1551
|
Jann K, Hernandez LM, Beck-Pancer D, McCarron R, Smith RX, Dapretto M, Wang DJJ. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder. Brain Behav 2015; 5:e00358. [PMID: 26445698 PMCID: PMC4589806 DOI: 10.1002/brb3.358] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neuroimaging studies can shed light on the neurobiological underpinnings of autism spectrum disorders (ASD). Studies of the resting brain have shown both altered baseline metabolism from PET/SPECT and altered functional connectivity (FC) of intrinsic brain networks based on resting-state fMRI. To date, however, no study has investigated these two physiological parameters of resting brain function jointly, or explored the relationship between these measures and ASD symptom severity. METHODS Here, we used pseudo-continuous arterial spin labeling with 3D background-suppressed GRASE to assess resting cerebral blood flow (CBF) and FC in 17 youth with ASD and 22 matched typically developing (TD) children. RESULTS A pattern of altered resting perfusion was found in ASD versus TD children including frontotemporal hyperperfusion and hypoperfusion in the dorsal anterior cingulate cortex. We found increased local FC in the anterior module of the default mode network (DMN) accompanied by decreased CBF in the same area. In our cohort, both alterations were associated with greater social impairments as assessed with the Social Responsiveness Scale (SRS-total T scores). While FC was correlated with CBF in TD children, this association between FC and baseline perfusion was disrupted in children with ASD. Furthermore, there was reduced long-range FC between anterior and posterior modules of the DMN in children with ASD. CONCLUSION Taken together, the findings of this study--the first to jointly assess resting CBF and FC in ASD--highlight new avenues for identifying novel imaging markers of ASD symptomatology.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of FMRI Technology (LOFT), Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, California
| | - Leanna M Hernandez
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
| | - Devora Beck-Pancer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
| | - Rosemary McCarron
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
| | - Robert X Smith
- Laboratory of FMRI Technology (LOFT), Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, California
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, California
| |
Collapse
|
1552
|
Lindner T, Helle M, Jansen O. A Short Introduction to Arterial Spin Labeling and its Application to Flow Territory Mapping. Clin Neuroradiol 2015; 25 Suppl 2:211-8. [PMID: 26308246 DOI: 10.1007/s00062-015-0450-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Abstract
Arterial spin labeling (ASL) is an emerging method for the assessment of perfusion in various diseases of the brain. In ASL, the magnetization of arterial blood water spins is manipulated in a complete non-invasive way before flowing into the tissue of interest. This allows absolute quantification of cerebral blood flow, thereby, presenting an alternative to contrast-enhanced methods based on computed tomography or magnetic resonance imaging. Furthermore, its potential application for flow territory mapping can provide additional information of the individual configuration of intracerebral blood flow. This article gives a brief overview of the basic ASL methodology and its approaches to image individual perfusion territories. Additionally, the utilization of ASL in a variety of cerebrovascular diseases is presented to provide examples of potential applications of (territorial) ASL in clinical routine.
Collapse
Affiliation(s)
- T Lindner
- Clinic for Radiology and Neuroradiology, UKSH Campus Kiel, 24105, Kiel, Arnold-Heller-Straße 3, Germany.
| | - M Helle
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - O Jansen
- Clinic for Radiology and Neuroradiology, UKSH Campus Kiel, 24105, Kiel, Arnold-Heller-Straße 3, Germany
| |
Collapse
|
1553
|
Li W, Grgac K, Huang A, Yadav N, Qin Q, van Zijl PCM. Quantitative theory for the longitudinal relaxation time of blood water. Magn Reson Med 2015; 76:270-81. [PMID: 26285144 DOI: 10.1002/mrm.25875] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE To propose and evaluate a model for the blood water T1 that takes into account the effects of hematocrit fraction, oxygenation fraction, erythrocyte hemoglobin concentration, methemoglobin fraction, and plasma albumin concentration. METHODS Whole blood and lysed blood T1 data were acquired at magnetic fields of 3 Tesla (T), 7T, 9.4T, and 11.7T using inversion-recovery measurements and a home-built blood circulation system for maintaining physiological conditions. A quantitative model was derived based on multivariable fitting of this data. RESULTS Fitting of the model to the data allowed determination of the different parameters describing the blood water T1 such as those for the diamagnetic and paramagnetic effects of albumin and hemoglobin, and the contribution of methemoglobin. The model correctly predicts blood T1 at multiple fields, as verified by comparison with existing literature. CONCLUSION The model provides physical and physiological parameters describing the effects of hematocrit fraction, oxygenation, hemoglobin concentration, methemoglobin fraction, and albumin concentration on blood water T1 . It can be used to predict blood T1 at multiple fields. Magn Reson Med 76:270-281, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ksenija Grgac
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Alan Huang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Philips Healthcare, Best, The Netherlands
| | - Nirbhay Yadav
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
1554
|
Mutsaerts HJMM, van Dalen JW, Heijtel DFR, Groot PFC, Majoie CBLM, Petersen ET, Richard E, Nederveen AJ. Cerebral Perfusion Measurements in Elderly with Hypertension Using Arterial Spin Labeling. PLoS One 2015; 10:e0133717. [PMID: 26241897 PMCID: PMC4524722 DOI: 10.1371/journal.pone.0133717] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose The current study assesses the feasibility and value of crushed cerebral blood flow (CBFcrushed) and arterial transit time (ATT) estimations for large clinical imaging studies in elderly with hypertension. Material and Methods Two pseudo-continuous arterial spin labeling (ASL) scans with (CBFcrushed) and without flow crushers (CBFnon-crushed) were performed in 186 elderly with hypertension, from which CBF and ATT maps were calculated. Standard flow territory maps were subdivided into proximal, intermediate and distal flow territories, based on the measured ATT. The coefficient of variation (CV) and physiological correlations with age and gender were compared between the three perfusion parameters. Results There was no difference in CV between CBFcrushed and CBFnon-crushed (15–24%, p>0.4) but the CV of ATT (4–9%) was much smaller. The total gray matter correlations with age and gender were most significant with ATT (p = .016 and p<.001 respectively), in between for CBFcrushed (p = .206 and p = .019) and least significant for CBFnon-crushed (p = .236 and p = .100). Conclusion These data show the feasibility and added value of combined measurements of both crushed CBF and ATT for group analyses in elderly with hypertension. The obtained flow territories provide knowledge on vascular anatomy of elderly with hypertension and can be used in future studies to investigate regional vascular effects.
Collapse
Affiliation(s)
- H. J. M. M. Mutsaerts
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - J. W. van Dalen
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - D. F. R. Heijtel
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - P. F. C. Groot
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - C. B. L. M. Majoie
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - E. T. Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E. Richard
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A. J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
1555
|
Comparison of velocity- and acceleration-selective arterial spin labeling with [15O]H2O positron emission tomography. J Cereb Blood Flow Metab 2015; 35:1296-303. [PMID: 25785831 PMCID: PMC4528003 DOI: 10.1038/jcbfm.2015.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022]
Abstract
In the last decade spatially nonselective arterial spin labeling (SNS-ASL) methods such as velocity-selective ASL (VS-ASL) and acceleration-selective ASL have been introduced, which label spins based on their flow velocity or acceleration rather than spatial localization. Since labeling also occurs within the imaging plane, these methods suffer less from transit delay effects than traditional ASL methods. However, there is a need for validation of these techniques. In this study, a comparison was made between these SNS-ASL techniques with [(15)O]H2O positron emission tomography (PET), which is regarded as gold standard to measure quantitatively cerebral blood flow (CBF) in humans. In addition, the question of whether these techniques suffered from sensitivity to arterial cerebral blood volume (aCBV), as opposed to producing pure CBF contrast, was investigated. The results show high voxelwise intracranial correlation (0.72 to 0.89) between the spatial distribution of the perfusion signal from the SNS-ASL methods and the PET CBF maps. A similar gray matter (GM) CBF was measured by dual VS-ASL compared with PET (46.7 ± 4.1 versus 47.1 ± 6.5 mL/100 g/min, respectively). Finally, only minor contribution of aCBV patterns in GM to all SNS-ASL methods was found compared with pseudo-continuous ASL. In conclusion, VS-ASL provides a similar quantitative CBF, and all SNS-ASL methods provide qualitatively similar CBF maps as [(15)O]H2O PET.
