101
|
Qi Y, Cheng X, Gong G, Yan T, Du Y, Wu B, Bi K, Jia Y. Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway. Food Funct 2021; 11:2427-2438. [PMID: 32129354 DOI: 10.1039/c9fo02927c] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens elderly health. Schisandrin (SCH) and nootkatone (NKT) are two core components derived from Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP), a traditional Chinese medicine formulation. Previous studies demonstrated that the combination of NKT and SCH exerted a neuroprotective effect in AD mouse models. The present study was undertaken to investigate whether there was a synergistic effect between NKT and SCH and the possible mechanism in Aβ1-42 induced PC12 cells. SCH (50 μM) and NKT (10 μM) had the most notable inhibitory effect on the level of Aβ secreted by cells. Treatment with NKT + SCH activated the PI3K/AKT/Gsk-3β/mTOR pathway. Inflammation related proteins such as NF-κB, IKK, IL-1β, IL-6 and TNF-α were decreased. The levels of cleaved-Caspase3 and LC3-II were reduced, indicating that apoptosis and autophagy were inhibited. These results revealed that NKT + SCH exerted a neuroprotective effect via the PI3K/AKT pathway, inhibiting inflammation, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shengyang 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
102
|
Ren X, Chen JF. Caffeine and Parkinson's Disease: Multiple Benefits and Emerging Mechanisms. Front Neurosci 2020; 14:602697. [PMID: 33390888 PMCID: PMC7773776 DOI: 10.3389/fnins.2020.602697] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by dopaminergic neurodegeneration, motor impairment and non-motor symptoms. Epidemiological and experimental investigations into potential risk factors have firmly established that dietary factor caffeine, the most-widely consumed psychoactive substance, may exerts not only neuroprotective but a motor and non-motor (cognitive) benefits in PD. These multi-benefits of caffeine in PD are supported by convergence of epidemiological and animal evidence. At least six large prospective epidemiological studies have firmly established a relationship between increased caffeine consumption and decreased risk of developing PD. In addition, animal studies have also demonstrated that caffeine confers neuroprotection against dopaminergic neurodegeneration using PD models of mitochondrial toxins (MPTP, 6-OHDA, and rotenone) and expression of α-synuclein (α-Syn). While caffeine has complex pharmacological profiles, studies with genetic knockout mice have clearly revealed that caffeine’s action is largely mediated by the brain adenosine A2A receptor (A2AR) and confer neuroprotection by modulating neuroinflammation and excitotoxicity and mitochondrial function. Interestingly, recent studies have highlighted emerging new mechanisms including caffeine modulation of α-Syn degradation with enhanced autophagy and caffeine modulation of gut microbiota and gut-brain axis in PD models. Importantly, since the first clinical trial in 2003, United States FDA has finally approved clinical use of the A2AR antagonist istradefylline for the treatment of PD with OFF-time in Sept. 2019. To realize therapeutic potential of caffeine in PD, genetic study of caffeine and risk genes in human population may identify useful pharmacogenetic markers for predicting individual responses to caffeine in PD clinical trials and thus offer a unique opportunity for “personalized medicine” in PD.
Collapse
Affiliation(s)
- Xiangpeng Ren
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China.,Department of Biochemistry, Medical College, Jiaxing University, Jiaxing, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|
103
|
Abstract
Bien que la sénescence cellulaire joue un rôle essentiel dans le développent embryonnaire, la cicatrisation ou l’hémostase, il est maintenant également démontré qu’elle est à l’origine de nombreux processus dégénératifs qui caractérisent le vieillissement. Cette sénescence est induite en réponse à divers stress ou stimulus inappropriés, conduisant à un arrêt de la prolifération et des adaptations géniques, épigénétiques, métaboliques, structurelles et fonctionnelles. Ces cellules sénescentes, lorsqu’elles ne sont pas éliminées, favorisent la propagation de leur phénotype de proche en proche dans le tissu environnant, par l’établissement d’un profil sécrétoire spécifique. Éliminer ou bloquer l’action de ces cellules par des agents dits sénothérapeutiques pourrait prévenir la dégénérescence tissulaire et améliorer la longévité en bonne santé. Nous nous proposons dans cette revue de présenter les dernières avancées et applications développées en sénothérapie et discuterons les résultats très prometteurs des premiers essais cliniques chez l’homme.
