101
|
Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2020; 45:1-21. [PMID: 33437152 PMCID: PMC7790905 DOI: 10.1016/j.jgr.2019.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yingbo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| |
Collapse
|
102
|
Alavian F, Shams N. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages. CURRENT CLINICAL PHARMACOLOGY 2020; 15:20-29. [PMID: 31272358 PMCID: PMC7366001 DOI: 10.2174/1574884714666190704115345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Over the past few decades, nanotechnology has dramatically advanced; from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to increase drug absorption through the mouth or nose in treating the stroke. OBJECTIVE In this article, in addition to explaining pros and cons of oral and intra-nasal administration of nanoparticles in the brain ischemia treatment of animal models, the researchers introduce some articles in this field and briefly mentioned their work outcomes. METHODS A number of relevant published articles 183 were initially collected from three popular databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the main purpose of the present work were removed from the study process. The present data set finally included 125 published articles. RESULTS Direct delivery of the drug to the animal brain through the mouth and nose has more therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparticles complex can potentially improve the direct delivery of drugs to the CNS. CONCLUSION Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Address correspondence to this author at the Department of biology, Faculty of basic science, Farhangian University, Tehran, Iran;, Tel: +989133217068; E-mails: ;,
| | | |
Collapse
|
103
|
Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity's Involvement and Herbal Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2037484. [PMID: 31781260 PMCID: PMC6874989 DOI: 10.1155/2019/2037484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is considered a major cause of disability around the globe. This handicapping disease causes important cartilage and bone alteration that is associated with serious pains and loss of joint function. Despite its frequent association with obesity, the aetiology of OA is not fully understood. In this review, the different aspects of OA and its correlation with obesity were analysed. Through examining different mechanisms by which obesity may trigger and/or exacerbate OA, we point out some relevant signalling pathways that may evolve as candidates for pharmacological drug development. As such, we also suggest a review of different herbal medicines (HMs) and their main compounds, which specifically interfere with the identified pathways. We have shown that obesity's involvement in OA is not only limited to the mechanical weight exerted on the joints (mechanical hypothesis), but also induces an inflammatory state by different mechanisms, including increased leptin expression, compromised gut mucosa, and/or gut microbiota disruption. The main signalling pathways involved in OA inflammation, which are associated with obesity, are protein tyrosine phosphatase 1B (PTP1B) and TLR4 or DAP12. Moreover, we also underline the contamination of plant extracts with LPS as an important factor to consider when studying HM's effects on articular cells. By summarizing recent publications, this review aims at highlighting newly established aspects of obesity involvement in OA other than the mechanical one.
Collapse
|
104
|
Lee HJ, Jeong J, Alves AC, Han ST, In G, Kim EH, Jeong WS, Hong YS. Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons. J Ginseng Res 2019; 43:654-665. [PMID: 31700261 PMCID: PMC6823831 DOI: 10.1016/j.jgr.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Panax ginseng Meyer has widely been used as a traditional herbal medicine because of its diverse health benefits. Amounts of ginseng compounds, mainly ginsenosides, vary according to seasons, varieties, geographical regions, and age of ginseng plants. However, no study has comprehensively determined perturbations of various metabolites in ginseng plants including roots and leaves as they grow. METHODS Nuclear magnetic resonance (1H NMR)-based metabolomics was applied to better understand the metabolic physiology of ginseng plants and their association with climate through global profiling of ginseng metabolites in roots and leaves during whole growing periods. RESULTS The results revealed that all metabolites including carbohydrates, amino acids, organic acids, and ginsenosides in ginseng roots and leaves were clearly dependent on growing seasons from March to October. In particular, ginsenosides, arginine, sterols, fatty acids, and uracil diphosphate glucose-sugars were markedly synthesized from March until May, together with accelerated sucrose catabolism, possibly associated with climatic changes such as sun exposure time and rainfall. CONCLUSION This study highlights the intrinsic metabolic characteristics of ginseng plants and their associations with climate changes during their growth. It provides important information not only for better understanding of the metabolic phenotype of ginseng but also for quality improvement of ginseng through modification of cultivation.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Gwangju, Republic of Korea
| | | | - Sung-Tai Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gyo In
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Woo-Sik Jeong
- Department of Food & Life Science, College of Biomedical Science & Engineering, Inje University, Gyeongsangnam, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
105
|
Chen W, Balan P, Popovich DG. Analysis of Ginsenoside Content ( Panax ginseng) from Different Regions. Molecules 2019; 24:E3491. [PMID: 31561496 PMCID: PMC6803836 DOI: 10.3390/molecules24193491] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Recently Panax ginseng has been grown as a secondary crop under a pine tree canopy in New Zealand (NZ). The aim of the study is to compare the average content of ginsenosides from NZ-grown ginseng and its original native locations (China and Korea) grown ginseng. Ten batches of NZ-grown ginseng were extracted using 70% methanol and analyzed using LC-MS/MS. The average content of ginsenosides from China and Korea grown ginseng were obtained by collecting data from 30 and 17 publications featuring China and Korea grown ginseng, respectively. The average content of total ginsenosides in NZ-grown ginseng was 40.06 ± 3.21 mg/g (n = 14), which showed significantly (p < 0.05) higher concentration than that of China grown ginseng (16.48 ± 1.24 mg/g, n = 113) and Korea grown ginseng (21.05 ± 1.57 mg/g, n = 106). For the individual ginsenosides, except for the ginsenosides Rb2, Rc, and Rd, ginsenosides Rb1, Re, Rf, and Rg1 from NZ-grown ginseng were 2.22, 2.91, 1.65, and 1.27 times higher than that of ginseng grown in China, respectively. Ginsenosides Re and Rg1 in NZ-grown ginseng were also 2.14 and 1.63 times higher than ginseng grown in Korea. From the accumulation of ginsenosides, New Zealand volcanic pumice soil may be more suitable for ginseng growth than its place of origin.
Collapse
Affiliation(s)
- Wei Chen
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand.
| | - Prabhu Balan
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand.
| | - David G Popovich
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
106
|
Costache II, Miron A, Hăncianu M, Aursulesei V, Costache AD, Aprotosoaie AC. Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products. Cardiovasc Ther 2019; 2019:9402781. [PMID: 32089733 PMCID: PMC7012273 DOI: 10.1155/2019/9402781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The growing use of plant products among patients with cardiovascular pharmacotherapy raises the concerns about their potential interactions with conventional cardiovascular medicines. Plant products can influence pharmacokinetics or/and pharmacological activity of coadministered drugs and some of these interactions may lead to unexpected clinical outcomes. Numerous studies and case reports showed various pharmacokinetic interactions that are characterized by a high degree of unpredictability. This review highlights the pharmacokinetic clinically relevant interactions between major conventional cardiovascular medicines and plant products with an emphasis on their putative mechanisms, drawbacks of herbal products use, and the perspectives for further well-designed studies.
