101
|
Hu T, Liu H, Liang Z, Wang F, Zhou C, Zheng X, Zhang Y, Song Y, Hu J, He X, Xiao J, King RJ, Wu X, Lan P. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis. Am J Cancer Res 2020; 10:4056-4072. [PMID: 32226539 PMCID: PMC7086360 DOI: 10.7150/thno.40860] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: CD47 plays a vital role in the immune escape of tumor cells, but its role in regulating immune-unrelated biological processes such as proliferation and metastasis remains unclear. We seek to explore the immune-independent functions of CD47 in colorectal cancer (CRC). Methods: The expression of CD47 in CRC was determined by immunohistochemistry. The biological effect of CD47 signaling on tumor cell proliferation and metastasis was evaluated in vitro and in vivo. RNA sequencing analysis was performed to identify pivotal signaling pathways modulated by CD47. The interaction between CD47 and ENO1 was verified by co-immunoprecipitation (co-IP). The effect of CD47 on glycolytic metabolites was analyzed by seahorse XF and targeted metabolomics. Results: The expression of CD47 was upregulated and correlated to poor prognosis in CRC patients. Functional assays revealed that CD47 promoted CRC cell growth and metastasis in vitro and in vivo. Our mechanistic investigations demonstrated that CD47 interacted with ENO1 and protected it from ubiquitin-mediated degradation, subsequently promoting glycolytic activity and phosphorylation of ERK in CRC cells. Inhibition of ENO1 diminished CD47-mediated cell growth and migration. Clinically, the combined expression of CD47 and ENO1 provided reliable predictive biomarkers for the prognosis of CRC patients. Conclusions: CD47 is overexpressed in CRC, and its expression is associated with poor prognosis. Through stabilizing ENO1, CD47 enhances the aerobic glycolysis and ERK activity in CRC cells, thereby promoting the progression of CRC. Our studies reveal an unconventional role of CD47, suggesting that targeting the CD47-ENO1 axis may provide a novel therapeutic avenue for CRC.
Collapse
|
102
|
Qin Y, Liu T, Guo M, Liu Y, Liu C, Chen Y, Qu D. Mild-heat-inducible sequentially released liposomal complex remodels the tumor microenvironment and reinforces anti-breast-cancer therapy. Biomater Sci 2020; 8:3916-3925. [PMID: 32555847 DOI: 10.1039/d0bm00498g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat-responsive drug release helps celastrol & STS-coloaded liposome activate the cascade of TME normalization and enhances the anti-tumor efficacy.
Collapse
Affiliation(s)
- Yue Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Tingting Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
| | - Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Jiangsu Provincial Academy of Traditional Chinese Medicine
| |
Collapse
|
103
|
Sun JR, Zhang X, Zhang Y. MiR-214 prevents the progression of diffuse large B-cell lymphoma by targeting PD-L1. Cell Mol Biol Lett 2019; 24:68. [PMID: 31844419 PMCID: PMC6894298 DOI: 10.1186/s11658-019-0190-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Objective We explored the role and mechanism of miR-214 involvement in the progression of diffuse large B-cell lymphoma (DLBCL). Methods The expression levels of miR-214 and PD-L1 in human DLBCL cell lines and in tissue samples from patients with DLBCL were determined using quantitative RT-PCR. The dual-luciferase reporter assay was employed to determine the correlation between the expressions of miR-214 and PD-L1. Cell viability, invasiveness and apoptosis were respectively examined in cells of the DLBCL line OCI-Ly3 using CCK-8, transwell and flow cytometry assays. The expression level of PD-L1 was determined via immunoblotting. Inflammatory cytokine secretion was determined via enzyme-linked immune sorbent assay (ELISA). Results miR-214 was downregulated and PD-L1 was upregulated in DLBCL tissues and cell lines in comparison to normal adjacent tissues or normal B-cell. This indicates a negative correlation in the expression levels. Overexpression of miR-214 inhibited cell viability and invasion and induced apoptosis of OCI-Ly3 cells. Moreover, miR-214 was shown to target PD-L1 mRNA by binding to its 3′-untranslated region (UTR). Knockdown of PD-L1 attenuated the malignant phenotype of OCI-Ly3 cells. Overexpression of miR-214 inhibited tumor growth by targeting PD-L1 in vivo. Conclusion By targeting PD-L1, miR-214 regulates the progression of DLBCL in vitro and in vivo.