Collapse
|
1556
|
Steketee RME, Mutsaerts HJMM, Bron EE, van Osch MJP, Majoie CBLM, van der Lugt A, Nederveen AJ, Smits M. Quantitative Functional Arterial Spin Labeling (fASL) MRI--Sensitivity and Reproducibility of Regional CBF Changes Using Pseudo-Continuous ASL Product Sequences. PLoS One 2015; 10:e0132929. [PMID: 26172381 PMCID: PMC4501671 DOI: 10.1371/journal.pone.0132929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/21/2015] [Indexed: 11/23/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging is increasingly used to quantify task-related brain activation. This study assessed functional ASL (fASL) using pseudo-continuous ASL (pCASL) product sequences from two vendors. By scanning healthy participants twice with each sequence while they performed a motor task, this study assessed functional ASL for 1) its sensitivity to detect task-related cerebral blood flow (CBF) changes, and 2) its reproducibility of resting CBF and absolute CBF changes (delta CBF) in the motor cortex. Whole-brain voxel-wise analyses showed that sensitivity for motor activation was sufficient with each sequence, and comparable between sequences. Reproducibility was assessed with within-subject coefficients of variation (wsCV) and intraclass correlation coefficients (ICC). Reproducibility of resting CBF was reasonably good within (wsCV: 14.1–15.7%; ICC: 0.69–0.77) and between sequences (wsCV: 15.1%; ICC: 0.69). Reproducibility of delta CBF was relatively low, both within (wsCV: 182–297%; ICC: 0.04–0.32) and between sequences (wsCV: 185%; ICC: 0.45), while inter-session variation was low. This may be due to delta CBF’s small mean effect (0.77–1.32 mL/100g gray matter/min). In conclusion, fASL seems sufficiently sensitive to detect task-related changes on a group level, with acceptable inter-sequence differences. Resting CBF may provide a consistent baseline to compare task-related activation to, but absolute regional CBF changes are more variable, and should be interpreted cautiously when acquired with two pCASL product sequences.
Collapse
Affiliation(s)
- Rebecca M. E. Steketee
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Esther E. Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Aad van der Lugt
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Marion Smits
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
1557
|
De Vis JB, Hendrikse J, Bhogal A, Adams A, Kappelle LJ, Petersen ET. Age-related changes in brain hemodynamics; A calibrated MRI study. Hum Brain Mapp 2015; 36:3973-87. [PMID: 26177724 DOI: 10.1002/hbm.22891] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2 ). To clarify the effects of these physiological parameters, we investigated the effect of age on baseline CBF and CMRO2 . MATERIALS AND METHODS Twenty young (mean ± sd age, 28 ± 3 years), and 45 older subjects (66 ± 4 years) were investigated. A dual-echo pseudocontinuous arterial spin labeling (ASL) sequence was performed during normocapnic, hypercapnic, and hyperoxic breathing challenges. Whole brain and regional gray matter values of CBF, ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and CMRO2 were calculated. RESULTS Whole brain CBF was 49 ± 14 and 40 ± 9 ml/100 g/min in young and older subjects respectively (P < 0.05). Age-related differences in CBF decreased to the point of nonsignificance (B=-4.1, SE=3.8) when EtCO2 was added as a confounder. BOLD CVR was lower in the whole brain, in the frontal, in the temporal, and in the occipital of the older subjects (P<0.05). Whole brain OEF was 43 ± 8% in the young and 39 ± 6% in the older subjects (P = 0.066). Whole brain CMRO2 was 181 ± 60 and 133 ± 43 µmol/100 g/min in young and older subjects, respectively (P<0.01). DISCUSSION Age-related differences in CBF could potentially be explained by differences in EtCO2 . Regional CMRO2 was lower in older subjects. BOLD studies should take this into account when investigating age-related changes in neuronal activity.
Collapse
Affiliation(s)
- J B De Vis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L J Kappelle
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Danish Research Centre for Magnetic Resonance, Hidovre Hospital, Denmark
| |
Collapse
|
1558
|
Zhao L, Fielden SW, Feng X, Wintermark M, Mugler JP, Meyer CH. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction. Neuroimage 2015; 121:205-16. [PMID: 26169322 DOI: 10.1016/j.neuroimage.2015.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022] Open
Abstract
Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.
Collapse
Affiliation(s)
- Li Zhao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Samuel W Fielden
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Max Wintermark
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - John P Mugler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
1559
|
Crane DE, Black SE, Ganda A, Mikulis DJ, Nestor SM, Donahue MJ, MacIntosh BJ. Gray matter blood flow and volume are reduced in association with white matter hyperintensity lesion burden: a cross-sectional MRI study. Front Aging Neurosci 2015. [PMID: 26217223 PMCID: PMC4495336 DOI: 10.3389/fnagi.2015.00131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral White Matter Hyperintensities (WMH) are associated with vascular risk factors and age-related cognitive decline. WMH have primarily been associated with global white matter and gray matter (GM) changes and less is known about regional effects in GM. The purpose of this study was to test for an association between WMH and two GM imaging measures: cerebral blood flow (CBF) and voxel-based morphometry (VBM). Twenty-six elderly adults with mild to severe WMH participated in this cross-sectional 3 Tesla magnetic resonance imaging (MRI) study. MRI measures of GM CBF and VBM were derived from arterial spin labeling (ASL) and T1-weighted images, respectively. Fluid-attenuated inversion recovery (FLAIR) images were used to quantify the WMH lesion burden (mL). GM CBF and VBM data were used as dependent variables. WMH lesion burden, age and sex were used in a regression model. Visual rating of WMH with the Fazekas method was used to compare the WMH lesion volume regression approach. WMH volume was normally distributed for this group (mean volume of 22.7 mL, range: 2.2–70.6 mL). CBF analysis revealed negative associations between WMH volume and CBF in the left anterior putamen, subcallosal, accumbens, anterior caudate, orbital frontal, anterior insula, and frontal pole (corrected p < 0.05). VBM analysis revealed negative associations between WMH and GM volume in lingual gyrus, intracalcarine, and bilateral hippocampus (corrected p < 0.05). The visual rating scale corroborated the regression findings (corrected p < 0.05). WMH lesion volume was associated with intra-group GM CBF and structural differences in this cohort of WMH adults with mild to severe lesion burden.
Collapse
Affiliation(s)
- David E Crane
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute Toronto, ON, Canada
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute Toronto, ON, Canada ; Division of Neurology, Department of Medicine, University of Toronto Toronto, ON, Canada ; Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto Toronto, ON, Canada
| | - Anoop Ganda
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute Toronto, ON, Canada
| | - David J Mikulis
- Department of Medical Imaging, The Toronto Western Hospital and the University of Toronto Toronto, ON, Canada
| | - Sean M Nestor
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada ; MD/PhD Program, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Manus J Donahue
- Departments of Radiology and Radiological Sciences, Psychiatry, and Physics and Astronomy, Vanderbilt University Nashville, TN, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Toronto, ON, Canada
| |
Collapse
|
1560
|
Lövblad KO, Montandon ML, Viallon M, Rodriguez C, Toma S, Golay X, Giannakopoulos P, Haller S. Arterial Spin-Labeling Parameters Influence Signal Variability and Estimated Regional Relative Cerebral Blood Flow in Normal Aging and Mild Cognitive Impairment: FAIR versus PICORE Techniques. AJNR Am J Neuroradiol 2015; 36:1231-6. [PMID: 25882291 DOI: 10.3174/ajnr.a4291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/05/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling is a noninvasive method to map cerebral blood flow, which might be useful for early diagnosis of neurodegenerative diseases. We directly compared 2 arterial spin-labeling techniques in healthy elderly controls and individuals with mild cognitive impairment. MATERIALS AND METHODS This prospective study was approved by the local ethics committee and included 198 consecutive healthy controls (mean age, 73.65 ± 4.02 years) and 43 subjects with mild cognitive impairment (mean age, 73.38 ± 5.85 years). Two pulsed arterial spin-labeling sequences were performed at 3T: proximal inversion with a control for off-resonance effects (PICORE) and flow-sensitive alternating inversion recovery technique (FAIR). Relative cerebral blood flow maps were calculated by using commercial software and standard parameters. Data analysis included spatial normalization of gray matter-corrected relative CBF maps, whole-brain average, and voxelwise comparison of both arterial spin-labeling sequences. RESULTS Overall, FAIR yielded higher relative CBF values compared with PICORE (controls, 32.7 ± 7.1 versus 30.0 ± 13.1 mL/min/100 g, P = .05; mild cognitive impairment, 29.8 ± 5.4 versus 26.2 ± 8.6 mL/min/100 g, P < .05; all, 32.2 ± 6.8 versus 29.3 ± 12.3 mL/min/100 g, P < .05). FAIR had lower variability (controls, 36.2% versus 68.8%, P < .00001; mild cognitive impairment, 18.9% versus 22.9%, P < .0001; all, 34.4% versus 64.9% P < .00001). The detailed voxelwise analysis revealed a higher signal for FAIR, notably in both convexities, while PICORE had higher signal predominantly in deep cerebral regions. CONCLUSIONS Overall, FAIR had higher estimated relative CBF and lower interindividual variability than PICORE. In more detail, there were regional differences between both arterial spin-labeling sequences. In summary, these results highlight the need to calibrate arterial spin-labeling sequences.
