101
|
Vite A, Zhang C, Yi R, Emms S, Radice GL. α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 2018; 145:dev.149823. [PMID: 29467248 PMCID: PMC5868989 DOI: 10.1242/dev.149823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity and increased cardiomyocyte proliferation that was dependent on Yap activity. To assess effects on tension, cardiomyocytes were cultured on deformable polyacrylamide hydrogels of varying stiffness. When grown on a stiff substrate, DKO cardiomyocytes exhibited increased cell spreading, nuclear Yap and proliferation. A low dose of either a myosin or RhoA inhibitor was sufficient to block Yap accumulation in the nucleus. Finally, activation of RhoA was sufficient to increase nuclear Yap in wild-type cardiomyocytes. These data demonstrate that α-catenins regulate ICD maturation and actomyosin contractility, which, in turn, control Yap subcellular localization, thus providing an explanation for the loss of proliferative capacity in the newborn mammalian heart.
Collapse
Affiliation(s)
- Alexia Vite
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Caimei Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roslyn Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sabrina Emms
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Glenn L Radice
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
102
|
Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018; 3:6. [PMID: 29507774 PMCID: PMC5824955 DOI: 10.1038/s41536-018-0044-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Stimulating regeneration of complex tissues and organs after injury to effect complete structural and functional repair, is an attractive therapeutic option that would revolutionize clinical medicine. Compared to many metazoan phyla that show extraordinary regenerative capacity, which in some instances persists throughout life, regeneration in mammalians, particularly humans, is limited or absent. Here we consider recent insights in the elucidation of molecular mechanisms of regeneration that have come from studies of tissue homeostasis and injury repair in mammalian tissues that span the spectrum from little or no self-renewal, to those showing active cell turnover throughout life. These studies highlight the diversity of factors that constrain regeneration, including immune responses, extracellular matrix composition, age, injury type, physiological adaptation, and angiogenic and neurogenic capacity. Despite these constraints, much progress has been made in elucidating key molecular mechanisms that may provide therapeutic targets for the development of future regenerative therapies, as well as previously unidentified developmental paradigms and windows-of-opportunity for improved regenerative repair.
Collapse
|
103
|
Wang S, Singh M, Tran TT, Leach J, Aglyamov SR, Larina IV, Martin JF, Larin KV. Biomechanical assessment of myocardial infarction using optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2018; 9:728-742. [PMID: 29552408 PMCID: PMC5854074 DOI: 10.1364/boe.9.000728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 05/18/2023]
Abstract
Myocardial infarction (MI) leads to cardiomyocyte loss, impaired cardiac function, and heart failure. Molecular genetic analyses of myocardium in mouse models of ischemic heart disease have provided great insight into the mechanisms of heart regeneration, which is promising for novel therapies after MI. Although biomechanical factors are considered an important aspect in cardiomyocyte proliferation, there are limited methods for mechanical assessment of the heart in the mouse MI model. This prevents further understanding the role of tissue biomechanics in cardiac regeneration. Here we report optical coherence elastography (OCE) of the mouse heart after MI. Surgical ligation of the left anterior descending coronary artery was performed to induce an infarction in the heart. Two OCE methods with assessment of the direction-dependent elastic wave propagation and the spatially resolved displacement damping provide complementary analyses of the left ventricle. In comparison with sham, the infarcted heart features a fibrotic scar region with reduced elastic wave velocity, decreased natural frequency, and less mechanical anisotropy at the tissue level at the sixth week post-MI, suggesting lower and more isotropic stiffness. Our results indicate that OCE can be utilized for nondestructive biomechanical characterization of MI in the mouse model, which could serve as a useful tool in the study of heart repair.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Equal contribution
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Equal contribution
| | - Thuy Tien Tran
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - John Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| |
Collapse
|
104
|
Kennedy-Lydon T, Rosenthal N. Cardiac regeneration: All work and no repair? Sci Transl Med 2017; 9:9/383/eaad9019. [PMID: 28356512 DOI: 10.1126/scitranslmed.aad9019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Structural changes in the developing heart may influence the limited regenerative capacity of the adult heart. We examine how the workload exerted on the adult mammalian heart may limit regenerative capability and discuss recent therapies that demonstrate beneficial effects through unloading the heart.
Collapse
Affiliation(s)
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
105
|
Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 2017; 18:728-742. [PMID: 29115301 PMCID: PMC5803560 DOI: 10.1038/nrm.2017.108] [Citation(s) in RCA: 1045] [Impact Index Per Article: 130.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
Collapse
Affiliation(s)
- Kyle H. Vining
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
106
|
Abstract
The heart has a markedly limited capacity for regeneration. Reporting in Nature, Bassat et al. (2017) and Morikawa et al. (2017) have uncovered a new mechanism of Yap inhibition by the dystrophin glycoprotein complex (DGC) that is released by the extracellular matrix protein Agrin in order to promote cardiac regeneration.