Collapse
Affiliation(s)
- Jing-Ran Sun
- Liaocheng Central Blood Station, 75 Huashan Road, Liaocheng, Shandong 25200 People's Republic of China
| | - Xiao Zhang
- 2Department of Clinical Laboratory, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong 25200 People's Republic of China
| | - Ya Zhang
- 3Department of Gynecology and Obstetrics, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong 25200 People's Republic of China
| |
Collapse
|
104
|
Abscopal effect of high-dose-rate brachytherapy on pelvic bone metastases from renal cell carcinoma: a case report. J Contemp Brachytherapy 2019; 11:458-461. [PMID: 31749855 PMCID: PMC6854863 DOI: 10.5114/jcb.2019.89365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is considered an optimal partner for immunotherapies. Several pre-clinical studies have demonstrated that regression of distant metastases, at remote non-irradiated sites of the body, termed the “abscopal effect”, can be achieved by an appropriate timing and combination of radiation with immunotherapy. However, nearly all pre-clinical and clinical studies evaluating a combination of radiation and immunotherapies have used external beam radiation therapy. We present in this case report, the abscopal effect observed in a 30-year-old Japanese woman with metastatic renal cell carcinoma after the treatment with high-dose-rate interstitial brachytherapy combined with nivolumab. This is the first published report demonstrating an abscopal effect following brachytherapy for human malignancy. Our case indicates that immuno-oncology effects are not limited to external beam irradiation regimens as they can also be attained by brachytherapy.
Collapse
|
105
|
Domankevich V, Cohen A, Efrati M, Schmidt M, Rammensee HG, Nair SS, Tewari A, Kelson I, Keisari Y. Combining alpha radiation-based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor-specific long-term immune response. Cancer Immunol Immunother 2019; 68:1949-1958. [PMID: 31637474 PMCID: PMC6877484 DOI: 10.1007/s00262-019-02418-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Diffusing alpha-emitters radiation therapy (DaRT) is the only known method for treating solid tumors with highly destructive alpha radiation. More importantly, as a monotherapy, DaRT has been shown to induce a systemic antitumor immune response following tumor ablation. Here, immunomodulatory strategies to boost the antitumor immune response induced by DaRT, and the response specificity, were investigated in the colon cancer CT26 mouse model. Local treatment prior to DaRT, with the TLR3 agonist poly I:C, was sufficient to inhibit tumor growth relative to poly I:C or DaRT alone. DaRT used in combination with the TLR9 agonist CpG, or with the TLR1/2 agonist XS15 retarded tumor growth and increased tumor-rejection rates, compared to DaRT alone, curing 41% and 20% of the mice, respectively. DaRT in combination with CpG, the Treg inhibitor cyclophosphamide, and the MDSC inhibitor sildenafil, cured 51% of the animals, compared to only 6% and 0% cure when immunomodulation or DaRT was used alone, respectively. Challenge and Winn assays revealed that these high cure rates involved a specific immunological memory against CT26 antigens. We suggest that DaRT acts in synergy with immunomodulation to induce a specific and systemic antitumor immune response. This strategy may serve as a safe and efficient method not only for tumor ablation, but also for in situ vaccination of cancer patients.
Collapse
Affiliation(s)
- Vered Domankevich
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Adi Cohen
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Margalit Efrati
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Michael Schmidt
- School of Physics and Astronomy, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Alpha Tau Medical, Tel Aviv, Israel
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Sujit S Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itzhak Kelson
- School of Physics and Astronomy, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Alpha Tau Medical, Tel Aviv, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel.
- Alpha Tau Medical, Tel Aviv, Israel.
| |
Collapse
|
106
|
Xu X, Li T, Shen S, Wang J, Abdou P, Gu Z, Mo R. Advances in Engineering Cells for Cancer Immunotherapy. Am J Cancer Res 2019; 9:7889-7905. [PMID: 31695806 PMCID: PMC6831467 DOI: 10.7150/thno.38583] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy aims to utilize the host immune system to kill cancer cells. Recent representative immunotherapies include T-cell transfer therapies, such as chimeric antigen receptor T cell therapy, antibody-based immunomodulator therapies, such as immune checkpoint blockade therapy, and cytokine therapies. Recently developed therapies leveraging engineered cells for immunotherapy against cancers have been reported to enhance antitumor efficacy while reducing side effects. Such therapies range from biologically, chemically and physically -engineered cells to bioinspired and biomimetic nanomedicines. In this review, advances of engineering cells for cancer immunotherapy are summarized, and prospects of this field are discussed.