Collapse
Affiliation(s)
- Irina-Iuliana Costache
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- “Sf. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Miron
- Faculty of Pharmacy, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Monica Hăncianu
- Faculty of Pharmacy, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Viviana Aursulesei
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- “Sf. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy, Grigore T.Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
107
|
Li J, Wang RF, Zhou Y, Hu HJ, Yang YB, Yang L, Wang ZT. Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities. J Ginseng Res 2019; 43:377-384. [PMID: 31308809 PMCID: PMC6606971 DOI: 10.1016/j.jgr.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inflammation is widespread in the clinical pathology and closely associated to the progress of many diseases. Triterpenoid saponins as a key group of active ingredients in Panax notoginseng (Burk.) F.H. Chen were demonstrated to show antiinflammatory effects. However, the chemical structures of saponins in the leaves and stems of Panax notoginseng (PNLS) are still not fully clear. Herein, the isolation, purification and further evaluation of the antiinflammatory activity of dammarane-type triterpenoid saponins from PNLS were conducted. METHODS Silica gel and reversed-phase C8 column chromatography were used. Furthermore, preparative HPLC was used as a final purification technique to obtain minor saponins with high purities. MS, NMR experiments, and chemical methods were used in the structural identifications. The antiinflammatory activities of the isolated saponins were assessed by measuring the nitric oxide production in RAW 264.7 cells stimulated by lipopolysaccharides. Real-time reverse transcription polymerase chain reaction was used to measure the gene expressions of inflammation-related gene. RESULTS Eight new minor dammarane-type triterpene oligoglycosides, namely notoginsenosides LK1-LK8 (1-8) were obtained from PNLS, along with seven known ones. Among the isolated saponins, gypenoside IX significantly suppressed the nitric oxide production and inflammatory cytokines including tumor necrosis factor-α, interleukin 10, interferon-inducible protein 10 and interleukin-1β. CONCLUSION The eight saponins may enrich and expand the chemical library of saponins in Panax genus. Moreover, it is reported for the first time that gypenoside IX showed moderate antiinflammatory activity.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru-Feng Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Jun Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Bo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng-Tao Wang
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
108
|
Liang J, Chen L, Guo YH, Zhang M, Gao Y. Simultaneous Determination and Analysis of Major Ginsenosides in Wild American Ginseng Grown in Tennessee. Chem Biodivers 2019; 16:e1900203. [PMID: 31197924 DOI: 10.1002/cbdv.201900203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
Ginsenosides are the major constituent that is responsible for the health effects of American ginseng. The ginsenoside profile of wild American ginseng is ultimately the result of germplasm, climate, geography, vegetation species, water, and soil conditions. This is the first report to address the ginsenoside profile of wild American ginseng grown in Tennessee (TN), the third leading state for production of wild American ginseng. In the present study, ten major ginsenosides in wild American ginseng roots grown in TN, including Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3, were determined simultaneously. The chemotypic differences among TN wild ginseng, cultivated American ginseng, and Asian ginseng were assessed based on the widely used markers of ginsenoside profiling, including the top three ginsenosides, ratios of PPD/PPT, Rg1/Rb1, Rg1/Re, and Rb2/Rc. Our findings showed marked variation in ginsenoside profile for TN wild ginseng populations. Nevertheless, TN wild ginseng has significant higher ginsenoside content and more ginsenoside diversity than the cultivated ginseng. The total ginsenoside content in TN wild ginseng, as well as ginsenosides Rg1 and Re, increases with the age of the roots. Marked chemotypic differences between TN wild ginseng and cultivated American ginseng were observed based on the chemotypic markers. Surprisingly, we found that TN wild ginseng is close to Asian ginseng with regard to these characteristics in chemical composition. This study verified an accessible method to scientifically elucidate the difference in chemical constituents to distinguish wild from the cultivated American ginseng. This work is critical for the ecological and biological assessments of wild American ginseng so as to facilitate long-term sustainability of the wild population.
Collapse
Affiliation(s)
- Jian Liang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Research Center for Traditional Chinese Medicine Resourcing and Ethnic Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Li Chen
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, P. R. China
| | - Yu-Hang Guo
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Faculty of International Education, Guangxi University of Chinese Medicine, Nanning, 530001, P. R. China
| | - Mengliang Zhang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA.,Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
109
|
Wu T, Kwaku OR, Li HZ, Yang CR, Ge LJ, Xu M. Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy. Nat Prod Commun 2019; 14. [DOI: 10.1177/1934578x19858223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The term ginseng refers to the dried roots of several plants belonging to the genus Panax of the Araliaceae family. The 3 major commercial ginsengs are Panax notoginseng (Burk.) F.H. Chen (Notoginseng), P. ginseng C.A. Meyer (Ginseng), and P. quinquefolius L. (American ginseng), which have been used as herbal medicines. Over 18,000 papers on ginsengs have been published on the basis of their structural diversity and biological activities. Many reviews have summarized the phytochemistry, pharmacology, and clinical use of ginsengs, but the structure-activity relationship (SAR) of ginsenosides from ginsengs in autophagy is unavailable. Herein, we review the structural diversity of ginsenosides, especially the ones in notoginseng, and the SAR in autophagic activity is discussed in detail.
Collapse
Affiliation(s)
- Tao Wu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Osafo Raymond Kwaku
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, P.R. China
| | - Long-Jiao Ge
- Translational Lab of Primate Brain Research, Kunming Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| |
Collapse
|
110
|
Wei G, Yang F, Wei F, Zhang L, Gao Y, Qian J, Chen Z, Jia Z, Wang Y, Su H, Dong L, Xu J, Chen S. Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng. J Ginseng Res 2019; 44:757-769. [PMID: 33192118 PMCID: PMC7655499 DOI: 10.1016/j.jgr.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng. Conclusions These results provided the visual and quantitative profiles of and confirmed the pivotal transcripts of CYPs and UGTs regulating the saponin distribution in the root tissues of P. quinquefolius and P. notoginseng.