Collapse
Affiliation(s)
- K-O Lövblad
- From the Divisions of Diagnostic and Interventional Neuroradiology (K.-O.L., M.-L.M., M.V., S.H.)
| | - M-L Montandon
- From the Divisions of Diagnostic and Interventional Neuroradiology (K.-O.L., M.-L.M., M.V., S.H.)
| | - M Viallon
- From the Divisions of Diagnostic and Interventional Neuroradiology (K.-O.L., M.-L.M., M.V., S.H.) CREATIS (M.V.), UMR CNRS 5220-Institut National de la Santé et de la Recherche Médicale U1044, INSA de Lyon, Université de Lyon, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France
| | - C Rodriguez
- Psychiatry (C.R., S.T., P.G.), Geneva University Hospitals, Geneva, Switzerland
| | - S Toma
- Psychiatry (C.R., S.T., P.G.), Geneva University Hospitals, Geneva, Switzerland
| | - X Golay
- Institute of Neurology (X.G.), University College London, London, United Kingdom
| | - P Giannakopoulos
- Psychiatry (C.R., S.T., P.G.), Geneva University Hospitals, Geneva, Switzerland
| | - S Haller
- From the Divisions of Diagnostic and Interventional Neuroradiology (K.-O.L., M.-L.M., M.V., S.H.)
| |
Collapse
|
1561
|
MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR IN BIOMEDICINE 2015; 28:767-791. [PMID: 26010775 DOI: 10.1002/nbm.3322] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Cerebrovascular imaging is of great interest in the understanding of neurological disease. MRI is a non-invasive technology that can visualize and provide information on: (i) the structure of major blood vessels; (ii) the blood flow velocity in these vessels; and (iii) the microcirculation, including the assessment of brain perfusion. Although other medical imaging modalities can also interrogate the cerebrovascular system, MR provides a comprehensive assessment, as it can acquire many different structural and functional image contrasts whilst maintaining a high level of patient comfort and acceptance. The extent of examination is limited only by the practicalities of patient tolerance or clinical scheduling limitations. Currently, MRI methods can provide a range of metrics related to the cerebral vasculature, including: (i) major vessel anatomy via time-of-flight and contrast-enhanced imaging; (ii) blood flow velocity via phase contrast imaging; (iii) major vessel anatomy and tissue perfusion via arterial spin labeling and dynamic bolus passage approaches; and (iv) venography via susceptibility-based imaging. When designing an MRI protocol for patients with suspected cerebral vascular abnormalities, it is appropriate to have a complete understanding of when to use each of the available techniques in the 'MR angiography toolkit'. In this review article, we: (i) overview the relevant anatomy, common pathologies and alternative imaging modalities; (ii) describe the physical principles and implementations of the above listed methods; (iii) provide guidance on the selection of acquisition parameters; and (iv) describe the existing and potential applications of MRI to the cerebral vasculature and diseases. The focus of this review is on obtaining an understanding through the application of advanced MRI methodology of both normal and abnormal blood flow in the cerebrovascular arteries, capillaries and veins.
Collapse
Affiliation(s)
- Matthew Ethan MacDonald
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
1562
|
Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc Natl Acad Sci U S A 2015; 112:8567-72. [PMID: 26124129 DOI: 10.1073/pnas.1510459112] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world.
Collapse
|
1563
|
Liu Y, Zeng X, Wang Z, Zhang N, Fan D, Yuan H. Different post label delay cerebral blood flow measurements in patients with Alzheimer's disease using 3D arterial spin labeling. Magn Reson Imaging 2015; 33:1019-1025. [PMID: 26113261 DOI: 10.1016/j.mri.2015.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 02/14/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate cerebral blood flow (CBF) in patients with Alzheimer's disease (AD) using a three-dimensional pseudocontinuous arterial spin labeling (PCASL). We aimed to study the effects of different post label delay on the resulting CBF maps and to investigate the characteristics and clinical applications of brain perfusion. MATERIALS AND METHODS Sixteen AD patients and nineteen healthy control subjects were recruited. 3D PCASL was performed using a 3.0 T MR scanner. ASL was performed twice with different post label delays (PLD). Comparisons of CBF were made between AD patients and healthy control subjects respectively with PLD of 1.5 s and PLD of 2.5 s. Relationship between the CBF values and cognition was investigated using correlation analysis. A receiver operating characteristic (ROC) curve was generated for CBF measurements in posterior cingulate region. RESULT AD patients with PLD of 1.5 s showed lower CBF values primarily in bilateral temporal lobes, precuneus, middle and posterior cingulate gyri, left inferior parietal gyrus, left angular gyrus and left superior frontal gyrus. Lowered cerebral values were also observed in similar regions with PLD of 2.5 s, but the clusters of voxel were smaller. CBF values were associated with cognition scores in most of gyri mentioned above. CONCLUSION Hypoperfusion areas were observed in AD patients. PLD of 1.5s was sufficient to display CBF. Considering the complicated AD pathology, multiple PLDs are strongly recommended.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Xiangzhu Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Zheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Na Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
1564
|
Binnewijzend MAA, Benedictus MR, Kuijer JPA, van der Flier WM, Teunissen CE, Prins ND, Wattjes MP, van Berckel BNM, Scheltens P, Barkhof F. Cerebral perfusion in the predementia stages of Alzheimer's disease. Eur Radiol 2015; 26:506-14. [PMID: 26040647 PMCID: PMC4712243 DOI: 10.1007/s00330-015-3834-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
Abstract
Objectives To investigate arterial spin-labelling (ASL) cerebral blood flow (CBF) changes in predementia stages of Alzheimer’s disease (AD). Methods Data were obtained from 177 patients with subjective complaints, mild cognitive impairment and AD from the Amsterdam Dementia Cohort. AD stages were based on diagnosis and cerebrospinal fluid biomarkers amyloid-β (Aβ) and total-tau (tau). General-linear-models were used to assess relationships between AD stages and total and regional CBF, correcting for age and sex. Results Decreasing CBF was related to more advanced AD stages in all supratentorial regions (p for trend < 0.05). Post-hoc testing revealed that CBF was lower in AD compared to controls and stage-1 predementia patients (i.e. abnormal Aβ and normal tau) in temporal and parietal regions, and compared to stage-2 predementia patients (i.e. abnormal Aβ and tau) in temporal regions. CBF values of stage-2 predementia patients were numerically in between those of stage-1 predementia patients and AD. Conclusion The continuing decrease of CBF along the continuum of AD indicates the potential of ASL-CBF as a measure for disease progression. Key Points • Decreasing CBF relates to more advanced AD stages in all supratentorial regions. • The reduction of CBF does not reach a bottom level. • ASL-CBF has potential as a measure for disease progression in AD.
