101
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
102
|
Jiang J, Liu W, Xiong Z, Hu Y, Xiao J. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112640. [DOI: 10.1016/j.msec.2021.112640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
|
103
|
Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res 2021; 172:105851. [PMID: 34450314 DOI: 10.1016/j.phrs.2021.105851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
The regeneration process of human bones is very complicated, the management and treatment of bone damage caused by diseases are the main problems faced by clinicians worldwide. It is known that cell-based stem cell therapy together with biomaterials is a fast-developing method of tissue regeneration. This review focuses on the different types and main characteristics of scaffolds and stem cells suitable for bone regeneration, and aims to provide a state-of-the-art description of the current treatment of common bone metabolism related diseases such as osteoarthritis, osteoporosis and osteosarcoma and the strategies based on stem cell biological scaffolds used in bone tissue engineering. This method may provide a new treatment option for the treatment of common bone metabolism-related diseases that cannot be cured by ordinary and routine applications. Three databases (PubMed, CNKI and Web of Science) search terms used to write this review are: "arthritis", "osteoporosis", "osteosarcoma", "bone tissue engineering", "mesenchymal stem cells", "materials", "bioactive scaffolds" and their combinations, and the most relevant studies are selected. As a conclusion, it needs to be emphasized that despite the encouraging results, further development is needed due to the need for more in-depth research, standardization of stem cell manufacturing processes, large-scale development of clinical methods for bone tissue engineering, and market regulatory approval. Although the research and application of tissue regeneration technology and stem cells are still in their infancy, the application prospect is broad and it is expected to solve the current clinical problems.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| |
Collapse
|
104
|
Zhao H, Shen S, Zhao L, Xu Y, Li Y, Zhuo N. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. BMC Musculoskelet Disord 2021; 22:734. [PMID: 34452607 PMCID: PMC8401189 DOI: 10.1186/s12891-021-04617-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The repair of large bone defects is a great challenge for orthopedics. Although the development of three-dimensional (3D) printed titanium alloy (Ti6Al4V) implants with optimized the pore structure have effectively promoted the osseointegration. However, due to the biological inertia of Ti6Al4Vsurface and the neglect of angiogenesis, some patients still suffer from postoperative complications such as dislocation or loosening of the prosthesis. METHODS The purpose of this study was to construct 3D printed porous Ti6Al4V scaffolds filled with bone marrow mesenchymal stem cells (BMSC) and endothelial progenitor cells (EPC) loaded hydrogel and evaluate the efficacy of this composite implants on osteogenesis and angiogenesis, thus promoting osseointegration. RESULTS The porosity and pore size of prepared 3D printed porous Ti6Al4V scaffolds were 69.2 ± 0.9 % and 593.4 ± 16.9 μm, respectively, which parameters were beneficial to bone ingrowth and blood vessel formation. The BMSC and EPC filled into the pores of the scaffolds after being encapsulated by hydrogels can maintain high viability. As a cell containing composite implant, BMSC and EPC loaded hydrogel incorporated into 3D printed porous Ti6Al4V scaffolds enhancing osteogenesis and angiogenesis to repair bone defects efficiently. At the transcriptional level, the composite implant up-regulated the expression levels of the osteogenesis-related genes alkaline phosphatase (ALP) and osteocalcin (OCN), and angiogenesis-related genes hypoxia-inducible factor 1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF). CONCLUSIONS Overall, the strategy of loading porous Ti6Al4V scaffolds to incorporate cells is a promising treatment for improving osseointegration.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Shi Shen
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Lu Zhao
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Yulin Xu
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Yang Li
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Naiqiang Zhuo
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China.