Collapse
Key Words
- AACT, Acetoacetyl-CoA acyltransferase
- DS, Dammarenediol-II synthase
- DXPR, 1-deoxy-o-xylulose 5-phosphate reductoisomerase
- DXPS, 1-deoxy-o-xylulose 5-phosphate synthase
- FDR, False discovery rate
- FPP, Farnesyl diphosphate
- FPS, Farnesyl pyrophosphate synthase
- GDPS, Gerenyl diphosphatesynthase
- GO, Gene Ontology
- HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphatesynthase
- HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase
- HPLC-UV, High-performance liquid chromatography-ultraviolet detection
- IPP, Isoprenyl diphosphate
- IPPI, Isopentenyl pyrophosphate isomerase
- ISPD, 2-C-methylerythritol 4-phosphatecytidyl transferase
- ISPE, 4-(cytidine-5′-diphospho)-2-C-methylerythritol kinase
- ISPH, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
- MALDI-MS, Matrix-assisted laser desorption/ionization–mass spectrometry
- MECPS, 2-C-methylerythritol-2,4-cyclophosphate synthase
- MEP, 2-C-methyl-D-erythritol-4-phosphate
- MVA, Mevalonate acid
- MVD, Mevalonate diphosphate decarboxylase
- MVK, Mevalonate kinase
- Metabolome
- NCBI Nr, NCBI Non-redundant protein
- OPLS-DA, Orthogonal partial least squares-discriminant analysis
- ORF, Open read frame
- P450, P450-monooxygenase
- PMK, Phosphomevalonate kinase
- Panax plants
- Root tissues
- SE, Squalene epoxidase
- SS, Squalene synthase
- Saponin distribution
- Transcriptome
- UGTs, UDP-glycosyltransferases
- UPLC-MS, Ultrahigh-performance liquid chromatography quadrupole time of flight-mass spectrometry
- WGCNA, Weighted gene coexpression network analysis
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Lianjuan Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Jun Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Zhengwei Jia
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - He Su
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
111
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
112
|
Szczuka D, Nowak A, Zakłos-Szyda M, Kochan E, Szymańska G, Motyl I, Blasiak J. American Ginseng ( Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019; 11:E1041. [PMID: 31075951 PMCID: PMC6567205 DOI: 10.3390/nu11051041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds of AG are ginsenosides, saponins of the glycosides group that are abundant in roots, leaves, stem, and fruits of the plant. Ginsenosides are suggested to be primarily responsible for health-beneficial effects of AG. AG acts on the nervous system; it was reported to improve the cognitive function in a mouse model of Alzheimer's disease, display anxiolytic activity, and neuroprotective effects against neuronal damage resulting from ischemic stroke in animals, demonstrate anxiolytic activity, and induce neuroprotective effects against neuronal damage in ischemic stroke in animals. Administration of AG leads to inhibition of hypertrophy in heart failure by regulation of reactive oxygen species (ROS) in mice as well as depletion of cardiac contractile function in rats. It also has an anti-diabetic and anti-obesity potential as it increases insulin sensitivity and inhibits formation of adipose tissue. AG displays anti-cancer effect by induction of apoptosis of cancer cells and reducing local inflammation. It exerts antimicrobial effects against several pathogenic strains of bacteria. Therefore, AG presents a high potential to induce beneficial health effects in humans and should be further explored to formulate precise nutritional recommendations, as well as to assess its value in prevention and therapy of some disorders, including cancer.
Collapse
Affiliation(s)
- Daria Szczuka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Ilona Motyl
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
113
|
Wang Y, Xu H, Fu W, Lu Z, Guo M, Wu X, Sun M, Liu Y, Yu X, Sui D. 20( S)-Protopanaxadiol Inhibits Angiotensin II-Induced Epithelial- Mesenchymal Transition by Downregulating SIRT1. Front Pharmacol 2019; 10:475. [PMID: 31133857 PMCID: PMC6514190 DOI: 10.3389/fphar.2019.00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
20(S)-Protopanaxadiol (PPD) is one of the major active metabolites in ginseng saponin. Our previous studies revealed a broad spectrum of antitumor effects of PPD. Angiotensin II (Ang II), the biologically active peptide of the renin-angiotensin system (RAS), plays a critical role in the metastasis of various cancers. However, its role in the anti-metastatic effects of PPD is not clearly understood. In this study, we investigated the inhibitory effect of PPD on Ang II-induced epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) cells, and the potential molecular mechanisms of suppression of NSCLC migration and metastasis by PPD. Treatment of A549 cells with Ang II increased metastases in an experimental model of cancer metastasis in vivo. PPD effectively prevented Ang II-induced EMT, as indicated by upregulation of E-cadherin and downregulation of vimentin. Additionally, Ang II upregulated the class III deacetylase sirtuin 1 (SIRT1) expression in EMT progression, while downregulation of SIRT1 was involved in suppression of Ang II-induced EMT by PPD. Moreover, the inhibitory effect of PPD was reversed by SIRT1 upregulation, and PPD demonstrated synergy with an SIRT1 inhibitor on Ang II-induced EMT. Taken together, our data reveal the mechanism of the anti-metastatic effects of PPD on Ang II-induced EMT and indicate that PPD can be used as an effective anti-tumor treatment.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Minyu Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xueji Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Mingyang Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yanzhe Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
114
|
Chen W, Balan P, Popovich DG. Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS. J Ginseng Res 2019; 44:552-562. [PMID: 32617035 PMCID: PMC7322743 DOI: 10.1016/j.jgr.2019.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.
Collapse
Affiliation(s)
- Wei Chen
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North, New Zealand
| | - Prabhu Balan
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North, New Zealand
| | - David G Popovich
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
115
|
Lv H, Zhang Y, Sun Y, Duan Y. Elemental characteristics of Sanqi (Panax notoginseng) in Yunnan province of China: Multielement determination by ICP-AES and ICP-MS and statistical analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
116
|
Kim HI, Kim JK, Kim JY, Han MJ, Kim DH. Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression. J Ginseng Res 2019; 43:635-644. [PMID: 31695569 PMCID: PMC6823749 DOI: 10.1016/j.jgr.2019.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-α, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.
Collapse
Affiliation(s)
- Hye In Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
117
|
Wang P, Wei W, Ye W, Li X, Zhao W, Yang C, Li C, Yan X, Zhou Z. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 2019; 5:5. [PMID: 30652026 PMCID: PMC6331602 DOI: 10.1038/s41421-018-0075-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Synthetic biology approach has been frequently applied to produce plant rare bioactive compounds in microbial cell factories by fermentation. However, to reach an ideal manufactural efficiency, it is necessary to optimize the microbial cell factories systemically by boosting sufficient carbon flux to the precursor synthesis and tuning the expression level and efficiency of key bioparts related to the synthetic pathway. We previously developed a yeast cell factory to produce ginsenoside Rh2 from glucose. However, the ginsenoside Rh2 yield was too low for commercialization due to the low supply of the ginsenoside aglycone protopanaxadiol (PPD) and poor performance of the key UDP-glycosyltransferase (UGT) (biopart UGTPg45) in the final step of the biosynthetic pathway. In the present study, we constructed a PPD-producing chassis via modular engineering of the mevalonic acid pathway and optimization of P450 expression levels. The new yeast chassis could produce 529.0 mg/L of PPD in shake flasks and 11.02 g/L in 10 L fed-batch fermentation. Based on this high PPD-producing chassis, we established a series of cell factories to produce ginsenoside Rh2, which we optimized by improving the C3–OH glycosylation efficiency. We increased the copy number of UGTPg45, and engineered its promoter to increase expression levels. In addition, we screened for more efficient and compatible UGT bioparts from other plant species and mutants originating from the direct evolution of UGTPg45. Combining all engineered strategies, we built a yeast cell factory with the greatest ginsenoside Rh2 production reported to date, 179.3 mg/L in shake flasks and 2.25 g/L in 10 L fed-batch fermentation. The results set up a successful example for improving yeast cell factories to produce plant rare natural products, especially the glycosylated ones.