Collapse
|
107
|
Chen H, Zhao L, Fu K, Lin Q, Wen X, Jacobson O, Sun L, Wu H, Zhang X, Guo Z, Lin Q, Chen X. Integrin α vβ 3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Am J Cancer Res 2019; 9:7948-7960. [PMID: 31695808 PMCID: PMC6831469 DOI: 10.7150/thno.39203] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Radiotherapy combined with immunotherapy has revealed promising outcomes in both preclinical studies and ongoing clinical trials. Targeted radionuclide therapy (TRT) is a branch of radiotherapy concerned with the use of radioisotopes, radiolabeled molecules or nanoparticles that deliver particulate radiation to cancer cells. TRT is a promising approach in cases of metastatic disease where conventional treatments are no longer effective. The increasing use of TRT raises the question of how to best integrate TRT with immunotherapy. In this study, we proposed a novel therapeutic regimen that combined programmed death ligand 1 (PD-L1)-based immunotherapy with peptide-based TRT (177Lu as the radionuclide) in the murine colon cancer model. Methods: To explore the most appropriate timing of immunotherapy after radionuclide therapy, the anti-PD-L1 antibody (αPD-L1 mAb) was delivered in a concurrent or sequential manner when 177Lu TRT was given. Results: The results demonstrated that TRT led to an acute increase in PD-L1 expression on T cells, and TRT in combination with αPD-L1 mAb stimulated the infiltration of CD8+ T cells, which improved local tumor control, overall survival and protection against tumor rechallenge. Moreover, our data revealed that the time window for this combination therapy may be critical to outcome. Conclusions: This therapeutic combination may be a promising approach to treating metastatic tumors in which TRT can be used. Clinical translation of the result would suggest that concurrent rather than sequential blockade of the PD-1/PD-L1 axis combined with TRT improves overall survival and long-term tumor control.
Collapse
|
108
|
Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Am J Cancer Res 2019; 9:7730-7748. [PMID: 31695797 PMCID: PMC6831464 DOI: 10.7150/thno.37306] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAM) are key players in the cancer microenvironment. Molecular imaging modalities such as MRI and PET can be used to track and monitor TAM dynamics in tumors non-invasively, based on specific uptake and quantification of MRI-detectable nanoparticles or PET-detectable radiotracers. Particular molecular signatures can be leveraged to target anti-inflammatory TAM, which support tumor growth, and pro-inflammatory TAM, which suppress tumor growth. In addition, TAM-directed imaging probes can be designed to include immune modulating properties, thereby leading to combined diagnostic and therapeutic (theranostic) effects. In this review, we will discuss the complementary role of TAM-directed radiotracers and iron oxide nanoparticles for monitoring cancer immunotherapies with PET and MRI technologies. In addition, we will outline how TAM-directed imaging and therapy is interdependent and can be connected towards improved clinical outcomes
Collapse
|
109
|
Li J, Van Valkenburgh J, Hong X, Conti PS, Zhang X, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019; 9:7849-7871. [PMID: 31695804 PMCID: PMC6831453 DOI: 10.7150/thno.37218] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.
Collapse
Affiliation(s)
- Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| |
Collapse
|
110
|
Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int J Mol Sci 2019; 20:ijms20133212. [PMID: 31261963 PMCID: PMC6650939 DOI: 10.3390/ijms20133212] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT), besides cancer cells, also affects the tumor microenvironment (TME): tumor blood vessels and cells of the immune system. It damages endothelial cells and causes radiation-induced inflammation. Damaged vessels inhibit the infiltration of CD8+ T lymphocytes into tumors, and immunosuppressive pathways are activated. They lead to the accumulation of radioresistant suppressor cells, including tumor-associated macrophages (TAMs) with the M2 phenotype, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). The area of tumor hypoxia increases. Hypoxia reduces oxygen-dependent DNA damage and weakens the anti-cancer RT effect. It activates the formation of new blood vessels and leads to cancer relapse after irradiation. Irradiation may also activate the immune response through immunogenic cell death induction. This leads to the "in situ" vaccination effect. In this article, we review how changes in the TME affect radiation-induced anticancer efficacy. There is a very delicate balance between the activation of the immune system and the immunosuppression induced by RT. The effects of RT doses on immune system reactions and also on tumor vascularization remain unclear. A better understanding of these interactions will contribute to the optimization of RT treatment, which may prevent the recurrence of cancer.
Collapse
|