Collapse
Affiliation(s)
- Maja A A Binnewijzend
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Alzheimercenter Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Marije R Benedictus
- Department of Neurology, Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Joost P A Kuijer
- Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Niels D Prins
- Department of Neurology, Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Mike P Wattjes
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Alzheimercenter Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Alzheimercenter Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Neuroscience Campus Amsterdam, Alzheimer Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Alzheimercenter Amsterdam, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
1565
|
Calibrated MRI to evaluate cerebral hemodynamics in patients with an internal carotid artery occlusion. J Cereb Blood Flow Metab 2015; 35:1015-23. [PMID: 25712500 PMCID: PMC4640248 DOI: 10.1038/jcbfm.2015.14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to assess whether calibrated magnetic resonance imaging (MRI) can identify regional variances in cerebral hemodynamics caused by vascular disease. For this, arterial spin labeling (ASL)/blood oxygen level-dependent (BOLD) MRI was performed in 11 patients (65±7 years) and 14 controls (66±4 years). Cerebral blood flow (CBF), ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) were evaluated. The CBF was 34±5 and 36±11 mL/100 g per minute in the ipsilateral middle cerebral artery (MCA) territory of the patients and the controls. Arterial spin labeling CVR was 44±20 and 53±10% per 10 mm Hg ▵EtCO2 in patients and controls. The BOLD CVR was lower in the patients compared with the controls (1.3±0.8 versus 2.2±0.4% per 10 mm Hg ▵EtCO2, P<0.01). The OEF was 41±8% and 38±6%, and the CMRO2 was 116±39 and 111±40 μmol/100 g per minute in the patients and the controls. The BOLD CVR was lower in the ipsilateral than in the contralateral MCA territory of the patients (1.2±0.6 versus 1.6±0.5% per 10 mmHg ▵EtCO2, P<0.01). Analysis was hampered in three patients due to delayed arrival time. Thus, regional hemodynamic impairment was identified with calibrated MRI. Delayed arrival artifacts limited the interpretation of the images in some patients.
Collapse
|
1566
|
Mutsaerts HJ, van Osch MJ, Zelaya FO, Wang DJ, Nordhøy W, Wang Y, Wastling S, Fernandez-Seara MA, Petersen E, Pizzini FB, Fallatah S, Hendrikse J, Geier O, Günther M, Golay X, Nederveen AJ, Bjørnerud A, Groote IR. Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies. Neuroimage 2015; 113:143-52. [DOI: 10.1016/j.neuroimage.2015.03.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/23/2015] [Accepted: 03/16/2015] [Indexed: 01/22/2023] Open
|
1567
|
Early-stage differentiation between presenile Alzheimer's disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol 2015; 26:244-53. [PMID: 26024845 PMCID: PMC4666273 DOI: 10.1007/s00330-015-3789-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
Abstract
Objective To investigate arterial spin labeling (ASL)-MRI for the early diagnosis of and differentiation between the two most common types of presenile dementia: Alzheimer’s disease (AD) and frontotemporal dementia (FTD), and for distinguishing age-related from pathological perfusion changes. Methods Thirteen AD and 19 FTD patients, and 25 age-matched older and 22 younger controls underwent 3D pseudo-continuous ASL-MRI at 3 T. Gray matter (GM) volume and cerebral blood flow (CBF), corrected for partial volume effects, were quantified in the entire supratentorial cortex and in 10 GM regions. Sensitivity, specificity and diagnostic performance were evaluated in regions showing significant CBF differences between patient groups or between patients and older controls. Results AD compared with FTD patients had hypoperfusion in the posterior cingulate cortex, differentiating these with a diagnostic performance of 74 %. Compared to older controls, FTD patients showed hypoperfusion in the anterior cingulate cortex, whereas AD patients showed a more widespread regional hypoperfusion as well as atrophy. Regional atrophy was not different between AD and FTD. Diagnostic performance of ASL to differentiate AD or FTD from controls was good (78-85 %). Older controls showed global hypoperfusion compared to young controls. Conclusion ASL-MRI contributes to early diagnosis of and differentiation between presenile AD and FTD. Key Points • ASL-MRI facilitates differentiation of early Alzheimer’s disease and frontotemporal dementia. • Posterior cingulate perfusion is lower in Alzheimer’s disease than frontotemporal dementia. • Compared to controls, Alzheimer’s disease patients show hypoperfusion in multiple regions. • Compared to controls, frontotemporal dementia patients show focal anterior cingulate hypoperfusion. • Global decreased perfusion in older adults differs from hypoperfusion in dementia.
Collapse
|
1568
|
Shin DD, Ozyurt IB, Brown GG, Fennema-Notestine C, Liu TT. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) data repository. Neuroimage 2015; 124:1202-1207. [PMID: 26032887 DOI: 10.1016/j.neuroimage.2015.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Arterial spin labeling (ASL) MRI provides an accurate and reliable measure of cerebral blood flow (CBF). A rapidly growing number of CBF measures are being collected both in clinical and research settings around the world, resulting in a large volume of data across a wide spectrum of study populations and health conditions. Here, we describe a central CBF data repository with integrated processing workflows, referred to as the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN). The CBFBIRN provides an integrated framework for the analysis and comparison of CBF measures across studies and sites. In this work, we introduce the main capabilities of the CBFBIRN (data storage, processing, and sharing), describe what types of data are available, explain how users can contribute to the data repository and access existing data from it, and discuss our long-term plans for the CBFBIRN.
Collapse
Affiliation(s)
- David D Shin
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, CA, USA.
| | - I Burak Ozyurt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gregory G Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Thomas T Liu
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
1569
|
Verclytte S, Lopes R, Lenfant P, Rollin A, Semah F, Leclerc X, Pasquier F, Delmaire C. Cerebral Hypoperfusion and Hypometabolism Detected by Arterial Spin Labeling MRI and FDG-PET in Early-Onset Alzheimer's Disease. J Neuroimaging 2015; 26:207-12. [DOI: 10.1111/jon.12264] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/10/2015] [Accepted: 04/26/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sebastien Verclytte
- Groupement des Hôpitaux de l’Institut Catholique de Lille/Faculté de Médecine et de Maïeutique; Lille France
- Department of Radiology; Hospital Saint-Philibert; Lomme France
| | - Renaud Lopes
- U1171. In-vivo Imaging Platform, Predictive Medicine and Therapeutic Research Institute; Université Lille Nord de France; Lille France
| | | | - Adeline Rollin
- Memory Resources and Research Center; CHU Lille; Lille France
| | - Franck Semah
- Neuroimaging Department; CHU Lille; Lille France
| | - Xavier Leclerc
- Department of Neuroradiology; CHU Lille; Lille France
- U1171. In-vivo Imaging Platform, Predictive Medicine and Therapeutic Research Institute; Université Lille Nord de France; Lille France
| | | | - Christine Delmaire
- Department of Neuroradiology; CHU Lille; Lille France
- U1171. In-vivo Imaging Platform, Predictive Medicine and Therapeutic Research Institute; Université Lille Nord de France; Lille France
| |
Collapse
|
1570
|
Boudiaf N, Attyé A, Warnking JM, Troprès I, Lamalle L, Pietras J, Krainik A. BOLD fMRI of cerebrovascular reactivity in the middle cerebral artery territory: A 100 volunteers' study. J Neuroradiol 2015; 42:338-44. [PMID: 26031884 DOI: 10.1016/j.neurad.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/26/2015] [Accepted: 04/05/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE The assessment of cerebrovascular reactivity (CVR) has shown promising results for its use in medical diagnosis and prognosis, especially in patients suffering from severe intracranial arterial stenosis. However, its quantification remains uncertain because of a large variability inherent in brain anatomy and in methodological settings. To overcome this variability, we provide lateralization index (LI) values for CVR within the middle cerebral artery territory to detect CVR impairment. MATERIALS AND METHODS We assessed CVR in 100 volunteers (41 females; 47.52 ± 21.58 years) without cervico-encephalic arterial stenosis using BOLD-fMRI contrast with a block-design hypercapnic challenge. Averaged end-tidal CO2 was used as a physiological regressor for statistical analyses with a general linear model. We measured %BOLD signal-change in segmented gray matter regions of interest in the middle cerebral artery territory (MCA). We calculated a laterality index according to the following formula: LI=(CVRleft-CVRright)/(CVRleft+CVRright). We tested the effects of methodological settings (i.e. hypercapnic gas, gas administration means, MR acquisition and sex) on %BOLD signal change and LI values with analysis of variance. RESULTS No adverse effects of the hypercapnic challenge were reported. LI values were independent of experimental conditions. Mean LI calculated in MCA territories was 0.016 ± 0.031, giving the lower and upper limits of 95% (m ± 2SD) of this population distribution at]-0.05; 0.08[. CONCLUSION LI can effectively help us to overcome measurement variabilities. Therefore, it can be used to detect abnormal asymmetries in CVR and identify patients at higher risk of ischemic stroke.