Collapse
Affiliation(s)
- Pingping Wang
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Wei Wei
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Wei Ye
- 2University of Chinese Academy of Sciences, Beijing, 100049 China.,Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai, 200031 China
| | - Xiaodong Li
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenfang Zhao
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Chengshuai Yang
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaojing Li
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xing Yan
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Zhihua Zhou
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| |
Collapse
|
118
|
Kim JY, Adhikari PB, Ahn CH, Kim DH, Chang Kim Y, Han JY, Kondeti S, Choi YE. High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius. J Ginseng Res 2019; 43:38-48. [PMID: 30662292 PMCID: PMC6323240 DOI: 10.1016/j.jgr.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/10/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Interspecific ginseng hybrid, Panax ginseng × Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. METHODS Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on GA3 supplemented medium, were transferred to hormone free ½ Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with GA3 to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. RESULTS We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on GA3 supplemented medium, were transferred to hormone free ½ SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L GA3 for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The F1 hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides F11 in P. quinquefolius), and higher amount of other ginsenosides than its parents. CONCLUSION Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.
Collapse
Affiliation(s)
- Jong Youn Kim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Prakash Babu Adhikari
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang Ho Ahn
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong Hwi Kim
- Department of Herbal Crop Research, National Institute of Horticulture and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Young Chang Kim
- Department of Herbal Crop Research, National Institute of Horticulture and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Subramanyam Kondeti
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
119
|
Leong PK, Leung HY, Chan WM, Ko KM. Pharmacological Investigation of “Meridian Tropism” in Three “Shen” Chinese Herbs. Chin Med 2019. [DOI: 10.4236/cm.2019.104007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
120
|
Chen W, Balan P, Popovich DG. Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00006-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
121
|
Insight into the Hydrolytic Selectivity of β-Glucosidase to Enhance the Contents of Desired Active Phytochemicals in Medicinal Plants. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4360252. [PMID: 30687743 PMCID: PMC6327262 DOI: 10.1155/2018/4360252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
Abstract
Most glycosides in herbal medicines become pharmacologically active after hydrolysis or subsequent metabolism to respective aglycones. Hence, the hydrolytic efficiency of glycosidase is a crucial determinant of the pharmacological efficacy of herbal glycosides. In this study, we investigated the enzymatic conversion of the four herbal extracts and their glycosides using the glycoside hydrolase family 3 β-glucosidase from Lactobacillus antri (rBGLa). We show that β-glucosidase substrate specificity depends on the arrangements and linkage types of sugar residues in glycosides. The enzyme rBGLa showed higher hydrolytic selectivity for glucopyranoside than for glucuronide and rhamnopyranoside, and specificity for 1→6 rather than 1→2 linkages. In addition, in silico 3D structural models suggested that D243 and E426 of rBGLa act as catalytic nucleophile and acid/base residues, respectively. These experiments also suggested that substrate specificity is determined by interactions between the C6 residue of the sugar moiety of the substrate glycoside and the oxygen OD1 of D56 in rBGLa. Therefore, despite the broad substrate spectrum of β-glucosidase, differences in hydrolytic selectivity of β-glucosidases for glycoside structures could be exploited to enhance the hydrolysis of the desired medicinal glycosides in herbs using tailored β-glucosidases, allowing for improvement of specific potencies of herbal medicines.
Collapse
|
122
|
Rajabian A, Rameshrad M, Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opin Ther Pat 2018; 29:55-72. [PMID: 30513224 DOI: 10.1080/13543776.2019.1556258] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Ginseng, Panax ginseng, has been used for various diseases and proven its great efficacy in managing central nervous system diseases. AREAS COVERED This article covers the therapeutic potential of patents on ginseng and its active constituents to develop therapies for neurodegenerative and neurological disorders, since 2010. The literature review was provided using multiple search engines including Google Patent, Espacenet and US Patent in the field of neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, cognitive, and neurological disorders. EXPERT OPINION The gathered data represented outstanding merits of ginseng in treatment of neurodegenerative and neurological disorders. These effects have been mediated by neurogenesis, anti-apoptotic and antioxidant properties, inhibition of mitochondrial dysfunction, receptor-operated Ca2+ channels, amyloid beta aggregation, and microglial activation as well as neurotransmitters modulation. However, these compounds have limited clinical application of for the prevention or treatment of neurodegenerative and neurological disorders. This might be due to incomplete data on their clinical pharmacokinetic and toxicity properties, and limited economic investments. There is an increasing trend in use of herbal medicines instead of chemical drugs, so it is time to make more attention to the application of ginseng, the grandfather of medicinal plants, from basic sciences to patients' bed.