| |
Collapse
|
105
|
Zhu GY, Liu YH, Liu W, Huang XQ, Zhang B, Zheng ZL, Wei X, Xu JZ, Zhao ZH. Surface Epitaxial Nano-Topography Facilitates Biomineralization to Promote Osteogenic Differentiation and Osteogenesis. ACS OMEGA 2021; 6:21792-21800. [PMID: 34471781 PMCID: PMC8388092 DOI: 10.1021/acsomega.1c03462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Biomimetic modification of hydroxyapatite on a polymer surface is a potent strategy for activating biological functions in bone tissue engineering applications. However, the polymer surface is bioinert, and it is difficult to introduce a uniform calcium phosphate (CaP) layer. To overcome this limitation, we constructed a specific nano-topographical structure onto a poly(ε-caprolactone) substrate via surface-directed epitaxial crystallization. Formation of the CaP layer on the nano-topological surface was enhanced by 2.34-fold compared to that on a smooth surface. This effect was attributed to the abundant crystallization sites for CaP deposition because of the increased surface area and roughness. Bone marrow mesenchymal stromal cells (BMSCs) were used to examine the biological effect of biomineralized surfaces. We clearly demonstrated that BMSCs responded to surface biomineralization. Osteogenic differentiation and proliferation of BMSCs were significantly promoted on the biomineralized nano-topological surface. The expression of alkaline phosphatase and osteogenic-related genes as well as extracellular matrix mineralization was significantly enhanced. The proposed strategy shows potential for designing bone repair scaffolds.
Collapse
Affiliation(s)
- Guan-Yin Zhu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Hui Liu
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Liu
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin-Qi Huang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zi-Li Zheng
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wei
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-He Zhao
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
106
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
107
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|
108
|
Song H, Zhang Y, Zhang Z, Xiong S, Ma X, Li Y. Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Int J Nanomedicine 2021; 16:4321-4332. [PMID: 34211273 PMCID: PMC8241815 DOI: 10.2147/ijn.s309567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background As commonly bone defect is a disease of jaw that can seriously affect implant restoration, the bioactive scaffold can be used as potential systems to provide effective repair for bone defect. Purpose A osteoinductive bone tissue engineering scaffold has been prepared in order to explore the effect of bioactive materials on bone tissue engineering. Methods In this study, NELL-1 nanoparticles (Chi/NNP) and nano hydroxyapatite were incorporated in composite scaffolds by electrospinning and characterized using TEM, SEM, contact angle, tensile tests and in vitro drug release. In vitro biological activities such as MC3T3-E1 cell attachment, proliferation and osteogenic activity were studied. Results With the addition of nHA and nanoparticles, the fiber diameter of PCL/BNPs group, PCL/NNPs group and PCL/nHA/NNPs group was significantly increased. Moreover, the hydrophilic hydroxyl group and amino group presented in nHA and nanoparticles had improved the hydrophilicity of the composite fibers. The composite electrospun containing Chi/NNPs can form a double protective barrier which can effectively prolong the release time of NELL-1 growth factor. In addition, the hydroxyapatite/NELL-1 nanoparticles electrospun fibers can promote attachment, proliferation, differentiation of MC3T3-E1 cells and good cytocompatibility, indicating better ability of inducing osteogenic differentiation. Conclusion A multi-functional PCL/nHA/NNPs composite fiber with long-term bioactivity and osteoinductivity was successfully prepared by electrospinning. This potential composite could be used as scaffolds in bone tissue engineering application after in vivo studies.