Collapse
Affiliation(s)
- Naïla Boudiaf
- Université Grenoble Alpes 3bis, CNRS, LPNC, 38000 Grenoble, France; Université Savoie 3, LPNC, 73000 Chambéry, France.
| | - Arnaud Attyé
- Inserm, université Grenoble Alpes, GIN, CHU de Grenoble, 38000 Grenoble, France; Department of Neuroradiology and MRI, University Hospital of Grenoble-IFR1, Grenoble, France
| | - Jan M Warnking
- Inserm, université Grenoble Alpes, GIN, CHU de Grenoble, 38000 Grenoble, France
| | - Irène Troprès
- Inserm, université Grenoble Alpes, GIN, CHU de Grenoble, 38000 Grenoble, France; Inserm, université Grenoble Alpes, CNRS, IRMaGe, CHU de Grenoble, 38000 Grenoble, France
| | - Laurent Lamalle
- Inserm, université Grenoble Alpes, CNRS, IRMaGe, CHU de Grenoble, 38000 Grenoble, France
| | - Johan Pietras
- Inserm, université Grenoble Alpes, CNRS, IRMaGe, CHU de Grenoble, 38000 Grenoble, France
| | - Alexandre Krainik
- Inserm, université Grenoble Alpes, GIN, CHU de Grenoble, 38000 Grenoble, France; Inserm, université Grenoble Alpes, CNRS, IRMaGe, CHU de Grenoble, 38000 Grenoble, France; Department of Neuroradiology and MRI, University Hospital of Grenoble-IFR1, Grenoble, France
| |
Collapse
|
1571
|
Fazlollahi A, Bourgeat P, Liang X, Meriaudeau F, Connelly A, Salvado O, Calamante F. Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods. Neuroimage 2015; 117:191-201. [PMID: 26026814 DOI: 10.1016/j.neuroimage.2015.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022] Open
Abstract
Arterial spin labeling (ASL) is an emerging MRI technique for non-invasive measurement of cerebral blood flow (CBF). Compared to invasive perfusion imaging modalities, ASL suffers from low sensitivity due to poor signal-to-noise ratio (SNR), susceptibility to motion artifacts and low spatial resolution, all of which limit its reliability. In this work, the effects of various state of the art image processing techniques for addressing these ASL limitations are investigated. A processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, partial volume effect correction, and CBF quantification was developed and assessed. To further improve the SNR for pseudo-continuous ASL (PCASL) by accounting for errors in tagging efficiency, the data from multiphase (MP) acquisitions were analyzed using a novel weighted-averaging scheme. The performances of each step in terms of SNR and reproducibility were evaluated using test-retest ASL data acquired from 12 young healthy subjects. The proposed processing pipeline was shown to improve the within-subject coefficient of variation and regional reproducibility by 17% and 16%, respectively, compared to CBF maps computed following motion correction but without the other processing steps. The CBF measurements of MP-PCASL compared to PCASL had on average 23% and 10% higher SNR and reproducibility, respectively.
Collapse
Affiliation(s)
- Amir Fazlollahi
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia; Le2I, University of Burgundy, Le Creusot, France.
| | - Pierrick Bourgeat
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | | | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Olivier Salvado
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre, Herston, QLD, Australia
| | - Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
1572
|
Liu P, Chalak LF, Krishnamurthy LC, Mir I, Peng SL, Huang H, Lu H. T1 and T2 values of human neonatal blood at 3 Tesla: Dependence on hematocrit, oxygenation, and temperature. Magn Reson Med 2015; 75:1730-5. [PMID: 25981985 DOI: 10.1002/mrm.25775] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE Knowledge of blood T1 and T2 is of major importance in many applications of MRI in neonates. However, to date, there has not been a systematic study to examine neonatal blood T1/T2 relaxometry. This present study aims to investigate this topic. METHODS Using freshly collected blood samples from human umbilical cord, we performed in vitro experiments under controlled physiological conditions to measure blood T1 and T2 at 3 Tesla (T) and their dependence on several factors, including hematocrit (Hct), oxygenation (Y) and temperature. RESULTS The arterial T1 in neonates was 1825 ± 184 ms (Hct = 0.42 ± 0.08), longer than that of adult blood. Neonatal blood T1 was strongly dependent on Hct (P < 0.001) and Y (P = 0.005), and the dependence of T1 on Y was more prominent at higher Hct. The arterial T2 of neonatal blood was 191 ms at an Hct of 0.42, which was also longer than adult blood. Neonatal blood T2 was positively associated with blood oxygenation and negatively associated with hematocrit level, and can be characterized by an exchange model. Neonatal blood T1 was also positively associated with temperature (P < 0.001). CONCLUSION The values provided in this report may provide important reference and calibration information for sequence optimization and quantification of in vivo neonatal MRI studies.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lina F Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa C Krishnamurthy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Imran Mir
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shin-lei Peng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hao Huang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
1573
|
Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients. PLoS One 2015; 10:e0123975. [PMID: 25946055 PMCID: PMC4422723 DOI: 10.1371/journal.pone.0123975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients.
Collapse
|
1574
|
Kang KM, Yun TJ, Yoon BW, Jeon BS, Choi SH, Kim JH, Kim JE, Sohn CH, Han MH. Clinical utility of arterial spin-labeling as a confirmatory test for suspected brain death. AJNR Am J Neuroradiol 2015; 36:909-14. [PMID: 25572951 DOI: 10.3174/ajnr.a4209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023]
Abstract
Diagnosis of brain death is made on the basis of 3 essential findings: coma, absence of brain stem reflexes, and apnea. Although confirmatory tests are not mandatory in most situations, additional testing may be necessary to declare brain death in patients in whom results of specific components of clinical testing cannot be reliably evaluated. Recently, arterial spin-labeling has been incorporated as part of MR imaging to evaluate cerebral perfusion. Advantages of arterial spin-labeling include being completely noninvasive and providing information about absolute CBF. We retrospectively reviewed arterial spin-labeling findings according to the following modified criteria based on previously established confirmatory tests to determine brain death: 1) extremely decreased perfusion in the whole brain, 2) bright vessel signal intensity around the entry of the carotid artery to the skull, 3) patent external carotid circulation, and 4) "hollow skull sign" in a series of 5 patients. Arterial spin-labeling findings satisfied the criteria for brain death in all patients. Arterial spin-labeling imaging has the potential to be a completely noninvasive confirmatory test to provide additional information to assist in the diagnosis of brain death.