Collapse
|
104
|
Georgakopoulou EA, Valsamidi C, Veroutis D, Havaki S. The bright and dark side of skin senescence. Could skin rejuvenation anti-senescence interventions become a "bright" new strategy for the prevention of age-related skin pathologies? Mech Ageing Dev 2020; 193:111409. [PMID: 33249190 DOI: 10.1016/j.mad.2020.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.
Collapse
Affiliation(s)
- Eleni A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Christina Valsamidi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Dimitrios Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece.
| |
Collapse
|
105
|
Xu H, Hu L, Liu T, Chen F, Li J, Xu J, Jiang L, Xiang Z, Wang X, Sheng J. Caffeine Targets G6PDH to Disrupt Redox Homeostasis and Inhibit Renal Cell Carcinoma Proliferation. Front Cell Dev Biol 2020; 8:556162. [PMID: 33123534 PMCID: PMC7573228 DOI: 10.3389/fcell.2020.556162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) and plays a crucial role in the maintenance of redox homeostasis by producing nicotinamide adenine dinucleotide phosphate (NADPH), the major intracellular reductant. G6PDH has been shown to be a biomarker and potential therapeutic target for renal cell carcinoma (RCC). Here, we report a previously unknown biochemical mechanism through which caffeine, a well-known natural small molecule, regulates G6PDH activity to disrupt cellular redox homeostasis and suppress RCC development and progression. We found that caffeine can inhibit G6PDH enzymatic activity. Mechanistically, caffeine directly binds to G6PDH with high affinity (K D = 0.1923 μM) and competes with the coenzyme NADP+ for G6PDH binding, as demonstrated by the decreased binding affinities of G6PDH for its coenzyme and substrate. Molecular docking studies revealed that caffeine binds to G6PDH at the structural NADP+ binding site, and chemical cross-linking analysis demonstrated that caffeine inhibits the formation of dimeric G6PDH. G6PDH inhibition abrogated the inhibitory effects of caffeine on RCC cell growth. Moreover, inhibition of G6PDH activity by caffeine led to a reduction in the intracellular levels of NADPH and reactive oxygen species (ROS), and altered the expression of redox-related proteins in RCC cells. Accordingly, caffeine could inhibit tumor growth through inhibition of G6PDH activity in vivo. Taken together, these results demonstrated that caffeine can target G6PDH to disrupt redox homeostasis and inhibit RCC tumor growth, and has potential as a therapeutic agent for the treatment of RCC.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Lihong Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Fei Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
106
|
Lu Q, Lin X, Wu J, Wang B. Matrine attenuates cardiomyocyte ischemia-reperfusion injury through activating AMPK/Sirt3 signaling pathway. J Recept Signal Transduct Res 2020; 41:488-493. [PMID: 33019890 DOI: 10.1080/10799893.2020.1828914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Matrine has been found to affect cell viability and function. In the present study, we explored the cardioprotective role of matrine in cardiomyocyte damage under hypoxia/reoxygenation. In vitro, cardiomyocyte hypoxia/reoxygenation was used to mimic ischemia/reperfusion injury in the presence of matrine. After exposure to hypoxia/reoxygenation, cardiomyocyte viability was reduced and cell apoptosis was increased; this alteration was inhibited by matrine. At the molecular levels, Sirt3 and AMPK were significantly downregulated by hypoxia/reoxygenation injury whereas matrine administration was able to upregulate Sirt3 and AMPK expression and activity in the presence of hypoxia/reoxygenation. Interestingly, inhibition of Sirt3/AMPK pathway abolished the cardioprotective action of matrine on cardiomyocyte in the presence of hypoxia/reoxygenation injury, resulting into cardiomyocyte viability reduction and cell death augmentation. Altogether, our results demonstrated a novel role played by matrine in regulating cardiomyocyte viability and death in the presence of hypoxia/reoxygenation, with a potential application in the clinical practice for the treatment of patients with myocardial infarction.