Collapse
|
107
|
Pogoda K, Bucki R, Byfield FJ, Cruz K, Lee T, Marcinkiewicz C, Janmey PA. Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules 2017; 18:3040-3051. [PMID: 28858529 DOI: 10.1021/acs.biomac.7b00324] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unlike many other cancer cells that grow in tumors characterized by an abnormally stiff collagen-enriched stroma, glioma cells proliferate and migrate in the much softer environment of the brain, which generally lacks the filamentous protein matrix characteristic of breast, liver, colorectal, and other types of cancer. Glial cell-derived tumors and the cells derived from them are highly heterogeneous and variable in their mechanical properties, their response to treatments, and their properties in vitro. Some glioma samples are stiffer than normal brain when measured ex vivo, but even those that are soft in vitro stiffen after deformation by pressure gradients that arise in the tumor environment in vivo. Such mechanical differences can strongly alter the phenotype of cultured glioma cells. Alternatively, chemical signaling might elicit the same phenotype as increased stiffness by activating intracellular messengers common to both initial stimuli. In this study the responses of three different human glioma cell lines to changes in substrate stiffness are compared with their responses on very soft substrates composed of a combination of hyaluronic acid and a specific integrin ligand, either laminin or collagen I. By quantifying cell morphology, stiffness, motility, proliferation, and secretion of the cytokine IL-8, glioma cell responses to increased stiffness are shown to be nearly identically elicited by substrates containing hyaluronic acid, even in the absence of increased stiffness. PI3-kinase activity was required for the response to hyaluronan but not to stiffness. This outcome suggests that hyaluronic acid can trigger the same cellular response, as can be obtained by mechanical force transduced from a stiff environment, and demonstrates that chemical and mechanical features of the tumor microenvironment can achieve equivalent reactions in cancer cells.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Institute of Nuclear Physics Polish Academy of Sciences , PL-31342 Krakow, Poland
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok , 15-222 Bialystok, Poland
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Katrina Cruz
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Tongkeun Lee
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Cezary Marcinkiewicz
- CoE Department of Bioengineering, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Department of Physiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
108
|
Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Mol Biol Cell 2017; 27:2149-60. [PMID: 27418636 PMCID: PMC4945135 DOI: 10.1091/mbc.e16-01-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for heart failure, and it has been shown that this increase in size occurs at the level of the cardiac myocyte. Cardiac myocyte model systems have been developed to study this process. Here we focus on cell culture tools, including primary cells, immortalized cell lines, human stem cells, and their morphological and molecular responses to pathological stimuli. For each cell type, we discuss commonly used methods for inducing hypertrophy, markers of pathological hypertrophy, advantages for each model, and disadvantages to using a particular cell type over other in vitro model systems. Where applicable, we discuss how each system is used to model human disease and how these models may be applicable to current drug therapeutic strategies. Finally, we discuss the increasing use of biomaterials to mimic healthy and diseased hearts and how these matrices can contribute to in vitro model systems of cardiac cell biology.
Collapse
Affiliation(s)
- Angela K Peter
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Maureen A Bjerke
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Leslie A Leinwand
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
109
|
Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 2017; 16:699-717. [DOI: 10.1038/nrd.2017.106] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
110
|
Hashimoto K, Kodama A, Honda T, Hanashima A, Ujihara Y, Murayama T, Nishimatsu SI, Mohri S. Fam64a is a novel cell cycle promoter of hypoxic fetal cardiomyocytes in mice. Sci Rep 2017; 7:4486. [PMID: 28667270 PMCID: PMC5493652 DOI: 10.1038/s41598-017-04823-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
Fetal cardiomyocytes actively proliferate to form the primitive heart in utero in mammals, but they stop dividing shortly after birth. The identification of essential molecules maintaining this active cardiomyocyte proliferation is indispensable for potential adult heart regeneration. A recent study has shown that this proliferation depends on a low fetal oxygen condition before the onset of breathing at birth. We have established an isolation protocol for mouse fetal cardiomyocytes, performed under strict low oxygen conditions to mimic the intrauterine environment, that gives the highest proliferative activities thus far reported. Oxygen exposure during isolation/culture markedly inhibited cell division and repressed cell cycle-promoting genes, and subsequent genome-wide analysis identified Fam64a as a novel regulatory molecule. Fam64a was abundantly expressed in hypoxic fetal cardiomyocyte nuclei, but this expression was drastically repressed by oxygen exposure, and in postnatal cardiomyocytes following the onset of breathing and the resulting elevation of oxygen tension. Fam64a knockdown inhibited and its overexpression enhanced cardiomyocyte proliferation. Expression of a non-degradable Fam64a mutant suggested that optimum Fam64a expression and subsequent degradation by anaphase-promoting complex/cyclosome (APC/C) during the metaphase-to-anaphase transition are required for fetal cardiomyocyte division. We propose that Fam64a is a novel cell cycle promoter of hypoxic fetal cardiomyocytes in mice.