Collapse
Affiliation(s)
- K M Kang
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - T J Yun
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - B-W Yoon
- Neurology (B.-W.Y., B.S.J.) Clinical Research Center for Stroke (B.-W.Y., B.S.J.), Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - B S Jeon
- Neurology (B.-W.Y., B.S.J.) Clinical Research Center for Stroke (B.-W.Y., B.S.J.), Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - S H Choi
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - J-H Kim
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | | | - C-H Sohn
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| | - M H Han
- From the Institute of Radiation Medicine (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.), Seoul National University Medical Research Center, Seoul, Republic of Korea Departments of Radiology (K.M.K., T.J.Y., S.H.C., J.-h.K., C.-H.S., M.H.H.)
| |
Collapse
|
1575
|
Shirzadi Z, Crane DE, Robertson AD, Maralani PJ, Aviv RI, Chappell MA, Goldstein BI, Black SE, MacIntosh BJ. Automated removal of spurious intermediate cerebral blood flow volumes improves image quality among older patients: A clinical arterial spin labeling investigation. J Magn Reson Imaging 2015; 42:1377-85. [PMID: 25873287 DOI: 10.1002/jmri.24918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the impact of rejecting intermediate cerebral blood flow (CBF) images that are adversely affected by head motion during an arterial spin labeling (ASL) acquisition. MATERIALS AND METHODS Eighty participants were recruited, representing a wide age range (14-90 years) and heterogeneous cerebrovascular health conditions including bipolar disorder, chronic stroke, and moderate to severe white matter hyperintensities of presumed vascular origin. Pseudocontinuous ASL and T1 -weigthed anatomical images were acquired on a 3T scanner. ASL intermediate CBF images were included based on their contribution to the mean estimate, with the goal to maximize CBF detectability in gray matter (GM). Simulations were conducted to evaluate the performance of the proposed optimization procedure relative to other ASL postprocessing approaches. Clinical CBF images were also assessed visually by two experienced neuroradiologists. RESULTS Optimized CBF images (CBFopt ) had significantly greater agreement with a synthetic ground truth CBF image and greater CBF detectability relative to the other ASL analysis methods (P < 0.05). Moreover, empirical CBFopt images showed a significantly improved signal-to-noise ratio relative to CBF images obtained from other postprocessing approaches (mean: 12.6%; range 1% to 56%; P < 0.001), and this improvement was age-dependent (P = 0.03). Differences between CBF images from different analysis procedures were not perceptible by visual inspection, while there was a moderate agreement between the ratings (κ = 0.44, P < 0.001). CONCLUSION This study developed an automated head motion threshold-free procedure to improve the detection of CBF in GM. The improvement in CBF image quality was larger when considering older participants.
Collapse
Affiliation(s)
- Zahra Shirzadi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E Crane
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Andrew D Robertson
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Pejman J Maralani
- Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Richard I Aviv
- Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Michael A Chappell
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin I Goldstein
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Departments of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,HSF Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
1576
|
Ivkovic M, Reiss-Zimmermann M, Katzen H, Preuss M, Kovanlikaya I, Heier L, Alperin N, Hoffmann KT, Relkin N. MRI assessment of the effects of acetazolamide and external lumbar drainage in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2015; 12:9. [PMID: 25928394 PMCID: PMC4432506 DOI: 10.1186/s12987-015-0004-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
Background The objective was to identify changes in quantitative MRI measures in patients with idiopathic normal pressure hydrocephalus (iNPH) occurring in common after oral acetazolamide (ACZ) and external lumbar drainage (ELD) interventions. Methods A total of 25 iNPH patients from two clinical sites underwent serial MRIs and clinical assessments. Eight received ACZ (125-375 mg/day) over 3 months and 12 underwent ELD for up to 72 hours. Five clinically-stable iNPH patients who were scanned serially without interventions served as controls for the MRI component of the study. Subjects were divided into responders and non-responders to the intervention based on gait and cognition assessments made by clinicians blinded to MRI results. The MRI modalities analyzed included T1-weighted images, diffusion tensor Imaging (DTI) and arterial spin labelling (ASL) perfusion studies. Automated threshold techniques were used to define regions of T1 hypo-intensities. Results Decreased volume of T1-hypointensities and decreased mean diffusivity (MD) within remaining hypointensities was observed after ACZ and ELD but not in controls. Patients responding positively to these interventions had more extensive decreases in T1-hypointensites than non-responders: ACZ-responders (4,651 ± 2,909 mm3), ELD responders (2,338 ± 1,140 mm3), ELD non-responders (44 ± 1,188 mm3). Changes in DTI MD within T1-hypointensities were greater in ACZ-responders (7.9% ± 2%) and ELD-responders (8.2% ± 3.1%) compared to ELD non-responders (2.1% ± 3%). All the acetazolamide-responders showed increases in whole-brain-average cerebral blood flow (wbCBF) estimated by ASL (18.8% ± 8.7%). The only observed decrease in wbCBF (9.6%) occurred in an acetazolamide-non-responder. A possible association between cerebral atrophy and response was observed, with subjects having the least cortical atrophy (as indicated by a positive z-score on cortical thickness measurements) showing greater clinical improvement after ACZ and ELD. Conclusions T1-hypointensity volume and DTI MD measures decreased in the brains of iNPH patients following oral ACZ and ELD. The magnitude of the decrease was greater in treatment responders than non-responders. Despite having different mechanisms of action, both ELD and ACZ may decrease interstitial brain water and increase cerebral blood flow in patients with iNPH. Quantitative MRI measurements appear useful for objectively monitoring response to acetazolamide, ELD and potentially other therapeutic interventions in patients with iNPH.
Collapse
Affiliation(s)
| | | | | | | | | | - Linda Heier
- Weill Cornell Medical College, New York, NY, USA.
| | - Noam Alperin
- University of Miami School of Medicine, Miami, FL, USA.
| | | | | |
Collapse
|
1577
|
Wang Y, Moeller S, Li X, Vu AT, Krasileva K, Ugurbil K, Yacoub E, Wang DJJ. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T. Neuroimage 2015; 113:279-88. [PMID: 25837601 DOI: 10.1016/j.neuroimage.2015.03.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022] Open
Abstract
Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of FMRI Technology (LOFT), Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steen Moeller
- Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiufeng Li
- Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - An T Vu
- Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kate Krasileva
- Laboratory of FMRI Technology (LOFT), Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kamil Ugurbil
- Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Essa Yacoub
- Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
1578
|
Arterial and portal venous liver perfusion using selective spin labelling MRI. Eur Radiol 2015; 25:1529-40. [DOI: 10.1007/s00330-014-3524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/10/2014] [Accepted: 11/18/2014] [Indexed: 01/09/2023]
|
1579
|
Hare HV, Blockley NP, Gardener AG, Clare S, Bulte DP. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T. Neuroimage 2015; 112:189-196. [PMID: 25783207 PMCID: PMC4410945 DOI: 10.1016/j.neuroimage.2015.02.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/16/2015] [Accepted: 02/25/2015] [Indexed: 10/28/2022] Open
Abstract
Gas calibrated fMRI in its most common form uses hypercapnia in conjunction with the Davis model to quantify relative changes in the cerebral rate of oxygen consumption (CMRO2) in response to a functional stimulus. It is most commonly carried out at 3T but, as 7T research scanners are becoming more widespread and the majority of clinical scanners are still 1.5T systems, it is important to investigate whether the model used remains accurate across this range of field strengths. Ten subjects were scanned at 1.5, 3 and 7T whilst performing a bilateral finger-tapping task as part of a calibrated fMRI protocol, and the results were compared to a detailed signal model. Simulations predicted an increase in value and variation in the calibration parameter M with field strength. Two methods of defining experimental regions of interest (ROIs) were investigated, based on (a) BOLD signal and (b) BOLD responses within grey matter only. M values from the latter ROI were in closer agreement with theoretical predictions; however, reassuringly, ROI choice had less impact on CMRO2 than on M estimates. Relative changes in CMRO2 during motor tasks at 3 and 7T were in good agreement but were over-estimated at 1.5T as a result of the lower signal to noise ratio. This result is encouraging for future studies at 7T, but also highlights the impact of imaging and analysis choices (such as ASL sequence and ROI definition) on the calibration parameter M and on the calculation of CMRO2.