Collapse
Affiliation(s)
- Arezoo Rajabian
- a Pharmacological Research Center of Medicinal Plants, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Rameshrad
- c Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Hossein Hosseinzadeh
- c Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,d Pharmacodynamics and Toxicology Department , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
123
|
Kim JK, Kim JY, Jang SE, Choi MS, Jang HM, Yoo HH, Kim DH. Fermented Red Ginseng Alleviates Cyclophosphamide-Induced Immunosuppression and 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice by Regulating Macrophage Activation and T Cell Differentiation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1879-1897. [PMID: 30518233 DOI: 10.1142/s0192415x18500945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of products have been developed with red ginseng (RG, the steamed roots of Panax ginseng Meyer). To clarify the immunomodulating effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), enzyme-treated eRG (ERG) and probiotic-fermented eRG (FRG), we examined their immunopotentiating and immunosuppressive effects in mice with cyclophosphamide (CP)-induced immunosuppression (CI) or 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis (TC). Oral administration of RG in CI mice significantly increased blood IFN- γ levels. Treatment with RG also increased the tumoricidal effects of CI mouse splenic cytotoxic T (Tc) and NK cells against YAC-1 cells. Treatment with RGs, in particular FRG and wRG, significantly increased Th1 cell differentiation. Treatment with RG except wRG increased Treg cell differentiation. However, wRG alone increased IL-6 and IL-17 expression in the colon of CI mice. Furthermore, RG alleviated colitis in TC mice. FRG most potently suppressed TNBS-induced colon shortening, NF- κ B activation and TNF- α and IL-17 expression and increased IL-10 expression. RGs inhibited TNF- α expression and increased IL-10 expression in lipopolysaccharide-stimulated primary macrophages in vitro while the differentiation of splenic T cells into type 1 T (Th1) and regulatory T (Treg) cells was increased by FRG in vitro. In conclusion, FRG can alleviate immunosuppression and inflammation by inhibiting macrophage activation and regulating Th1 and Treg cell differentiation.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jae-Young Kim
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Se-Eun Jang
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.,† Institute of Pharmaceutical Science and Technology and College of Pharmacy Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Min-Sun Choi
- † Institute of Pharmaceutical Science and Technology and College of Pharmacy Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Hyo-Min Jang
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Hyun Yoo
- † Institute of Pharmaceutical Science and Technology and College of Pharmacy Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Dong-Hyun Kim
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
124
|
Kwon HJ, Lee H, Choi GE, Kwon SJ, Song AY, Kim SJ, Choi WS, Hwang SH, Kim SC, Kim HS. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism. Front Immunol 2018; 9:2785. [PMID: 30546365 PMCID: PMC6279892 DOI: 10.3389/fimmu.2018.02785] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ginsenosides are the principal active components of ginseng and are considered attractive candidates for combination cancer therapy because they can kill tumors and have favorable safety profiles. However, the overall benefit of ginsenosides remains unclear, particularly in cancer immunosurveillance, considering the controversial results showing repression or promotion of immune responses. Here we identify a potentiating role of ginsenoside F1 (G-F1) in cancer surveillance by natural killer (NK) cells. Among 15 different ginsenosides, G-F1 most potently enhanced NK cell cytotoxicity in response to diverse activating receptors and cancer cells. G-F1 also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma that rely on NK cell activity. G-F1-treated NK cells exhibited elevated cytotoxic potential such as upregulation of cytotoxic mediators and of activation signals upon stimulation. NK cell potentiation by G-F1 was antagonized by insulin-like growth factor (IGF)-1 blockade and recapitulated by IGF-1 treatment, suggesting the involvement of IGF-1. Thus, our results suggest that G-F1 enhances NK cell function and may have chemotherapeutic potential in NK cell-based immunotherapy. We anticipate our results to be a starting point for further comprehensive studies of ginsenosides in the immune cells mediating cancer surveillance and the development of putative therapeutics.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Heejae Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ah Young Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - So Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
125
|
Kim JE, Jang IS, Sung BH, Kim SC, Lee JY. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Sci Rep 2018; 8:15820. [PMID: 30361526 PMCID: PMC6202386 DOI: 10.1038/s41598-018-34210-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Ginseng (Panax ginseng) and its bioactive components, ginsenosides, are popular medicinal herbal products, exhibiting various pharmacological effects. Despite their advocated use for medication, the long cultivation periods of ginseng roots and their low ginsenoside content prevent mass production of this compound. Yeast Saccharomyces cerevisiae was engineered for production of protopanaxadiol (PPD), a type of aglycone characterizing ginsenoside. PPD-producing yeast cell factory was further engineered by obtaining a balance between enzyme expressions and altering cofactor availability. Different combinations of promoters (PGPD, PCCW12, and PADH2) were utilized to construct the PPD biosynthetic pathway. Rerouting the redox metabolism to improve NADPH availability in the engineered S. cerevisiae also increased PPD production. Combining these approaches resulted in more than an 11-fold increase in PPD titer over the initially constructed strain. The series of metabolic engineering strategies of this study provides a feasible approach for the microbial production of PPD and development of microbial platforms producing other industrially-relevant terpenoids.
Collapse
Affiliation(s)
- Jae-Eung Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - In-Seung Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| |
Collapse
|
126
|
Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018; 42:562-570. [PMID: 30337817 PMCID: PMC6190500 DOI: 10.1016/j.jgr.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. METHODS Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. RESULTS AND CONCLUSION Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with IC50 values ranging from 161.1 μM to 264.6 μM. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. LTD., Seoul, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae Su Jang
- Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
127
|
Oplopanax horridus: Phytochemistry and Pharmacological Diversity and Structure-Activity Relationship on Anticancer Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9186926. [PMID: 30302120 PMCID: PMC6158975 DOI: 10.1155/2018/9186926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Abstract
Oplopanax horridus, well-known as Devil's club, is probably the most important ethnobotanical to most indigenous people living in the Pacific Northwest of North America. Compared with the long history of traditional use and widespread distribution in North America, the study of O. horridus is relatively limited. In the past decade, some exciting advances have been presented on the phytochemistry and pharmacological diversity and structure-activity relationship on anticancer effects of O. horridus. To date, no systematic review has been drafted on the recent advances of O. horridus. In this review, the different phytochemicals in O. horridus are compiled, including purified compounds and volatile components. Animal and in vitro studies are also described and discussed. Especially, the potential structural-activity relationship of polyynes on anticancer effects is highlighted. This review aimed to provide comprehensive and useful information for researching O. horridus and finding potential agents in drug discovery.
Collapse
|
128
|
Jakaria M, Haque ME, Kim J, Cho DY, Kim IS, Choi DK. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study. Oncotarget 2018; 9:33601-33620. [PMID: 30323902 PMCID: PMC6173364 DOI: 10.18632/oncotarget.26035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment is a state that affects thinking, communication, understanding, and memory, and is very common in various neurological disorders. Among many factors, age-related cognitive decline is an important area in mental health research. Research to find therapeutic medications or supplements to treat cognitive deficits and maintain cognitive health has been ongoing. Ginseng and its active components may have played a role in treating chronic disorders. Numerous preclinical studies have confirmed that ginseng and its active components such as ginsenosides, gintonin, and compound K are pharmacologically efficacious in different models of and are linked to cognitive impairment. Among their several roles, they act as an anti-neuroinflammatory and help fight against oxidative stress and modulate the cholinergic signal. These roles may be involved in enhancing cognition and attenuating impairment. There have been some clinical studies on the activity of ginseng in cognitive impairment, but many ginseng species and active compounds remain to be investigated. In addition, new formulations of active ginseng components such as nanoparticles and liposomes could be used for preclinical and clinical models of cognitive impairment. Here, we discuss the therapeutic potential of active ginseng components in cognitive impairment and their chemistry and pharmacokinetics and consider prospects for their delivery and clinical study with respect to cognitive impairment.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Md. Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - In-Su Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
129
|
Rahman MA, Hwang H, Nah SY, Rhim H. Gintonin stimulates autophagic flux in primary cortical astrocytes. J Ginseng Res 2018; 44:67-78. [PMID: 32148391 PMCID: PMC7033340 DOI: 10.1016/j.jgr.2018.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/18/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein–coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
130
|
Wei G, Wei F, Yuan C, Chen Z, Wang Y, Xu J, Zhang Y, Dong L, Chen S. Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng. Molecules 2018; 23:molecules23071773. [PMID: 30029488 PMCID: PMC6099965 DOI: 10.3390/molecules23071773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023] Open
Abstract
Panax notoginseng is famous for its important therapeutic effects and commonly used worldwide. The active ingredients saponins have distinct contents in different tissues of P. notoginseng, and they may be related to the expression of key genes in the synthesis pathway. In our study, high-performance liquid chromatography results indicated that the contents of protopanaxadiol-(Rb1, Rc, Rb2, and Rd) and protopanaxatriol-type (R1, Rg1, and Re) saponins in below ground tissues were higher than those in above ground tissues. Clustering dendrogram and PCA analysis suggested that the below and above ground tissues were clustered into two separate groups. A total of 482 and 882 unigenes were shared in the below and above ground tissues, respectively. A total of 75 distinct expressions of CYPs transcripts (RPKM ≥ 10) were detected. Of these transcripts, 38 and 37 were highly expressed in the below ground and above ground tissues, respectively. RT-qPCR analysis showed that CYP716A47 gene was abundantly expressed in the above ground tissues, especially in the flower, whose expression was 31.5-fold higher than that in the root. CYP716A53v2 gene was predominantly expressed in the below ground tissues, especially in the rhizome, whose expression was 20.1-fold higher than that in the flower. Pearson's analysis revealed that the CYP716A47 expression was significantly correlated with the contents of ginsenoside Rc and Rb2. The CYP716A53v2 expression was associated with the saponin contents of protopanaxadiol-type (Rb1 and Rd) and protopanaxatriol-type (R1, Rg1, and Re). Results indicated that the expression patterns of CYP716A47 and CYP716A53v2 were correlated with the distribution of protopanaxadiol-type and protopanaxatriol-type saponins in P. notoginseng. This study identified the pivotal genes regulating saponin distribution and provided valuable information for further research on the mechanisms of saponin synthesis, transportation, and accumulation.