Collapse
Affiliation(s)
- Qiubei Lu
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Xiangyu Lin
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Jing Wu
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Zhejiang, China
| |
Collapse
|
107
|
Chen P, Xiao Y, Wang Y, Zheng Z, Chen L, Yang X, Li J, Wu W, Zhang S. Intracellular calcium current disorder and disease phenotype in OBSCN mutant iPSC-based cardiomyocytes in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2020; 10:11215-11229. [PMID: 33042279 PMCID: PMC7532677 DOI: 10.7150/thno.45172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Obscurin participates in the development of striated muscles and maintenance of the functional sarcoplasmic reticulum. However, the role of obscurin in arrhythmogenic right ventricular cardiomyopathy (ARVC) is not well understood. We aimed to study the novel obscurin mutations in the pathogenesis of ARVC and the underlying mechanisms. Methods: We generated induced pluripotent stem cells (iPSC) through retroviral reprogramming of peripheral blood mononuclear cells isolated from a 46-year-old female diagnosed with ARVC, carrying a mutation in OBSCN. The cells differentiated into functional iPSC-based cardiomyocytes (iPSC-CMs), whose phenotype was determined by transmission electron microscopy, electrophysiological description, immunofluorescence staining, and Oil Red O staining. Molecular characterization was performed by bioinformatic analyses, and identification by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Results: ARVC-iPSC-CMs mutation in OBSCN showed significant accumulation of lipids, increased pleomorphism, irregular Z-bands, and increased L type calcium currents. Functional enrichment analysis identified pathways involved in focal adhesion and structure formation; the adipocytokines and PPAR signaling pathways were also activated in the ARVC group. Moreover, our results from ultra-high-resolution microscopy, qRT-PCR and Western blotting confirmed that the mutant OBSCN protein and its anchor protein, Ank1.5, showed structural disorder and decreased expression, but there was increased expression of junctional protein N-Cadherin. Further analysis revealed the gene expression of other desmosomal proteins in ARVC-iPSC-CMs was also decreased but some adipogenesis pathway-related proteins (PPARγ, C/EBPα, and FABP4) were increased. Conclusion: A novel frameshift mutation in OBSCN caused phenotypic alteration accompanied by disrupted localization and decreased expression of its anchoring protein Ank1.5. Furthermore, there was an accumulation of lipids with an increase in fatty fibrosis area and myocardial structural disorder, possibly leading to dysrhythmia in calcium channel-related myocardial contraction. These observations suggested the possibility of attenuating ARVC progression by therapeutic modulation of OBSCN expression.
Collapse
|
108
|
Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Front Cell Dev Biol 2020; 8:822. [PMID: 33015038 PMCID: PMC7493682 DOI: 10.3389/fcell.2020.00822] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeine is chemically stable and not readily oxidized under normal physiological conditions but also has antioxidant effects, although the underlying molecular mechanism is not well understood. Superoxide dismutase (SOD) 2 is a manganese-containing enzyme located in mitochondria that protects cells against oxidative stress by scavenging reactive oxygen species (ROS). SOD2 activity is inhibited through acetylation under conditions of stress such as exposure to ultraviolet (UV) radiation. Sirtuin 3 (SIRT3) is the major mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, which deacetylates two critical lysine residues (lysine 68 and lysine 122) on SOD2 and promotes its antioxidative activity. In this study, we investigated whether the antioxidant effect of caffeine involves modulation of SOD2 by SIRT3 using in vitro and in vivo models. The results show that caffeine interacts with SIRT3 and promotes direct binding of SIRT3 with its substrate, thereby enhancing its enzymatic activity. Mechanistically, caffeine bound to SIRT3 with high affinity (KD = 6.858 × 10–7 M); the binding affinity between SIRT3 and its substrate acetylated p53 was also 9.03 (without NAD+) or 6.87 (with NAD+) times higher in the presence of caffeine. Caffeine effectively protected skin cells from UV irradiation-induced oxidative stress. More importantly, caffeine enhanced SIRT3 activity and reduced SOD2 acetylation, thereby leading to increased SOD2 activity, which could be reversed by treatment with the SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) in vitro and in vivo. Taken together, our results show that caffeine targets SIRT3 to enhance SOD2 activity and protect skin cells from UV irradiation-induced oxidative stress. Thus, caffeine, as a small-molecule SIRT3 activator, could be a potential agent to protect human skin against UV radiation.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziqi Gao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Simin Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dongying Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