Collapse
Affiliation(s)
- Hualei Song
- Department of Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Yuntao Zhang
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Zihan Zhang
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Shijiang Xiong
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiangrui Ma
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Yourui Li
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| |
Collapse
|
109
|
Xu H, Wang C, Liu C, Li J, Peng Z, Guo J, Zhu L. Stem cell-seeded 3D-printed scaffolds combined with self-assembling peptides for bone defect repair. Tissue Eng Part A 2021; 28:111-124. [PMID: 34157886 DOI: 10.1089/ten.tea.2021.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone defects caused by infection, tumor, trauma and so on remain difficult to treat clinically. Bone tissue engineering (BTE) has great application prospect in promoting bone defect repair. Polycaprolactone (PCL) is a commonly used material for creating BTE scaffolds. In addition, self-assembling peptides (SAPs) can function as the extracellular matrix and promote osteogenesis and angiogenesis. In the work, a PCL scaffold was constructed by 3D printing, then integrated with bone marrow mesenchymal stem cells (BMSCs) and SAPs. The research aimed to assess the bone repair ability of PCL/BMSC/SAP implants. BMSC proliferation in PCL/SAP scaffolds was assessed via Cell Counting Kit-8. In vitro osteogenesis of BMSCs cultured in PCL/SAP scaffolds was assessed by alkaline phosphatase staining and activity assays. Enzyme linked immunosorbent assays were also performed to detect the levels of osteogenic factors. The effects of BMSC-conditioned medium from 3D culture systems on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) were assessed by scratch, transwell, and tube formation assays. After 8 weeks of in vivo transplantation, radiography and histology were used to evaluate bone regeneration, and immunohistochemistry staining was utilized to detect neovascularization. In vitro results demonstrated that PCL/SAP scaffolds promoted BMSC proliferation and osteogenesis compared to PCL scaffolds, and the PCL/BMSC/SAP conditional medium (CM) enhanced HUVEC migration and angiogenesis compared to the PCL/BMSC CM. In vivo results showed that, compared to the blank control, PCL, and PCL/BMSC groups, the PCL/BMSC/SAP group had significantly increased bone and blood vessel formation. Thus, the combination of BMSC-seeded 3D-printed PCL and SAPs can be an effective approach for treating bone defects.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Chengqiang Wang
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Chun Liu
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Jianjun Li
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Ziyue Peng
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| | - Jiasong Guo
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Key Laboratory of Tissue Construction and Detection of Guangdong Province, Guangzhou, China.,Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province, Guangzhou, China;
| | - Lixin Zhu
- Department of Spine Surgery, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China;
| |
Collapse
|
110
|
Wang B, Feng C, Pan J, Zhou S, Sun Z, Shao Y, Qu Y, Bao S, Li Y, Yang T. The Effect of 3D Printing Metal Materials on Osteoporosis Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972867. [PMID: 34239938 PMCID: PMC8233068 DOI: 10.1155/2021/9972867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
3D printing has been in use for a long time and has continued to contribute to breakthroughs in the fields of clinical, physical, and rehabilitation medicine. In order to evaluate the role of 3D printing technology in treating spinal disorders, this paper presents a systematic review of the relevant literature. 3D printing is described in terms of its adjunctive function in various stages of spinal surgery and assistance in osteoporosis treatment. A review of metal 3D printed materials and applications of the technology is also provided.
Collapse
Affiliation(s)
- Bing Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Chuwen Feng
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Jianyu Pan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Shuoyan Zhou
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Yuming Shao
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Yuanyuan Qu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Shengyong Bao
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Department of Rehabilitation Medicine, Shenzhen 518120, China
| | - Yang Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Tiansong Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Department of Rehabilitation Medicine, Shenzhen 518120, China
| |
Collapse
|
111
|
Zheng J, Lv S, Zhong Y, Jiang X. Injectable hydroxypropyl chitin hydrogels embedded with carboxymethyl chitin microspheres prepared via a solvent-free process for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1564-1583. [PMID: 33957063 DOI: 10.1080/09205063.2021.1926893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microspheres and injectable hydrogels derived from natural biopolymers have been extensively investigated as controlled local drug delivery systems. In this study, we prepared carboxymethyl chitin microspheres (CMCH-Ms) with a diameter of 10-100 μm through physical crosslinking by increasing temperature in an aqueous two-phase system without using organic solvents, surfactants and crosslinking agents. The stable microspheres keeping spherical shape with porous microstructure in different pH environments were embeded in thermosensitive hydroxypropyl chitin (HPCH) hydrogels. The morphology, gelation rate, swelling, rheological and mechanical properties, in vitro degradation and cytotoxicity, drug loading and drug release of the CMCH-Ms/HPCH gel scaffolds were examined. In vitro degradation and cytotoxicity test indicated that CMCH-Ms/HPCH gel scaffolds were biodegradable and non-cytotoxic. Moreover, no organic solvent was used in the preparation and drug loading process of CMCH-Ms/HPCH gel scaffold. Importantly, less burst drug release and long-term sustained-release from the CMCH-Ms/HPCH composite hydrogel was observed than those from only CMCH-Ms or HPCH hydrogel. Thus, the composite CMCH-Ms/HPCH hydrogel exhibited great potential application for loading different drugs and sustained drug release in controlled local drug delivery systems.