Collapse
Affiliation(s)
- Guangfei Wei
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology Co., Ltd., Wenshan 663000, China.
| | - Can Yuan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan 663000, China.
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan 663000, China.
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
131
|
Liu XY, Li CJ, Chen FY, Ma J, Wang S, Yuan YH, Li L, Zhang DM. Nototronesides A–C, Three Triterpene Saponins with a 6/6/9 Fused Tricyclic Tetranordammarane Carbon Skeleton from the Leaves of Panax notoginseng. Org Lett 2018; 20:4549-4553. [DOI: 10.1021/acs.orglett.8b01848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin-Yi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Fang-You Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Shuo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10005, People’s Republic of China
| |
Collapse
|
132
|
Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018; 42:255-263. [PMID: 29983606 PMCID: PMC6026358 DOI: 10.1016/j.jgr.2017.04.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/26/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022] Open
Abstract
Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
133
|
Zhang T, Zhong S, Hou L, Wang Y, Xing X, Guan T, Zhang J, Li T. Computational and experimental characterization of estrogenic activities of 20( S, R)-protopanaxadiol and 20( S, R)-protopanaxatriol. J Ginseng Res 2018; 44:690-696. [PMID: 32913398 PMCID: PMC7471209 DOI: 10.1016/j.jgr.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/24/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
Background As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shuning Zhong
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ligang Hou
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - XiaoJia Xing
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
134
|
Yao H, Wan JY, Zeng J, Huang WH, Sava-Segal C, Li L, Niu X, Wang Q, Wang CZ, Yuan CS. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer. Oncol Lett 2018; 15:8339-8348. [PMID: 29805567 PMCID: PMC5950138 DOI: 10.3892/ol.2018.8414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 01/26/2023] Open
Abstract
Ginsenoside Rb1, a major component of different ginseng species, can be bioconverted into compound K by gut microbiota, and the latter possess much stronger cancer chemopreventive potential. However, while the initiation and progression of colorectal cancer is closely associated with gut inflammation, to date, the effects of compound K on inflammation-linked cancer chemoprevention have not been reported. In the present study, liquid chromatography quadrupole time-of-flight mass spectrometry analysis was applied to evaluate the biotransformation of Rb1 in American ginseng by human enteric microflora. The in vitro inhibitory effects of Rb1 and compound K were compared using the HCT-116 and HT-19 human colorectal cancer cell lines by a MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Using ELISA, the anti-inflammatory effects of Rb1 and compound K were compared for their inhibition of interleukin-8 secretion in HT-29 cells, induced by lipopolysaccharide. The results revealed that compound K is the major intestinal microbiome metabolite of Rb1. When compared with Rb1, compound K had significantly stronger anti-proliferative effects in HCT-116 and HT-29 cell lines (P<0.01). Compound K significantly arrested HCT-116 and HT-29 cells in the G1 phase, and induced cell apoptosis (P<0.01). By contrast, Rb1 did not markedly influence the cell cycle or apoptosis. Furthermore, compound K exerted significant anti-inflammatory effects even at low concentrations (P<0.05), while Rb1 did not have any distinct effects. The data obtained from the present study demonstrated that compound K, an intestinal microbiome metabolite of Rb1, may have a potential clinical value in the prevention of inflammatory-associated colorectal cancer.