109
|
Kim SG, Sung JY, Kim JR, Choi HC. Nifedipine-induced AMPK activation alleviates senescence by increasing autophagy and suppressing of Ca2+ levels in vascular smooth muscle cells. Mech Ageing Dev 2020; 190:111314. [DOI: 10.1016/j.mad.2020.111314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
|
110
|
Li H, He Y, Zhang C, Ba T, Guo Z, Zhuo Y, He L, Dai H. NOX1 down-regulation attenuated the autophagy and oxidative damage in pig intestinal epithelial cell following transcriptome analysis of transport stress. Gene 2020; 763:145071. [PMID: 32827682 DOI: 10.1016/j.gene.2020.145071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
The previous study indicated that transport stress resulted in oxidative damage and autophagy/mitophagy elevation, companied by NOX1 over- expression in the jejunal tissues of pigs. However, the transportation-related gene expression profile and NOX1 function in intestine remain to be explicated. In the current study, differentially expressed genes involved in PI3K-Akt and NF-κB pathways, oxidative stress and autophagy process have been identified in pig jejunal tissues after transcriptome analysis following transportation. The physiological functions of NOX1 down-regulation were explored against oxidative damage and excessive autophagy in porcine intestinal epithelial cells (IPEC-1) following NOX1 inhibitor ML171 and H2O2 treatments. NOX1 down-regulation could decrease the content of Malondialdehyde (MDA), Lactic dehydrogenase (LDH) activity and reactive oxygen species (ROS) level, and up-regulate superoxide dismutase (SOD) activity. Furthermore, mitochondrial membrane potential and content were restored, and the expressions of tight junction proteins (Claudin-1 and ZO-1) were also increased. Additionally, NOX1 inhibitior could down-regulate the expression of autophagy-associated proteins (ATG5, LC3, p62), accompanied by activating SIRT1/PGC-1α pathway. NOX1 down-regulation might alleviate oxidative stress-induced mitochondria damage and intestinal mucosal injury via modulating excessive autophagy and SIRT1/PGC-1α signaling pathway. The data will shed light on the molecular mechanism of NOX1 on intestine oxidative damage following pig transportation.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yulong He
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Cheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Tongtong Ba
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
111
|
Tian LM, Peng Y, Ke D, Li H, Chen L, Zhang C, Sen L, Tian DZ, Zhou MS, Ai XS, Wang P. The effect of Yang Yan Qing E Wan on senescent phenotypes and the expression of β-catenin and p16 INK4a in human skin fibroblasts. J Tissue Viability 2020; 29:354-358. [PMID: 32768331 DOI: 10.1016/j.jtv.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
This aim of this study was to observe the effect of Yang Yan Qing E Wan (YYQEW) on senescent phenotypes and the expression of β-catenin and p16INK4a in the hydrogen peroxide (H2O2)-induced premature senescence of normal human skin fibroblasts (NHSFs). Primary normal human skin fibroblasts were randomly divided into a normal group, a blank group, a model group, and a YYQEW group. The cells of the model group and the YYQEW group were exposed to 150 μmol/L H2O2 for 2 h. The morphological changes of the cells were analyzed by microscopy and by kits used to estimate the activities of the senescence-associated β-galactosidase (SA-β-gal), reactive oxygen species (ROS), and superoxide dismutase (SOD). The outcomes revealed that dyeing rate proportion of SA-β-gal was 2.78% ± 0.22% in the normal group, 2.83% ± 0.29% in the blank group, 37.58% ± 2.56% in the model group, and 28.39% ± 0.93% in the YYQEW group. The number of SA-β-gal positive cells was thus significantly higher in the model group than in the normal or blank group. There were also fewer SA-β-gal positive cells in the YYQEW group compared with the model group. The expression of ROS and p16INK4a in the model group increased significantly compared with that in the normal or blank groups, while the expression of ROS and p16INK4a in the YYQEW group decreased significantly compared with that in the model group. The expression of SOD and β-catenin in the model group decreased significantly compared with that in the normal or blank group, and the expression of SOD and β-catenin in the YYQEW group increased significantly compared with that in the model group. Overall, it was found that YYQEW was able to delay the senescence of NHSFs induced by H2O2 treatment by alleviating oxidative stress and regulating a number of senescence-related molecules, such as β-catenin and p16INK4a.
