs regulate mRNAs carrying UA-rich rim-binding sites. We discuss how these different binding modes may correlate with different roles in the cell, with Class I sRNAs acting as emergency responders and Class II sRNAs acting as silencers.
Collapse
Affiliation(s)
- Daniel J Schu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Aixia Zhang
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
106
|
Serra DO, Klauck G, Hengge R. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ Microbiol 2015; 17:5073-88. [PMID: 26234179 PMCID: PMC5014196 DOI: 10.1111/1462-2920.12991] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
Abstract
Bacterial macrocolony biofilms grow into intricate three-dimensional structures that depend on self-produced extracellular polymers conferring protection, cohesion and elasticity to the biofilm. In Escherichia coli, synthesis of this matrix - consisting of amyloid curli fibres and cellulose - requires CsgD, a transcription factor regulated by the stationary phase sigma factor RpoS, and occurs in the nutrient-deprived cells of the upper layer of macrocolonies. Is this asymmetric matrix distribution functionally important or is it just a fortuitous by-product of an unavoidable nutrient gradient? In order to address this question, the RpoS-dependent csgD promoter was replaced by a vegetative promoter. This re-wiring of csgD led to CsgD and matrix production in both strata of macrocolonies, with the lower layer transforming into a rigid 'base plate' of growing yet curli-connected cells. As a result, the two strata broke apart followed by desiccation and exfoliation of the top layer. By contrast, matrix-free cells at the bottom of wild-type macrocolonies maintain colony contact with the humid agar support by flexibly filling the space that opens up under buckling areas of the macrocolony. Precisely regulated stratification in matrix-free and matrix-producing cell layers is thus essential for the physical integrity and architecture of E. coli macrocolony biofilms.
Collapse
Affiliation(s)
- Diego O Serra
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Gisela Klauck
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|
107
|
Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci U S A 2015; 112:E4772-81. [PMID: 26307765 DOI: 10.1073/pnas.1507825112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
Collapse
|
108
|
Function of the Histone-Like Protein H-NS in Motility of Escherichia coli: Multiple Regulatory Roles Rather than Direct Action at the Flagellar Motor. J Bacteriol 2015. [PMID: 26195595 DOI: 10.1128/jb.00309-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A number of investigations of Escherichia coli have suggested that the DNA-binding protein H-NS, in addition to its well-known functions in chromosome organization and gene regulation, interacts directly with the flagellar motor to modulate its function. Here, in a study initially aimed at characterizing the H-NS/motor interaction further, we identify problems and limitations in the previous work that substantially weaken the case for a direct H-NS/motor interaction. Null hns mutants are immotile, largely owing to the downregulation of the flagellar master regulators FlhD and FlhC. We, and others, previously reported that an hns mutant remains poorly motile even when FlhDC are expressed constitutively. In the present work, we use better-engineered strains to show that the motility defect in a Δhns, FlhDC-constitutive strain is milder than that reported previously and does not point to a direct action of H-NS at the motor. H-NS regulates numerous genes and might influence motility via a number of regulatory molecules besides FlhDC. To examine the sources of the motility defect that persists in an FlhDC-constitutive Δhns mutant, we measured transcript levels and overexpression effects of a number of genes in candidate regulatory pathways. The results indicate that H-NS influences motility via multiple regulatory linkages that include, minimally, the messenger molecule cyclic di-GMP, the biofilm regulatory protein CsgD, and the sigma factors σ(S) and σ(F). The results are in accordance with the more standard view of H-NS as a regulator of gene expression rather than a direct modulator of flagellar motor performance. IMPORTANCE Data from a number of previous studies have been taken to indicate that the nucleoid-organizing protein H-NS influences motility not only by its well-known DNA-based mechanisms but also by binding directly to the flagellar motor to alter function. In this study, H-NS is shown to influence motility through diverse regulatory pathways, but a direct interaction with the motor is not supported. Previous indications of a direct action at the motor appear to be related to the use of nonnull strains and, in some cases, a failure to effectively bypass the requirement for H-NS in the expression of the flagellar regulon. These findings call for a substantially revised interpretation of the literature concerning H-NS and flagellar motility and highlight the importance of H-NS in diverse regulatory processes involved in the motile-sessile transition.
Collapse
|
109
|
Ringgaard S, Hubbard T, Mandlik A, Davis BM, Waldor MK. RpoS and quorum sensing control expression and polar localization of Vibrio cholerae chemotaxis cluster III proteins in vitro and in vivo. Mol Microbiol 2015; 97:660-75. [PMID: 25989366 DOI: 10.1111/mmi.13053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 01/29/2023]
Abstract
The diarrheal pathogen Vibrio cholerae contains three gene clusters that encode chemotaxis-related proteins, but only cluster II appears to be required for chemotaxis. Here, we present the first characterization of V. cholerae's 'cluster III' chemotaxis system. We found that cluster III proteins assemble into foci at bacterial poles, like those formed by cluster II proteins, but the two systems assemble independently and do not colocalize. Cluster III proteins are expressed in vitro during stationary phase and in conjunction with growth arrest linked to carbon starvation. This expression, as well as expression in vivo in suckling rabbits, is dependent upon RpoS. V. cholerae's CAI-1 quorum sensing (QS) system is also required for cluster III expression in stationary phase and modulates its expression in vivo, but is not required for cluster III expression in response to carbon starvation. Surprisingly, even though the CAI-1 and AI-2 QS systems are thought to feed into the same signaling pathway, the AI-2 system inhibited cluster III gene expression, revealing that the outputs of the two QS systems are not always the same. The distinctions between genetic determinants of cluster III expression in vitro and in vivo highlight the distinctive nature of the in vivo environment.