Collapse
Affiliation(s)
- Haiqiang Yao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jinxiang Zeng
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Hua Huang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Clara Sava-Segal
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Lingru Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xin Niu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Qi Wang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
135
|
Yang J, Dong LL, Wei GF, Hu HY, Zhu GW, Zhang J, Chen SL. Identification and quality analysis of Panax notoginseng and Panax vietnamensis var. fuscidicus through integrated DNA barcoding and HPLC. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
136
|
Shalaby ASG, Ragab TI, Mehany ABM, Helal MM, Helmy WA. Antitumor and prebiotic activities of novel sulfated acidic polysaccharide from ginseng. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
137
|
Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, Lysiuk R. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. Basic Clin Pharmacol Toxicol 2018; 122:539-558. [DOI: 10.1111/bcpt.12972] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine; Mo i Rana Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Natália Martins
- Mountain Research Centre (CIMO), ESA; Polytechnic Institute of Bragança, Campus de Santa Apolónia; Bragança Portugal
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences; University of Verona; Verona Italy
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Center of Health Outcomes Research and Therapeutic Safety; School of Pharmaceutical Sciences; University of Phayao; Phayao Thailand
- Asian Centre for Evidence Synthesis in Population; Implementation and Clinical Outcomes; Health and Well-Being Cluster; Global Asia in the 21st Century Platform; Monash University Malaysia; Bandar Sunway Malaysia
| | - Kateryna Smetanina
- Department of Management and Economy of Pharmacy; Postgraduate Faculty; Drug Technology and Pharmacoeconomics; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| |
Collapse
|
138
|
Lu C, Lv J, Dong L, Jiang N, Wang Y, Fan B, Wang F, Liu X. The protective effect of 20(S)-protopanaxadiol (PPD) against chronic sleep deprivation (CSD)-induced memory impairments in mice. Brain Res Bull 2018; 137:249-256. [DOI: 10.1016/j.brainresbull.2017.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/06/2017] [Accepted: 12/24/2017] [Indexed: 12/31/2022]
|
139
|
Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a double-blind, randomized, cross-over clinical trial. Eur J Nutr 2018; 58:1237-1245. [PMID: 29478187 DOI: 10.1007/s00394-018-1642-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Despite the lack of evidence, a growing number of people are using herbal medicine to attenuate the burden of diabetes. There is an urgent need to investigate the clinical potential of herbs. Preliminary observations suggest that American ginseng (Panax quinquefolius [AG]) may reduce postprandial glycemia. Thus, we aimed to evaluate the efficacy and safety of AG as an add-on therapy in individuals with type 2 diabetes (T2DM) controlled by conventional treatment. METHODS 24 individuals living with T2DM completed the study (F:M = 11:13; age = 64 ± 7 year; BMI = 27.8 ± 4.6 kg/m2; HbA1c = 7.1 ± 1.2%). Utilizing a double-blind, cross-over design, the participants were randomized to receive either 1 g/meal (3 g/day) of AG extract or placebo for 8 weeks while maintaining their original treatment. Following a ≥ 4-week washout period, the participants were crossed over to the opposite 8-week treatment arm. The primary objective was HbA1c, and secondary endpoints included fasting blood glucose and insulin, blood pressure, plasma lipids, serum nitrates/nitrites (NOx), and plasominogen-activating factor-1 (PAI-1). Safety parameters included liver and kidney function. RESULTS Compared to placebo, AG significantly reduced HbA1c (- 0.29%; p = 0.041) and fasting blood glucose (- 0.71 mmol/L; p = 0.008). Furthermore, AG lowered systolic blood pressure (- 5.6 ± 2.7 mmHg; p < 0.001), increased NOx (+ 1.85 ± 2.13 µmol/L; p < 0.03), and produced a mean percent end-difference of - 12.3 ± 3.9% in LDL-C and - 13.9 ± 5.8% in LDL-C/HDL. The safety profiles were unaffected. CONCLUSIONS AG extract added to conventional treatment provided an effective and safe adjunct in the management of T2DM. Larger studies using physiologically standardized ginseng preparations are warranted to substantiate the present findings and to demonstrate therapeutic effectiveness of AG. CLINICALTRIALS. GOV IDENTIFIER NCT02923453.
Collapse
|
140
|
Shen R, Laval S, Cao X, Yu B. Synthesis of Δ20-Ginsenosides Rh4, (20E)-Rh3, Rg6, and Rk1: A General Approach To Access Dehydrated Ginsenosides. J Org Chem 2018; 83:2601-2610. [DOI: 10.1021/acs.joc.7b02987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renzeng Shen
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Stephane Laval
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic
and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
141
|
Majeed F, Malik FZ, Ahmed Z, Afreen A, Afzal MN, Khalid N. Ginseng phytochemicals as therapeutics in oncology: Recent perspectives. Biomed Pharmacother 2018; 100:52-63. [PMID: 29421582 DOI: 10.1016/j.biopha.2018.01.155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
During the last few decades, cancer has mushroomed as a major health issue; and almost all drugs used for its therapy are very toxic with lethal side effects. Complementary and alternative medicines gain popularity among health professionals in recent era owing to its preventive mechanism against side effect chemotherapeutic drugs. Efforts are focused by scientists to isolate compounds from medicinal plant that have chemotherapeutic attributes; and ability to neutralize the side effects of chemotherapy. Ginseng is an oriental medicinal recipe from Araliceae family and Panax species. The chemotherapeutic effect of ginsenoside is resultant of its appetites, anti-proliferative, anti-angiogenic, anti-inflammatory and anti-oxidant properties. The anticancer effect of ginseng is proven in various types of cancer, including; breast, lung, liver, colon and skin cancer. It increases the mitochondrial accumulation of apoptosis protein and downregulate the expression of anti-apoptotic protein. It also aids in the reduction of alopecia, fatigue and nausea, the known side effects of chemotherapeutic drugs. The aim of the present review is to provide the brief review of the recent researches related to mechanism of action of ginseng in different types of cancer as complementary and alternative medicine on different body organs.
Collapse
Affiliation(s)
- Fatima Majeed
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Fozia Zahur Malik
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Zaheer Ahmed
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Asma Afreen
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Naveed Afzal
- School of Health Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan; Center of Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria, 3217, Australia.
| |
Collapse
|
142
|
Oh J, Kim JS. Compound K derived from ginseng: neuroprotection and cognitive improvement. Food Funct 2018; 7:4506-4515. [PMID: 27801453 DOI: 10.1039/c6fo01077f] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evidence for the neuroprotective and cognitive effects of compound K, a metabolite biotransformed from ginsenosides Rb1, Rb2, and Rc, is reviewed here. Compound K is more bioavailable than other ginsenosides and therefore has greater potential to exert bioactive functions in the body. Although the capability of compound K to cross the blood-brain barrier is not clear, it has been reported to have neuroprotective and cognition enhancing effects and decrease inflammatory biomarkers in animal models of Alzheimer's disease and cerebral ischemia. The plethora of potential health benefits of compound K warrants further research to evaluate its biochemical mechanisms and its ability to protect healthy populations from neurodegenerative diseases.
Collapse
Affiliation(s)
- Jisun Oh
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
143
|
Eom SJ, Kim KT, Paik HD. Microbial bioconversion of ginsenosides in Panax ginseng and their improved bioactivities. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1424183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Su Jin Eom
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Kee-Tae Kim
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
144
|
Yuan W, Guo J, Wang X, Su G, Zhao Y. Non-protein amino acid derivatives of 25-methoxylprotopanaxadiol/25-hydroxyprotopanaxadioland their anti-tumour activity evaluation. Steroids 2018; 129:1-8. [PMID: 29129719 DOI: 10.1016/j.steroids.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
As active components of ginseng, 25-methoxylprotopanaxadiol and 25-hydroxyprotopanaxadiol exhibited an ability to inhibit the growth and proliferation or to induce the differentiation and apoptosis of tumour cells. We modified 25-OCH3-PPD and 25-OH-PPD with non-protein amino acids and a series of derivatives was obtained by chromatographic separation, purification and spectroscopy analysis. Thirteen derivatives of 25-OCH3-PPD (compounds 1-13) and 12 derivatives of 25-OH-PPD (compounds 14-25) were synthesised. The anti-cancer activities of the derivatives were evaluated on HCT-116 and BGC-823 cell lines by MTT assay. Compound 9 and compound 14 exhibited considerable anti-tumour activity for HCT-116 and BGC-823 cell lines, exhibited higher cytotoxic activity than 25-OCH3-PPD and 25-OH-PPD. Therefore, these ginsenoside derivatives could be used as potential lead for the development of a new type of anticancer agent.