Collapse
Affiliation(s)
- Li-Ming Tian
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Peng
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dan Ke
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, China
| | - Heng Li
- Department of Dermatology, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Long Chen
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chong Zhang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lin Sen
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dai-Zhi Tian
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mi-Si Zhou
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Shuang Ai
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
112
|
Blockade of Adenosine A 2A Receptor Protects Photoreceptors after Retinal Detachment by Inhibiting Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7649080. [PMID: 32714489 PMCID: PMC7354651 DOI: 10.1155/2020/7649080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Purpose Adenosine A2A receptor (A2AR) signaling is neuroprotective in some retinal damage models, but its role in neuronal survival during retinal detachment (RD) is unclear. We tested the hypothesis that A2AR antagonist ZM241385 would prevent photoreceptor apoptosis by inhibiting retinal inflammation and oxidative stress after RD. Methods The A2AR antagonist ZM241385 was delivered daily to C57BL/6J mice for three days at a dose (3 mg/kg, i.p.) starting 2 hours prior to creating RD. A2AR expression, microglia proliferation and reactivity, glial fibrillary acidic protein (GFAP) accumulation, IL-1β expression, and reactive oxygen species (ROS) production were evaluated with immunofluorescence. Photoreceptor TUNEL was analyzed. Results A2AR expression obviously increased and accumulated in microglia and Müller cells in the retinas after RD. The A2AR antagonist ZM241385 effectively inhibited retinal microglia proliferation and reactivity, decreased GFAP upregulation and proinflammatory cytokine IL-1β expression of Müller cells, and suppressed ROS overproduction, resulting in attenuation of photoreceptor apoptosis after RD. Conclusions The A2AR antagonist ZM241385 is an effective suppressor of microglia proliferation and reactivity, gliosis, neuroinflammation, oxidative stress, and photoreceptor apoptosis in a mouse model of RD. This suggests that A2AR blockade may be an important therapeutic strategy to protect photoreceptors in RD and other CNS diseases that share a common etiology.
Collapse
|
113
|
Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Am J Cancer Res 2020; 10:7993-8017. [PMID: 32724454 PMCID: PMC7381749 DOI: 10.7150/thno.47826] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs in most human organs including the liver, lung, heart and kidney, and is crucial for the progression of most chronic diseases. As an indispensable catabolic process for intracellular quality control and homeostasis, autophagy occurs in most mammalian cells and is implicated in many biological processes including fibrogenesis. Although advances have been made in understanding autophagy process, the potential role of autophagy in fibrotic diseases remains controversial and has recently attracted a great deal of attention. In the current review, we summarize the commonalities of autophagy affecting different types of fibrosis in different organs, including the liver, lung, heart, and kidney as well as in cystic fibrosis, systematically outline the contradictory results and highlight the distinct role of autophagy during the various stages of fibrosis. In summary, the exact role autophagy plays in fibrogenesis depends on specific cell types and different stimuli, and identifying and evaluating the pathogenic contribution of autophagy in fibrogenesis will promote the discovery of novel therapeutic strategies for the clinical management of these fibrotic diseases.
Collapse
|
114
|
Xu H, Wang L, Shi B, Hu L, Gan C, Wang Y, Xiang Z, Wang X, Sheng J. Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation. Biomed Pharmacother 2020; 129:110441. [PMID: 32580047 DOI: 10.1016/j.biopha.2020.110441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a xanthine alkaloid found in a number of dietary products consumed worldwide, such as coffee, tea, and soft beverages, and is known to act as a modifying agent for cytotoxic chemotherapeutic drugs. Studies have shown that caffeine reduces the cytotoxic effects of paclitaxel and inhibits paclitaxel-induced apoptosis; however, the underlying mechanism remains unclear. Here, we investigated whether caffeine inhibits the antitumor activity of paclitaxel via down-regulation of α-tubulin acetylation. In vitro studies, involving MTT assay, wound-healing assay, cell apoptosis assay, and western blotting analysis of A549 and HeLa cells, were performed. A549 and HeLa cell-based xenografts were established, and western blotting and immunohistochemical staining were performed for in vivo studies. The results showed that caffeine promoted the growth of cancer cells treated with paclitaxel. Additionally, caffeine enhanced migration ability, inhibited apoptosis, and decreased the acetylation of α-tubulin in paclitaxel-treated cancer cells. Furthermore, caffeine decreased the inhibitory effect of paclitaxel on tumor growth through down-regulation of α-tubulin acetylation in vivo. Taken together, these findings demonstrate that caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation, suggesting that patients receiving treatment with taxanes, such as paclitaxel, should avoid consuming caffeinated beverages or foods.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Litian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Boya Shi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lihong Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ya Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
| |
Collapse
|
115
|
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59:101036. [PMID: 32105850 DOI: 10.1016/j.arr.2020.101036] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging.