Collapse
Affiliation(s)
- Hannah V Hare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Nicholas P Blockley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexander G Gardener
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart Clare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
1580
|
Optimization of brain perfusion image quality by cortical surface-based projection of arterial spin labeling maps in early-onset Alzheimer's disease patients. Eur Radiol 2015; 25:2479-84. [DOI: 10.1007/s00330-015-3652-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
1581
|
Li Z, Schär M, Wang D, Zwart NR, Madhuranthakam AJ, Karis JP, Pipe JG. Arterial spin labeled perfusion imaging using three-dimensional turbo spin echo with a distributed spiral-in/out trajectory. Magn Reson Med 2015; 75:266-73. [PMID: 25754947 DOI: 10.1002/mrm.25645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 11/12/2022]
Abstract
PURPOSE The three-dimensional (3D) spiral turbo spin echo (TSE) sequence is one of the preferred readout methods for arterial spin labeled (ASL) perfusion imaging. Conventional spiral TSE collects the data using a spiral-out readout on a stack of spirals trajectory. However, it may result in suboptimal image quality and is not flexible in protocol design. The goal of this study is to provide a more robust readout technique without such limitation. METHODS The proposed technique incorporates a spiral-in/out readout into 3D TSE, and collects the data on a distributed spirals trajectory. The data set is split into the spiral-in and -out subsets that are reconstructed separately and combined after image deblurring. RESULTS The volunteer results acquired with the proposed technique show no geometric distortion or signal pileup, as is present with GRASE, and no signal loss, as is seen with conventional spiral TSE. Examples also demonstrate the flexibility in changing the imaging parameters to satisfy various criteria. CONCLUSION The 3D TSE with a distributed spiral-in/out trajectory provides a robust readout technique and allows for easy protocol design, thus is a promising alternative to GRASE or conventional spiral TSE for ASL perfusion imaging.
Collapse
Affiliation(s)
- Zhiqiang Li
- Imaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Michael Schär
- Imaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA.,Philips Healthcare, Cleveland, Ohio, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dinghui Wang
- Imaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nicholas R Zwart
- Imaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ananth J Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - John P Karis
- Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - James G Pipe
- Imaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
1582
|
Xu J, Qin Q, Wu D, Hua J, Song X, McMahon MT, Northington FJ, Zhang J, van Zijl PCM, Pekar JJ. Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging. Magn Reson Med 2015; 75:238-48. [PMID: 25732958 DOI: 10.1002/mrm.25641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE A steady pulsed imaging and labeling (SPIL) scheme is proposed to obtain high-resolution multislice perfusion images of mice brain using standard preclinical MRI equipment. THEORY AND METHODS The SPIL scheme repeats a pulsed arterial spin labeling (PASL) module together with a short mixing time to extend the temporal duration of the generated PASL bolus to the total experimental time. Multislice image acquisition takes place during the mixing times. The mixing time is also used for magnetization recovery following image acquisition. The new scheme is able to yield multislice perfusion images rapidly. The perfusion kinetic curve can be measured by a multipulsed imaging and labeling (MPIL) scheme, i.e., acquiring single-slice ASL signals before reaching steady-state in the SPIL sequence. RESULTS When applying the SPIL method to normal mice, and to mice with unilateral ischemia, high-resolution multislice (five slices) CBF images could be obtained in 8 min. Perfusion data from ischemic mice showed clear CBF reductions in ischemic regions. The SPIL method was also applied to postmortem mice, showing that the method is free from magnetization transfer confounds. CONCLUSION The new SPIL scheme provides for robust measurement of CBF with multislice imaging capability in small animals.
Collapse
Affiliation(s)
- Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiaolei Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James J Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
1583
|
Martin SZ, Madai VI, von Samson-Himmelstjerna FC, Mutke MA, Bauer M, Herzig CX, Hetzer S, Günther M, Sobesky J. 3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 Tesla. J Cereb Blood Flow Metab 2015; 35:392-401. [PMID: 25407272 PMCID: PMC4348376 DOI: 10.1038/jcbfm.2014.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/26/2014] [Accepted: 10/22/2014] [Indexed: 11/09/2022]
Abstract
Pulsed arterial spin labeling (PASL) at multiple inflow times (multi-TIs) is advantageous for the measurement of brain perfusion in patients with long arterial transit times (ATTs) as in steno-occlusive disease, because bolus-arrival-time can be measured and blood flow measurements can be corrected accordingly. Owing to its increased signal-to-noise ratio, a combination with a three-dimensional gradient and spin echo (GRASE) readout allows acquiring a sufficient number of multi-TIs within a clinically feasible acquisition time of 5 minutes. We compared this technique with the clinical standard dynamic susceptibility-weighted contrast-enhanced imaging-magnetic resonance imaging in patients with unilateral stenosis >70% of the internal carotid or middle cerebral artery (MCA) at 3 Tesla. We performed qualitative (assessment by three expert raters) and quantitative (region of interest (ROI)/volume of interest (VOI) based) comparisons. In 43 patients, multi-TI PASL-GRASE showed perfusion alterations with moderate accuracy in the qualitative analysis. Quantitatively, moderate correlation coefficients were found for the MCA territory (ROI based: r=0.52, VOI based: r=0.48). In the anterior cerebral artery (ACA) territory, a readout related right-sided susceptibility artifact impaired correlation (ROI based: r=0.29, VOI based: r=0.34). Arterial transit delay artifacts were found only in 12% of patients. In conclusion, multi-TI PASL-GRASE can correct for arterial transit delay in patients with long ATTs. These results are promising for the transfer of ASL to the clinical practice.
Collapse
Affiliation(s)
- Steve Z Martin
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany
| | - Vince I Madai
- 1] Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany [2] Department of Neurology, Charité-Universtitätsmedizin, Berlin, Germany
| | - Federico C von Samson-Himmelstjerna
- 1] Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany [2] Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany
| | - Matthias A Mutke
- 1] Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany [2] Department of Neurology, Charité-Universtitätsmedizin, Berlin, Germany
| | - Miriam Bauer
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany
| | - Cornelius X Herzig
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging (BCAN), Berlin, Germany
| | - Matthias Günther
- 1] Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany [2] Faculty of Physics and Electronics, University of Bremen, Bremen, Germany [3] mediri GmbH, Heidelberg, Germany
| | - Jan Sobesky
- 1] Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin, Berlin, Germany [2] Department of Neurology, Charité-Universtitätsmedizin, Berlin, Germany
| |
Collapse
|
1584
|
Lopez D, Pollak AW, Meyer CH, Epstein FH, Zhao L, Pesch AJ, Jiji R, Kay JR, DiMaria JM, Christopher JM, Kramer CM. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise. J Cardiovasc Magn Reson 2015; 17:23. [PMID: 25890198 PMCID: PMC4336689 DOI: 10.1186/s12968-015-0128-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Assessment of calf muscle perfusion requires a physiological challenge. Exercise and cuff-occlusion hyperemia are commonly used methods, but it has been unclear if one is superior to the other. We hypothesized that post-occlusion calf muscle perfusion (Cuff) with pulsed arterial spin labeling (PASL) cardiovascular magnetic resonance (CMR) at 3 Tesla (T) would yield greater perfusion and improved reproducibility compared to exercise hyperemia in studies of peripheral arterial disease (PAD). METHODS Exercise and Cuff cohorts were independently recruited. PAD patients had an ankle brachial index (ABI) between 0.4-0.9. Controls (NL) had no risk factors and ABI 0.9-1.4. Subjects exercised until exhaustion (15 NL-Ex, 15 PAD-Ex) or had a thigh cuff inflated for 5 minutes (12 NL-Cuff, 11 PAD-Cuff). Peak exercise and average cuff (Cuff mean ) perfusion were compared. Six participants underwent both cuff and exercise testing. Reproducibility was tested in 8 Cuff subjects (5 NL, 3 PAD). RESULTS Controls had greater perfusion than PAD independent of stressor (NL-Ex 74 ± 21 vs. PAD-Ex 43 ± 10, p = 0.01; NL-Cuff mean 109 ± 39 vs. PAD-Cuff mean 34 ± 17 ml/min-100 g, p < 0.001). However, there was no difference between exercise and Cuff mean perfusion within groups (p > 0.6). Results were similar when the same subjects had the 2 stressors performed. Cuff mean had superior reproducibility (Cuff mean ICC 0.98 vs. Exercise ICC 0.87) and area under the receiver operating characteristic curve (Cuff mean 0.992 vs. Exercise 0.905). CONCLUSIONS Cuff hyperemia differentiates PAD patients from controls, as does exercise stress. Cuff mean and exercise calf perfusion values are similar. Cuff occlusion hyperemia has superior reproducibility and thus may be the preferred stressor.