Collapse
Affiliation(s)
- Jieyu Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
112
|
魏 莉, 马 保, 邵 金, 葛 少. [Advances in the Application of Hydroxyapatite Composite Materials in Bone Tissue Engineering]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:357-363. [PMID: 34018351 PMCID: PMC10409196 DOI: 10.12182/20210560303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/23/2022]
Abstract
Hydroxyapatite (HAp) is the main inorganic component of the bones and teeth, and it possesses bioactivity and biocompatibility. However, due to its poor mechanical performance, slow degradation speed, and lack of diversity in its function, it is difficult to apply HAp alone as a scaffold material for bone tissue engineering. By combining HAp with other types of materials, composite materials with specific properties can be prepared, and the scopes of HAp applications can be expanded. Firstly, we elaborated on the importance, and strengths and weaknesses of HAp for bone tissue engineering biomaterials and then reviewed the research status of HAp composite materials used in bone regeneration. Secondly, about hot research topics in the field of applying HAp composite materials in bone repair, we summarized the representative findings in the field, and discussions and analysis were made accordingly. Finally, we also examined the future development prospects of HAp composite bone repair materials.
Collapse
Affiliation(s)
- 莉 魏
- 山东大学齐鲁医学院·口腔医学院·口腔医院牙周科 山东省口腔组织再生重点实验室山东省口腔生物材料与组织再生工程实验室 (济南 250012)Department of Periodontics, School/Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - 保金 马
- 山东大学齐鲁医学院·口腔医学院·口腔医院牙周科 山东省口腔组织再生重点实验室山东省口腔生物材料与组织再生工程实验室 (济南 250012)Department of Periodontics, School/Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - 金龙 邵
- 山东大学齐鲁医学院·口腔医学院·口腔医院牙周科 山东省口腔组织再生重点实验室山东省口腔生物材料与组织再生工程实验室 (济南 250012)Department of Periodontics, School/Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - 少华 葛
- 山东大学齐鲁医学院·口腔医学院·口腔医院牙周科 山东省口腔组织再生重点实验室山东省口腔生物材料与组织再生工程实验室 (济南 250012)Department of Periodontics, School/Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
113
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
114
|
Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 2021; 9:18. [PMID: 33727543 PMCID: PMC7966774 DOI: 10.1038/s41413-021-00139-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Bone tumors, especially those in osteosarcoma, usually occur in adolescents. The standard clinical treatment includes chemotherapy, surgical therapy, and radiation therapy. Unfortunately, surgical resection often fails to completely remove the tumor, which is the main cause of postoperative recurrence and metastasis, resulting in a high mortality rate. Moreover, bone tumors often invade large areas of bone, which cannot repair itself, and causes a serious effect on the quality of life of patients. Thus, bone tumor therapy and bone regeneration are challenging in the clinic. Herein, this review presents the recent developments in bifunctional biomaterials to achieve a new strategy for bone tumor therapy. The selected bifunctional materials include 3D-printed scaffolds, nano/microparticle-containing scaffolds, hydrogels, and bone-targeting nanomaterials. Numerous related studies on bifunctional biomaterials combining tumor photothermal therapy with enhanced bone regeneration were reviewed. Finally, a perspective on the future development of biomaterials for tumor therapy and bone tissue engineering is discussed. This review will provide a useful reference for bone tumor-related disease and the field of complex diseases to combine tumor therapy and tissue engineering.