Collapse
|
116
|
Yang S, Xu M, Meng G, Lu Y. SIRT3 deficiency delays diabetic skin wound healing via oxidative stress and necroptosis enhancement. J Cell Mol Med 2020; 24:4415-4427. [PMID: 32119761 PMCID: PMC7176871 DOI: 10.1111/jcmm.15100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (SIRT3) plays a vital role in several dermatological diseases. However, the role and detailed mechanism of SIRT3 in diabetic wound healing are unknown well yet. To explore possible involvement of SIRT3 and necroptosis in diabetic skin wound healing, SIRT3 knockout (KO) mice and 129S1/SvImJ wild‐type (WT) mice were injected with streptozotocin (STZ), and mice skin fibroblasts were exposed to high glucose (HG). It was found that SIRT3 expression decreased in the skin of diabetic patients. SIRT3 deficiency delayed healing rate, reduced blood supply and vascular endothelial growth factor expression, promoted superoxide production, increased malondialdehyde (MDA) levels, decreased total antioxidant capacity (T‐AOC), reduced superoxide dismutase (SOD) activity and aggravated ultrastructure disorder in skin wound of diabetic mice. SIRT3 deficiency inhibited mice skin fibroblasts migration with HG stimulation, which was restored by SIRT3 overexpression. SIRT3 deficiency also suppressed α‐smooth muscle actin (α‐SMA) expression, enhanced superoxide production but decreased mitochondrial membrane potential with HG stimulation after scratch. SIRT3 deficiency further elevated receptor‐interacting protein kinase 3 (RIPK3), RIPK1 and caspase 3 expression both in vitro and in vivo. Collectively, SIRT3 deficiency delayed skin wound healing in diabetes, the mechanism might be related to impaired mitochondria function, enhanced oxidative stress and increased necroptosis. This may provide a novel therapeutic target to accelerate diabetic skin wound healing.
Collapse
Affiliation(s)
- Shengju Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengting Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
117
|
Zhang N, Peng F, Wang Y, Yang L, Wu F, Wang X, Ye C, Han B, He G. Shikonin induces colorectal carcinoma cells apoptosis and autophagy by targeting galectin-1/JNK signaling axis. Int J Biol Sci 2020; 16:147-161. [PMID: 31892852 PMCID: PMC6930377 DOI: 10.7150/ijbs.36955] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinoma (CRC) is the third most common malignant tumor pathology worldwide. Despite progress in surgical procedures and therapy options, CRC is still a considerable cause of cancer-related mortality. In this study, we tested the antitumor effects of shikonin in CRC and tried to identify its potential mechanism. The potential target, molecular mechanism as well as in vitro and in vivo antitumor effects of shikonin in CRC cells were determined by an integrative protocol including quantitative proteomics, RT-PCR, western blotting, RNA interference and overexpression, apoptosis and autophagy assays, etc. Galectin-1 was a potential target of shikonin from the iTRAQ-based proteomic analysis in shikonin-treated SW620 cell. The overexpression and RNA silencing of galectin-1 in two CRC cells suggested that the shikonin sensitivity was correlation to galectin-1 levels. The ROS accumulation induced by shikonin was important to the formation of galectin-1 dimers. Dimer galectin-1 was found to be associated with the activation of JNK and downstream apoptosis or autophagy. Moreover, through functional in vitro studies, we showed that differences in galectin-1 level affected tumor cell proliferation, migration, and invasion. In summary, shikonin induced CRC cells apoptosis and autophagy by targeting galectin-1 and JNK signaling pathway both in vitro and in vivo, which suggested a potential novel therapy target for CRC.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yujia Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
118
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
119
|
Pan MH, Zhu SR, Duan WJ, Ma XH, Luo X, Liu B, Kurihara H, Li YF, Chen JX, He RR. "Shanghuo" increases disease susceptibility: Modern significance of an old TCM theory. JOURNAL OF ETHNOPHARMACOLOGY 2019; 250:112491. [PMID: 31863858 DOI: 10.1016/j.jep.2019.112491] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shanghuo", a concept based on Traditional Chinese Medicine (TCM) theory, describes a status of Yin-Yang imbalance when Yang overwhelms Yin. The imbalance of Yin-Yang resembles the breaking of homeostasis and manifests by the impaired physiological functions, which leads to the onset, recurrence, and progression of diseases. Since ancient times, Chinese Materia Medica (CMM), such as herbal tea, has been applied as a treatment for "Shanghuo". AIM OF THE STUDY This review is aimed to describe the origin of "Shanghuo" from the Yin-Yang theory in TCM, as well as explore the relevance and correlations between "Shanghuo" and diseases susceptibility from the perspective of modern medicine. We also propose several strategies from CMM to improve the status of "Shanghuo" for the purpose of treating diseases. METHODS Systematic research of articles with keywords including Shanghuo, Yin-Yang, emotional stress and disease susceptibility was done by using the literature databases (Web of Science, Google Scholar, PubMed, CNKI). Related books, PhD and master's dissertations were also researched. Full scientific plant names were validated by "The Plant List" (www.theplantlist.org). RESULTS To date, a large number of publications have reported research on sub-health status, but studies about the theory or intervention of "Shanghuo" are rarely found. The articles we reviewed indicate that accumulated emotional stress is critical for the cause of "Shanghuo". As a status similar to sub-health, "Shanghuo" is