Collapse
Affiliation(s)
- Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Troy Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brigid M Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
110
|
Peano C, Wolf J, Demol J, Rossi E, Petiti L, De Bellis G, Geiselmann J, Egli T, Lacour S, Landini P. Characterization of the Escherichia coli σ(S) core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis. Sci Rep 2015; 5:10469. [PMID: 26020590 PMCID: PMC4447067 DOI: 10.1038/srep10469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022] Open
Abstract
In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase “core enzyme” (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σS-associated RNA polymerase form (EσS) during transition from exponential to stationary phase. We identified 63 binding sites for EσS overlapping known or putative promoters, often located upstream of genes (encoding either ORFs or non-coding RNAs) showing at least some degree of dependence on the σS-encoding rpoS gene. EσS binding did not always correlate with an increase in transcription level, suggesting that, at some σS-dependent promoters, EσS might remain poised in a pre-initiation state upon binding. A large fraction of EσS-binding sites corresponded to promoters recognized by RNA polymerase associated with σ70 or other σ factors, suggesting a considerable overlap in promoter recognition between different forms of RNA polymerase. In particular, EσS appears to contribute significantly to transcription of genes encoding proteins involved in LPS biosynthesis and in cell surface composition. Finally, our results highlight a direct role of EσS in the regulation of non coding RNAs, such as OmrA/B, RyeA/B and SibC.
Collapse
Affiliation(s)
- Clelia Peano
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Wolf
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Julien Demol
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Geiselmann
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Thomas Egli
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Stephan Lacour
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
111
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
112
|
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 2015; 39:379-91. [PMID: 25934120 DOI: 10.1093/femsre/fuv014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).
Collapse
Affiliation(s)
- Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
113
|
Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci U S A 2015; 112:E766-75. [PMID: 25646441 DOI: 10.1073/pnas.1500203112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing (QS) is a process of cell-to-cell communication that enables bacteria to transition between individual and collective lifestyles. QS controls virulence and biofilm formation in Vibrio cholerae, the causative agent of cholera disease. Differential RNA sequencing (RNA-seq) of wild-type V. cholerae and a locked low-cell-density QS-mutant strain identified 7,240 transcriptional start sites with ∼ 47% initiated in the antisense direction. A total of 107 of the transcripts do not appear to encode proteins, suggesting they specify regulatory RNAs. We focused on one such transcript that we name VqmR. vqmR is located upstream of the vqmA gene encoding a DNA-binding transcription factor. Mutagenesis and microarray analyses demonstrate that VqmA activates vqmR transcription, that vqmR encodes a regulatory RNA, and VqmR directly controls at least eight mRNA targets including the rtx (repeats in toxin) toxin genes and the vpsT transcriptional regulator of biofilm production. We show that VqmR inhibits biofilm formation through repression of vpsT. Together, these data provide to our knowledege the first global annotation of the transcriptional start sites in V. cholerae and highlight the importance of posttranscriptional regulation for collective behaviors in this human pathogen.
Collapse
|
114
|
Nitzan M, Fechter P, Peer A, Altuvia Y, Bronesky D, Vandenesch F, Romby P, Biham O, Margalit H. A defense-offense multi-layered regulatory switch in a pathogenic bacterium. Nucleic Acids Res 2015; 43:1357-69. [PMID: 25628364 PMCID: PMC4330369 DOI: 10.1093/nar/gkv001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells adapt to environmental changes by efficiently adjusting gene expression programs. Staphylococcus aureus, an opportunistic pathogenic bacterium, switches between defensive and offensive modes in response to quorum sensing signal. We identified and studied the structural characteristics and dynamic properties of the core regulatory circuit governing this switch by deterministic and stochastic computational methods, as well as experimentally. This module, termed here Double Selector Switch (DSS), comprises the RNA regulator RNAIII and the transcription factor Rot, defining a double-layered switch involving both transcriptional and post-transcriptional regulations. It coordinates the inverse expression of two sets of target genes, immuno-modulators and exotoxins, expressed during the defensive and offensive modes, respectively. Our computational and experimental analyses show that the DSS guarantees fine-tuned coordination of the inverse expression of its two gene sets, tight regulation, and filtering of noisy signals. We also identified variants of this circuit in other bacterial systems, suggesting it is used as a molecular switch in various cellular contexts and offering its use as a template for an effective switching device in synthetic biology studies.
Collapse
Affiliation(s)
- Mor Nitzan
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg F-67084, France
| | - Asaf Peer
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Delphine Bronesky
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg F-67084, France
| | - François Vandenesch
- CIRI, International Center for Infectiology Research,Lyon, France Inserm, U1111, Lyon, France École Normale Supérieure de Lyon, Lyon, France Université Lyon 1, Lyon, France CNRS, UMR5308, Lyon, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg F-67084, France
| | - Ofer Biham
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
115
|
Arita-Morioka KI, Yamanaka K, Mizunoe Y, Ogura T, Sugimoto S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother 2015; 59:633-41. [PMID: 25403660 PMCID: PMC4291377 DOI: 10.1128/aac.04465-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 01/19/2023] Open
Abstract
Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 μM); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs.
Collapse
Affiliation(s)
- Ken-ichi Arita-Morioka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
116
|
Ortega AD, Quereda JJ, Pucciarelli MG, García-del Portillo F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol 2014; 4:162. [PMID: 25429360 PMCID: PMC4228915 DOI: 10.3389/fcimb.2014.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - Juan J Quereda
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain ; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC) Madrid, Spain
| | | |
Collapse
|