Collapse
Grants
- The National Key Research and Development Program of China (2017YFC1103500, 2017YFC1103502), NSFC 31771096, NSFC 31930067, #x00A0;NSFC 31525009, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18002)
- the National Natural Science Foundation (31972925), Sichuan Science and Technology Program (2020YJ0065), Sichuan University Spark Project (2018SCUH0029), State Key Laboratory of Oral Diseases Foundation (SKLOD202016)
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruxia Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
115
|
Chen B, Wu S, Ye Q. Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohydr Polym 2021; 259:117707. [PMID: 33673987 DOI: 10.1016/j.carbpol.2021.117707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
Chitin hydrogels have multiple advantages of nontoxicity, biocompatibility, biodegradability, and three-dimensional hydrophilic polymer network structure similar to the macromolecular biological tissue. However, the mechanical strength of chitin hydrogels is relatively weak. Construction of chitin hydrogels with high mechanical strength and good biocompatibility is essential for the successful applications in biomedical field. Herein, we developed double crosslinked chitin hydrogels by dissolving chitin in KOH/urea aqueous solution with freezing-thawing process, then using KH560 as cross-linking agent and coagulating in ethanol solution at low temperature. The obtained chitin/ KH560 (CK) hydrogels displayed good transparency and toughness with compressed nanofibrous network and porous structure woven with chitin nanofibers. Moreover, the optimal CK hydrogels exhibited excellent mechanical properties (σb = 1.92 ± 0.21 Mpa; εb = 71 ± 5 %), high swelling ratio, excellent blood compatibility, biocompatibility and biodegradability, which fulfill the requirements of biomedical materials and showing potential applications in biomedicine.
Collapse
Affiliation(s)
- Biao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| |
Collapse
|
116
|
Osteogenic effects of the bioactive small molecules and minerals in the scaffold-based bone tissue engineering. Colloids Surf B Biointerfaces 2020; 198:111462. [PMID: 33239252 DOI: 10.1016/j.colsurfb.2020.111462] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
Reconstruction of the damaged bone is a striking challenge in the medical field. The bone grafts as a current treatment is associated with inherent limitations; hence, the bone tissue engineering as an alternative therapeutic approach has been considered in the recent decades. Bone tissue engineering aims at replacing the lost tissue and restoring its function by recapitulating the natural regeneration process. Concerted participation and combination of the biocompatible materials, osteoprogenitor/ stem cells and bioactive factors closely mimic the bone microenvironment. The bioactive factors regulate the cell behavior and they induce the stem cells to osteogenic differentiation by activating specific signaling cascades. Growth factors (GFs) are the most important bioactive molecules and mediators of the natural bone repair process. Although these soluble factors have approved applications in the bone regeneration, however, there are several limitations such as the instability, high dose requirements, and serious side effects which could restrict their clinical usage. Alternatively, a new generation of bioactive molecules with the osteogenic properties are used. The non-peptide organic or inorganic molecules are physiologically stable and non-immunogenic due to their small size. Many of them are obtained from the natural resources and some are synthesized through the chemical methods. As a result, these molecules have been introduced as the cost-effective osteogenic agents in the bone tissue regeneration. In this paper, three groups of these bioactive agents including the organic small molecules, minerals and metallic nanoparticles have been investigated, considering their function in accelerating the bone regeneration. We review the recent in vitro and in vivo studies that utilized the osteogenic molecules to promote the bone formation in the scaffold-based bone tissue engineering systems.
Collapse
|
117
|
Xu L, Bai X, Yang J, Li J, Xing J, Yuan H, Xie J, Li J. Preparation and characterisation of a gellan gum-based hydrogel enabling osteogenesis and inhibiting Enterococcus faecalis. Int J Biol Macromol 2020; 165:2964-2973. [PMID: 33086112 DOI: 10.1016/j.ijbiomac.2020.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 02/05/2023]
Abstract
Infections are the leading cause of failure of osteogenic material implantation. Antibiotic treatment, treatment with bone cement, or collagen sponge placement can result in drug resistance and difficulties in operation. To address this, gellan gum (GG) was selected in this study and prepared as an injectable hydrogel containing chlorhexidine (CHX) and nanohydroxyapatite (nHA) that overcomes these intractable problems. Scanning electron microscopy and micro-computed tomography revealed a three-dimensional polymeric network of the hydrogel. The hydrogel had excellent biocompatibility, as detected by cell counting kit-8 and Live/Dead assay. Bone marrow mesenchymal stem cells could be encapsulated into the network, showing that the structure was suitable for cell growth. Additionally, loading the hydrogel with nHA improved its mechanical, biodegradable, and osteogenic properties. Quantitative alkaline phosphatase and Alizarin Red S staining validated its osteogenic ability. Furthermore, antibacterial activity assessment showed that the hydrogel loaded with 50 μg/mL CHX inhibited Enterococcus faecalis in a concentration-dependent manner. Thus, we report an injectable GG-based hydrogel with superior antibacterial effect against E. faecalis and osteogenesis, which holds promise for treating infectious bone defects caused by refractory periradicular periodontitis.