also manifested by impaired physiological functions and decreased nonspecific resistance, which increase susceptibility to various diseases. What's more, some studies highlight the importance of TCM treatment towards "Shanghuo" in maintaining normal physiological functions, such as immunity, lipid metabolism and ROS clearance. CONCLUSIONS Researches on "Shanghuo" and its mechanism are every rare currently and are in need of investigation in the future. Studies on disease susceptibility recently are mostly about susceptible genes that relate to a few parts of people, however, for most of the people, accumulated emotional stress or other stressors is accountable for the susceptibility of diseases. Given that emotional stress plays an important factor in the causation of "Shanghuo", we reviewed the articles about this relevance and discussed the connection of "Shanghuo" with disease susceptibility in a novel perspective. In addition, we have reviewed the disease susceptibility model of restraint stress from its biochemical manifestation to application in CMM assessment. Although it would be a breakthrough in evaluating CMM efficacy of attenuating disease-susceptibility, understanding the comprehensive theory and establishing more models of "Shanghuo" would be required in further investigation.
Collapse
Affiliation(s)
- Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Rui Zhu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, Guangzhou, 510006, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- College of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
120
|
Sánchez-Melgar A, Albasanz JL, Martín M. Polyphenols and Neuroprotection: The Role of Adenosine Receptors. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Sánchez-Melgar
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
121
|
Zhang Y, Chen X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. NANOSCALE 2019; 11:19105-19118. [PMID: 31549117 DOI: 10.1039/c9nr05696c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotechnology and nanomaterial based electrochemical biosensors (ECBs) have achieved great development in many fields, such as clinical diagnosis, food analysis, and environmental monitoring. Nowadays, the single-handed pursuit of sensitivity and accuracy cannot meet the demands of detection in many in situ and point-of-care (POC) circumstances. More and more attention has been focused on simplifying the operation procedure and reducing detection time, and thus no-wash assay has become one of the most effective ways for the continuous development of ECBs. However, there are many challenges to realize no-wash detection in the real analysis, such as redox interferences, multiple impurities, non-conducting protein macromolecules, etc. Furthermore, the complex detection circumstance in different application fields makes the realization of no-wash ECBs more complicated and difficult. Thanks to the updated nanotechnology and nanomaterials, in-depth analysis of the obstacles in the detection process and various methods for fabricating no-wash ECBs, most issues have been largely resolved. In this review, we have systematically analyzed the nanomaterial based design strategy of the state-of-the-art no-wash ECBs in the past few years. Following that, we summarized the challenges in the detection process of no-wash ECBs and their applications in different fields. Finally, based on the summary and analysis in this review, we also evaluated and discussed future prospects from the design to the application of ECBs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
122
|
Storder J, Renard P, Arnould T. Update on the role of Sirtuin 3 in cell differentiation: A major metabolic target that can be pharmacologically controlled. Biochem Pharmacol 2019; 169:113621. [PMID: 31472127 DOI: 10.1016/j.bcp.2019.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Cell differentiation is a fundamental biological event in which a precursor stem cell is turning into a specialized somatic cell. It is thus crucial for the development, tissue turnover and regeneration in mammals. Among the numerous changes taking place in a cell during a differentiation programme, the biology of mitochondria, the central organelle mainly responsible for energy homeostasis and stress adaptation, is deeply modified. These modifications are now well recognized as taking an active part to the completion of the differentiation programme. Indeed, mitochondrial biogenesis and metabolic shift are observed during cell differentiation, adapting many syntheses, calcium homeostasis, ATP and reactive oxygen species production, to the needs. These mitochondrial functions are substantially regulated by the post-translational modifications of the mitochondrial proteins among which lysine acetylation is essential. This mitoacetylome is then globally controlled by the balance between spontaneous/enzymatically-catalysed protein acetylation and the NAD+-dependent deacetylation mediated by Sirtuin 3. This enzyme is now considered as a major regulator of the function of the organelle. Regarding the requirement of these mitochondrial adaptations, the subsequent growing interest for this enzyme recently extended to the investigation of the mechanisms driving cell differentiation. This review summarizes the currently available information about the significance of SIRT3 in cell differentiation in physio-pathological contexts. We also suggest a control of the differentiation-activated autophagy by SIRT3, a hypothesis supported by recent findings establishing a causal link between SIRT3 and autophagy. Eventually, an update on the present pharmacological modulators of SIRT3 in a context of cell differentiation is discussed.