Collapse
Affiliation(s)
- Weihui Yuan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Junhui Guo
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
145
|
20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice. Chem Biol Interact 2018; 279:64-72. [DOI: 10.1016/j.cbi.2017.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
|
146
|
Liu X, Ahlgren S, Korthout HAAJ, Salomé-Abarca LF, Bayona LM, Verpoorte R, Choi YH. Broad range chemical profiling of natural deep eutectic solvent extracts using a high performance thin layer chromatography-based method. J Chromatogr A 2017; 1532:198-207. [PMID: 29229334 DOI: 10.1016/j.chroma.2017.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Natural deep eutectic solvents (NADES) made mainly with abundant primary metabolites are being increasingly applied in green chemistry. The advantages of NADES as green solvents have led to their use in novel green products for the food, cosmetics and pharma markets. However, one of the main difficulties encountered in the development of novel products and their quality control arises from their low vapour pressure and high viscosity. These features create the need for the development of new analytical methods suited to this type of sample. In this study, such a method was developed and applied to analyse the efficiency of a diverse set of NADES for the extraction of compounds of interest from two model plants, Ginkgo biloba and Panax ginseng. The method uses high-performance thin-layer chromatography (HPTLC) coupled with multivariate data analysis (MVDA). It was successfully applied to the comparative quali- and quantitative analysis of very chemically diverse metabolites (e.g., phenolics, terpenoids, phenolic acids and saponins) that are present in the extracts obtained from the plants using six different NADES. The composition of each NADES was a combination of two or three compounds mixed in defined molar ratios; malic acid-choline chloride (1:1), malic acid-glucose (1:1), choline chloride-glucose (5:2), malic acid-proline (1:1), glucose-fructose-sucrose (1:1:1) and glycerol-proline-sucrose (9:4:1). Of these mixtures, malic acid-choline chloride (1:1) and glycerol-proline-sucrose (1:1:1) for G. biloba leaves, and malic acid-choline chloride (1:1) and malic acid-glucose (1:1) for P. ginseng leaves and stems showed the highest yields of the target compounds. Interestingly, none of the NADES extracted ginkgolic acids as much as the conventional organic solvents. As these compounds are considered to be toxic, the fact that these NADES produce virtually ginkgolic acid-free extracts is extremely useful. The effect of adding different volumes of water to the most efficient NADES was also evaluated and the results revealed that there is a great influence exerted by the water content, with maximum yields of ginkgolides, phenolics and ginsenosides being obtained with approximately 20% water (w/w).
Collapse
Affiliation(s)
- Xiaojie Liu
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Samantha Ahlgren
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; Division of Pharmacognosy, Faculty of Pharmacy, Uppsala University, 751 05 Uppsala, Sweden
| | | | - Luis F Salomé-Abarca
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; College of Pharmacy, Kyung Hee University, 02447 Seoul, Republic of Korea.
| |
Collapse
|
147
|
Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS. Molecules 2017; 22:molecules22122147. [PMID: 29207539 PMCID: PMC6149965 DOI: 10.3390/molecules22122147] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, leave, stems, and berries. To extract the ginsenosides, 70% (v/v) methanol was used. The optimal ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) method was used to profile various ginsenosides from the different parts of P. ginseng. The datasets were then subjected to multivariate analysis including principal component analysis (PCA) and hierarchical clustering analysis (HCA). A UPLC-QTOF/MS method with an in-house library was constructed to profile 58 ginsenosides. With this method, a total of 39 ginsenosides were successfully identified and quantified in the ginseng roots, leave, stem, and berries. PCA and HCA characterized the different ginsenosides compositions from the different parts. The quantitative ginsenoside contents were also characterized from each plant part. The results of this study indicate that the UPLC-QTOF/MS method can be an effective tool to characterize various ginsenosides from the different parts of P. ginseng.
Collapse
|
148
|
Yang Y, Ren C, Zhang Y, Wu X. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging. Aging Dis 2017; 8:708-720. [PMID: 29344412 PMCID: PMC5758347 DOI: 10.14336/ad.2017.0707] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.
Collapse
Affiliation(s)
- Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Zhang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoDan Wu
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
149
|
Choi JG, Jin YH, Lee H, Oh TW, Yim NH, Cho WK, Ma JY. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity. Front Immunol 2017; 8:1542. [PMID: 29181006 PMCID: PMC5693858 DOI: 10.3389/fimmu.2017.01542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR), which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP) and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2) expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN)-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3) in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10%) compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK) cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular mechanisms underlying the protective effects of PNR and its components against influenza virus A infection.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Young-Hee Jin
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Heeeun Lee
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Tae Woo Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
150
|
Xiong Y, Chen L, Hu Y, Cui X. Uncovering Active Constituents Responsible for Different Activities of Raw and Steamed Panax notoginseng Roots. Front Pharmacol 2017; 8:745. [PMID: 29093679 PMCID: PMC5651511 DOI: 10.3389/fphar.2017.00745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
Although Panax notoginseng (PN) roots in raw and steamed forms were historically supposed to be different in the efficacies, the raw materials and steamed ones were often undifferentiated in the use and market circulation, which might bring unstable curative effects or even adverse reactions. To uncover chemical constituents responsible to different activities of raw and steamed PN, chemometrics analyses including partial least squares regression (PLSR) and multi-linear regression analysis (MLRA) were used to establish the relationships between the chromatographic fingerprints and activities of PN samples. Chemical fingerprints of PN were determined by HPLC. Anticoagulant and antioxidant activities were evaluated by the thromboplastin inhibiting test and hydroxyl radical scavenging assay, respectively. Results showed that there was a significant difference in the chemical composition between raw and steamed PN, which could be discriminated by principle component analysis according to different steaming temperatures. Compared with the steamed PN, raw PN exhibited stronger anticoagulation and weaker antioxidation. By chemometrics analyses, notoginsenoside R1, ginsenosides Rg1, Re, Rb1, and Rd were found to be the major active constituents of raw PN, whereas ginsenosides Rh1, Rk3, Rh4, and 20(R)-Rg3 had the key role in the activities of steamed PN, which could be used as new markers for the quality control (QC) of steamed PN.
Collapse
Affiliation(s)
- Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Yunnan Key Laboratory of Panax notoginseng, Kunming, China.,Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, China
| | - Lijuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Yunnan Key Laboratory of Panax notoginseng, Kunming, China.,Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, China
| | - Yupiao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Yunnan Key Laboratory of Panax notoginseng, Kunming, China.,Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Yunnan Key Laboratory of Panax notoginseng, Kunming, China.,Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|