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Takeshi Honda
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.,Department of Cardiovascular Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Yoshihiro Ujihara
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University, Tokyo, 113-8421, Japan
| | - Shin-Ichiro Nishimatsu
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
111
|
Abstract
The human heart is continually operating as a muscular pump, contracting, on average, 80 times per minute to propel 8000 liters of blood through body tissues each day. Whereas damaged skeletal muscle has a profound capacity to regenerate, heart muscle, at least in mammals, has poor regenerative potential. This deficiency is attributable to the lack of resident cardiac stem cells, combined with roadblocks that limit adult cardiomyocytes from entering the cell cycle and completing division. Insights for regeneration have recently emerged from studies of animals with an elevated innate capacity for regeneration, the innovation of stem cell and reprogramming technologies, and a clearer understanding of the cardiomyocyte genetic program and key extrinsic signals. Methods to augment heart regeneration now have potential to counteract the high morbidity and mortality of cardiovascular disease.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA. .,Regeneration Next, Duke University, Durham, NC 27710, USA
| |
Collapse
|
112
|
The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 2017; 547:179-184. [PMID: 28581497 DOI: 10.1038/nature22978] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
The adult mammalian heart is non-regenerative owing to the post-mitotic nature of cardiomyocytes. The neonatal mouse heart can regenerate, but only during the first week of life. Here we show that changes in the composition of the extracellular matrix during this week can affect cardiomyocyte growth and differentiation in mice. We identify agrin, a component of neonatal extracellular matrix, as required for the full regenerative capacity of neonatal mouse hearts. In vitro, recombinant agrin promotes the division of cardiomyocytes that are derived from mouse and human induced pluripotent stem cells through a mechanism that involves the disassembly of the dystrophin-glycoprotein complex, and Yap- and ERK-mediated signalling. In vivo, a single administration of agrin promotes cardiac regeneration in adult mice after myocardial infarction, although the degree of cardiomyocyte proliferation observed in this model suggests that there are additional therapeutic mechanisms. Together, our results uncover a new inducer of mammalian heart regeneration and highlight fundamental roles of the extracellular matrix in cardiac repair.
Collapse
|
113
|
Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017; 127:1600-1612. [PMID: 28459429 DOI: 10.1172/jci87491] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.
Collapse
|
114
|
Kofron CM, Mende U. In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish. J Physiol 2017; 595:3891-3905. [PMID: 28116799 DOI: 10.1113/jp273100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The heart is a complex pluricellular organ composed of cardiomyocytes and non-myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non-myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non-myocytes plays a crucial role in stress/injury-induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue-like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.
Collapse
Affiliation(s)
- Celinda M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
115
|
Karra R, Poss KD. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 2017; 127:427-436. [PMID: 28145902 DOI: 10.1172/jci89786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart failure is a major source of morbidity and mortality. Replacing lost myocardium with new tissue is a major goal of regenerative medicine. Unlike adult mammals, zebrafish and neonatal mice are capable of heart regeneration following cardiac injury. In both contexts, the regenerative program echoes molecular and cellular events that occur during cardiac development and morphogenesis, notably muscle creation through division of cardiomyocytes. Based on studies over the past decade, it is now accepted that the adult mammalian heart undergoes a low grade of cardiomyocyte turnover. Recent data suggest that this cardiomyocyte turnover can be augmented in the adult mammalian heart by redeployment of developmental factors. These findings and others suggest that stimulating endogenous regenerative responses can emerge as a therapeutic strategy for human cardiovascular disease.
Collapse
|
116
|
Abstract
ABSTRACT
In February 2016, The Company of Biologists hosted an intimate gathering of leading international researchers at the forefront of experimental cardiovascular regeneration, with its emphasis on ‘Transdifferentiation and Tissue Plasticity in Cardiovascular Rejuvenation’. As I review here, participants at the workshop revealed how understanding cardiac growth and lineage decisions at their most fundamental level has transformed the strategies in hand that presently energize the prospects for human heart repair.
Collapse
Affiliation(s)
- Michael D. Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W14 8DZ, UK
| |
Collapse
|
117
|
|