Collapse
Affiliation(s)
- Julie Storder
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
123
|
Li J, Zhao R, Zhao H, Chen G, Jiang Y, Lyu X, Wu T. Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7832-7843. [PMID: 31242723 DOI: 10.1021/acs.jafc.9b02567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxidative-stress-induced senescence constitutes a great risk factor for chronic diseases. Therefore, ameliorating oxidative-stress-induced senescence is expected to prevent chronic diseases. The beneficial effects of bilberry anthocyanin (BA) on healthy aging were evaluated using 12 month old, aging female SD rats in this study. The experimental results suggested that consumption of a middle-dose of BA (MBA) appreciably increased the relative liver mass by 7.34% when compared with that of the AC group. Furthermore, BA significantly increased the total antioxidant capacity, total superoxide dismutase activity, and catalase activities; decreased malondialdehyde, serum low-density lipoprotein cholesterol (LDL-C), serum total cholesterol (TC), serum triglyceride (TG), and glycated serum protein (GSP) levels; and reduced TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C ratios. In addition, MBA decreased the activity of fecal bacterial enzymes and increased the content of fecal short-chain fatty acids. The Western blot results showed that MBA significantly upregulated the expression of OCLN, ZO-1, and autophagy-related proteins (ATP6 V0C, ATG4D, and CTSB) in aging rats. Moreover, it also showed that MBA induced the phosphorylation of AMPK and FOXO3a and inhibited the phosphorylation of mTOR, which indicated that bilberry anthocyanin induced autophagy via the AMPK-mTOR signaling pathways. This induction of autophagy further promoted oxidative stress resistance effects and intestinal epithelial barrier function of bilberry anthocyanin in aging female rats.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Runtian Zhao
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Huan Zhao
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Guiyun Chen
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yuhan Jiang
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Xiaoling Lyu
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100193 , China
| |
Collapse
|
124
|
Zhao W, Ma L, Cai C, Gong X. Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macrophages. Int J Biol Sci 2019; 15:1571-1581. [PMID: 31360100 PMCID: PMC6643212 DOI: 10.7150/ijbs.34211] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
Excessive inflammation induced by various risk factors is associated with the development of bronchopulmonary dysplasia (BPD). Caffeine exerts potent anti-inflammatory effects as a clinical preventive medicine for BPD. Recently, NLRP3 inflammasome activation has been demonstrated to be essential for the pathogenesis of BPD. In the present study, we aimed to investigate the effects of caffeine on NLRP3 inflammasome activation in LPS-induced THP-1 macrophages and to explore the underlying the detailed mechanism. We found that caffeine significantly reduced NLRP3 expression, ASC speck formation, and caspase 1 cleavage and therefore decreased IL-1β and IL-18 secretion in THP-1 macrophages. Caffeine also markedly decreased the phosphorylation levels of MAPK and NF-κB pathway members, further suppressing the translocation of NF-κB in THP-1 macrophages. Moreover, silencing of the caffeine-antagonized adenosine A2a receptor (A2aR) significantly decreased cleaved caspase 1 expression in THP-1 macrophages by reducing ROS production. Given these findings, we conclude that caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB signaling and A2aR-associated ROS production in LPS-induced THP-1 macrophages.
Collapse
Affiliation(s)
- Weiming Zhao
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|