Collapse
Affiliation(s)
- Laijun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xuan Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jiaqi Xing
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - He Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
118
|
Deng L, Liu Y, Yang L, Yi JZ, Deng F, Zhang LM. Injectable and bioactive methylcellulose hydrogel carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration. Colloids Surf B Biointerfaces 2020; 194:111159. [DOI: 10.1016/j.colsurfb.2020.111159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
|
119
|
Li J, Zhao Y, Jiang X. Quantitative analysis of protein in thermosensitive hydroxypropyl chitin for biomedical applications. Anal Biochem 2020; 599:113745. [DOI: 10.1016/j.ab.2020.113745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
|
120
|
Tang Y, Tong X, Conrad B, Yang F. Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration in vivo. Theranostics 2020; 10:6035-6047. [PMID: 32483436 PMCID: PMC7254995 DOI: 10.7150/thno.41096] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Injectable matrices are highly desirable for stem cell delivery. Previous research has highlighted the benefit of scaffold macroporosity in enhancing stem cell survival and bone regeneration in vivo. However, there remains a lack of injectable and in situ crosslinkable macroporous matrices for stem cell delivery to achieve fast bone regeneration in immunocompetent animal model. The goal of this study is to develop an injectable gelatin-based μRB hydrogel supporting direct cell encapsulation that is available in clinics as macroporous matrices to enhance adipose-derived stromal cell (ASC) survival, engraftment and accelerate bone formation in craniofacial defect mouse. Methods: Injectable and in situ crosslinkable gelatin microribbon (μRB)-based macroporous hydrogels were developed by wet-spinning. Injectability was optimized by varying concentration of glutaraldehyde for intracrosslinking of μRB shape, and fibrinogen coating. The efficacy of injectable μRBs to support ASCs delivery and bone regeneration were further assessed in vivo using an immunocompetent mouse cranial defect model. ASCs survival was evaluated by bioluminescent imaging and bone regeneration was assessed by micro-CT. The degradation and biocompatibility were determined by histological analysis. Results: We first optimized injectability by varying concentration of glutaraldehyde used to fix gelatin μRBs. The injectable μRB formulation were subsequently coated with fibrinogen, which allows in situ crosslinking by thrombin. Fluorescence imaging and histology showed majority of μRBs degraded by the end of 3 weeks. Injectable μRBs supported comparable level of ASC proliferation and bone regeneration as implantable prefabricated μRB controls. Adding low dosage of BMP2 (100 ng per scaffold) with ASCs substantially accelerated the speed of mineralized bone regeneration, with 90% of the bone defect refilled by week 8. Immunostaining showed M1 (pro-inflammatory) macrophages were recruited to the defect at day 3, and was replaced by M2 (anti-inflammatory) macrophages by week 2. Adding μRBs or BMP2 did not alter macrophage response. Injectable µRBs supported vascularization, and BMP-2 further enhanced vascularization. Conclusions: Our results demonstrated that µRB-based scaffolds enhanced ASC survival and accelerated bone regeneration after injection into critical sized cranial defect mouse. Such injectable µRB-based scaffold can provide a versatile biomaterial for delivering various stem cell types and enhancing tissue regeneration.
Collapse
|
121
|
Jiang F, Zhang W, Zhou M, Zhou Z, Shen M, Chen N, Jiang X. Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration. Am J Cancer Res 2020; 10:6216-6230. [PMID: 32483449 PMCID: PMC7255030 DOI: 10.7150/thno.45249] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: The effectiveness of stem cell based-therapy for bone regeneration has been demonstrated; yet, clinical application of autologous stem cells is still limited by invasive acquisition, long culture processes, and high cost. Besides, it remains controversial whether autologous stem cells could directly participate in tissue repair after differentiation. Thus, increasing allogeneic stem cells have been developed into drugs to indirectly activate endogenous regeneration and induce tissue regeneration. Human amniotic mesenchymal stromal cells (HAMSCs) have been extensively studied, showing multiple regulatory functions, but mechanisms of HAMSCs in promoting bone regeneration are remain unclear. Methods: Proteome profile of HAMSCs and their functions on vascularized bone regeneration were investigated in vitro, while rabbit cranial defect model was used to further detect the effects of bone formation in vivo. Results: HAMSCs secrete many osteogenic, angiogenic, and immunomodulatory cytokines. In vitro, HAMSCs can promote human bone-marrow mesenchymal stromal cells (HBMSCs) migration and osteogenic differentiation; promote the capillary-tube formation of human umbilical vascular endothelial cells (HUVECs), induce HUVECs migration and pro-angiogenic genes expression, and promote M2 macrophage polarization. Further, in vivo studies suggested that transplanted HAMSCs could survive and induce M2 macrophages to secrete bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in rabbits' skull defects at an early stage, and, in turn, promote more new bone formation. Conclusion: HAMSCs have good biocompatibility and paracrine function to promote bone repair by stimulating endogenous regeneration.
Collapse
|
122
|
Bai H, Zhao Y, Wang C, Wang Z, Wang J, Liu H, Feng Y, Lin Q, Li Z, Liu H. Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation. Theranostics 2020; 10:4779-4794. [PMID: 32308749 PMCID: PMC7163459 DOI: 10.7150/thno.43736] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: Osteoporosis is more likely to cause serious complications after joint replacement, mainly due to physiological defects of endogenous osteogenic cells and the pathological osteoclast activity. It is a feasible solution to design a prosthetic surface interface that specifically addresses this troublesome situation. Methods: A novel "three-dimensional (3D) inorganic-organic supramolecular bioactive interface" was constructed consisting of stiff 3D printing porous metal scaffold and soft multifunctional, self-healable, injectable, and biodegradable supramolecular polysaccharide hydrogel. Apart from mimicking the bone extracellular matrix, the bioactive interface could also encapsulate bioactive substances, namely bone marrow mesenchymal stem cells (BMSCs) and bone morphogenetic protein-2 (BMP-2). A series of in vitro characterizations, such as topography and mechanical characterization, in vitro release of BMP-2, biocompatibility analysis, and osteogenic induction of BMSCs were carried out. After that, the in vivo osseointegration effect of the bioactive interface was investigated in detail using an osteoporotic model. Results: The administration of injectable supramolecular hydrogel into the inner pores of 3D printing porous metal scaffold could obviously change the morphology of BMSCs and facilitate its cell proliferation. Meanwhile, BMP-2 was capable of being sustained released from supramolecular hydrogel, and subsequently induced osteogenic differentiation of BMSCs and promoted the integration of the metal microspores-bone interface in vitro and in vivo. Moreover, the osteoporosis condition of bone around the bioactive interface was significantly ameliorated. Conclusion: This study demonstrates that the 3D inorganic-organic supramolecular bioactive interface can serve as a novel artificial prosthesis interface for various osteogenesis-deficient patients, such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Orthopaedic Research Institute of Jilin Province, Changchun 130041, P. R. China
| | - Yue Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Department of Plastic and Reconstruct Surgery, The First Bethune Hospital of Jilin University, Changchun 130021, P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Orthopaedic Research Institute of Jilin Province, Changchun 130041, P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Orthopaedic Research Institute of Jilin Province, Changchun 130041, P. R. China
| | - Hou Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yubin Feng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Orthopaedic Research Institute of Jilin Province, Changchun 130041, P. R. China
- Department of Pain, Renji Hospital, South Campus, Shanghai Jiaotong University, Shanghai 201112, P. R. China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Orthopaedic Research Institute of Jilin Province, Changchun 130041, P. R. China
| |
Collapse
|
123
|
Xie C, Huang W, Sun W, Jiang X. Injectable polymeric gels based on chitosan and chitin for biomedical applications. HANDBOOK OF CHITIN AND CHITOSAN 2020:281-306. [DOI: 10.1016/b978-0-12-817966-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|