Collapse
Affiliation(s)
- David Lopez
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Amy W Pollak
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Craig H Meyer
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Frederick H Epstein
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Li Zhao
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Arthur J Pesch
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Ronny Jiji
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Jennifer R Kay
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Joseph M DiMaria
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - John M Christopher
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Christopher M Kramer
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
1585
|
Xu F, Liu P, Pekar JJ, Lu H. Does acute caffeine ingestion alter brain metabolism in young adults? Neuroimage 2015; 110:39-47. [PMID: 25644657 DOI: 10.1016/j.neuroimage.2015.01.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 12/23/2022] Open
Abstract
Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors.
Collapse
Affiliation(s)
- Feng Xu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; F. M Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - James J Pekar
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; F. M Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
1586
|
Reproducibility of pharmacological ASL using sequences from different vendors: implications for multicenter drug studies. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 28:427-36. [PMID: 25588906 DOI: 10.1007/s10334-014-0480-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/30/2014] [Accepted: 12/24/2014] [Indexed: 01/08/2023]
Abstract
OBJECT The current study assesses the multicenter feasibility of pharmacological arterial spin labeling (ASL) by comparing a caffeine-induced relative cerebral blood flow decrease (%CBF↓) measured with two pseudo-continuous ASL sequences as provided by two major vendors. MATERIALS AND METHODS Twenty-two healthy volunteers were scanned twice with both a 3D spiral (GE) and a 2D EPI (Philips) sequence. The inter-session reproducibility was evaluated by comparisons of the mean and within-subject coefficient of variability (wsCV) of the %CBF↓, both for the total cerebral gray matter and on a voxel level. RESULTS The %CBF↓ was larger when measured with the 3D spiral sequence (23.9 ± 5.9 %) than when measured with the 2D EPI sequence (19.2 ± 5.6 %) on a total gray matter level (p = 0.02), and on a voxel level in the posterior watershed area (p < 0.001). There was no difference between the gray matter wsCV of the 3D spiral (57.3 %) and 2D EPI sequence (66.7 %, p = 0.3), whereas on a voxel level, the wsCV was visibly different between the sequences. CONCLUSION The observed differences between ASL sequences of both vendors can be explained by differences in the employed readout modules. These differences may seriously hamper multicenter pharmacological ASL, which strongly encourages standardization of ASL implementations.
Collapse
|
1587
|
Fulford J, Vanhatalo A. Reliability of arterial spin labelling measurements of perfusion within the quadriceps during steady-state exercise. Eur J Sport Sci 2015; 16:80-7. [PMID: 25587883 DOI: 10.1080/17461391.2014.997801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Arterial spin labelling (ASL) provides a potential method to non-invasively determine muscle blood flow and examine the impact of interventions such as supplementation and training. However, it's a method with intrinsically low signal, leading to limitations in accuracy and temporal resolution. To examine these limitations, the current study measured perfusion via ASL on three occasions in the rectus femoris of 10 healthy adults, during light and moderate exercise, over three different exercise durations. For data sampled over 9 min, light intensity exercise gave an average perfusion of 35.0 ± 5.1 ml/min.100g(-1) with a coefficient of variation (COV) of 16% and single intraclass correlation coefficient (ICC) of 0.67. For the moderate bout, perfusion was 51.3 ± 5.6 ml/min.100g(-1) (COV 10%, ICC 0.82). When the same data were analyzed over 5 min 24 s, perfusion was 37.8 ± 11.13 (COV 30%, ICC 0.13) during light and 49.5 ± 8.8 ml/min.100g(-1) (COV 18%, ICC 0.52) during moderate exercise. When sampling was reduced to 1 min 48 s, perfusion was 41.2 ± 13.7 (COV 33%, ICC 0.26) during light and 49.5 ± 13.6 ml/min.100g(-1) (COV 28%, ICC 0.04) during moderate exercise. For 9 min a significant perfusion difference was found between the exercise intensities; however, this was not the case for sampling over 5 min 24 s or 1 min 48 s. Such findings illustrate the potential of ASL to non-invasively monitor muscle perfusion under steady-state conditions, but highlight that extended exercise protocols are necessary in order to generate date of sufficient reliability to be able to discriminate intervention dependent perfusion differences.
Collapse
Affiliation(s)
- Jonathan Fulford
- a Exeter NIHR Clinical Research Facility, MRI Unit , University of Exeter Medical School, University of Exeter , Exeter , UK
| | - Anni Vanhatalo
- b Sport and Health Sciences, College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
1588
|
Harston GWJ, Tee YK, Blockley N, Okell TW, Thandeswaran S, Shaya G, Sheerin F, Cellerini M, Payne S, Jezzard P, Chappell M, Kennedy J. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain 2015; 138:36-42. [PMID: 25564491 PMCID: PMC4285197 DOI: 10.1093/brain/awu374] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/08/2014] [Accepted: 10/01/2014] [Indexed: 11/12/2022] Open
Abstract
The original concept of the ischaemic penumbra suggested imaging of regional cerebral blood flow and metabolism would be required to identify tissue that may benefit from intervention. Amide proton transfer magnetic resonance imaging, a chemical exchange saturation transfer technique, has been used to derive cerebral intracellular pH in preclinical stroke models and has been proposed as a metabolic marker of ischaemic penumbra. In this proof of principle clinical study, we explored the potential of this pH-weighted magnetic resonance imaging technique at tissue-level. Detailed voxel-wise analysis was performed on data from a prospective cohort of 12 patients with acute ischaemic stroke. Voxels within ischaemic core had a more severe intracellular acidosis than hypoperfused tissue recruited to the final infarct (P < 0.0001), which in turn was more acidotic than hypoperfused tissue that survived (P < 0.0001). In addition, when confined to the grey matter perfusion deficit, intracellular pH (P < 0.0001), but not cerebral blood flow (P = 0.31), differed between tissue that infarcted and tissue that survived. Within the presenting apparent diffusion coefficient lesion, intracellular pH differed between tissue with early apparent diffusion lesion pseudonormalization and tissue with true radiographic recovery. These findings support the need for further investigation of pH-weighted imaging in patients with acute ischaemic stroke.
Collapse
Affiliation(s)
- George W J Harston
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, UK
| | - Yee Kai Tee
- 2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK 3 Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia
| | - Nicholas Blockley
- 4 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Thomas W Okell
- 4 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Gabriel Shaya
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, UK
| | - Fintan Sheerin
- 5 Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Martino Cellerini
- 5 Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Stephen Payne
- 2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Peter Jezzard
- 4 Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Michael Chappell
- 2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - James Kennedy
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, UK
| |
Collapse
|
1589
|
Ding Y, Choi H, Fan Z, Haacke E, Rastogi R, Xia S, Wang M, Luo Y, Li M, Kwiecien T. Recent advances in magnetic resonance imaging for stroke diagnosis. Brain Circ 2015. [DOI: 10.4103/2394-8108.164996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
1590
|
Mehta RR, Chappell MA. Quantification of errors in cerebral blood flow measurements due to dispersion in arterial spin labelling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:7917-7920. [PMID: 26738128 DOI: 10.1109/embc.2015.7320228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The accuracy of cerebral blood flow (CBF) measurements using arterial spin labelling (ASL) is particularly affected by dispersion. In spite of this, however, the current recommended implementation of ASL - the white paper (WP) - does not account for dispersion, which leads to the introduction of errors in CBF. In fact, these errors are also likely to vary with the arterial transit time (ATT), which is the transport time from the labelling region to the tissue. Using pseudo-continuous ASL, this study assesses a variety of dispersion models in comparison with the WP quantification formula, enabling the errors introduced by the WP to be quantified. In particular, this study shows that the WP quantification only holds for ATTs below 1.25s - and that this ATT value reduces further as dispersion occurs. The levels of dispersion beyond which the WP introduces significant error are also quantified, such that provided the dispersion levels fall below the thresholds determined in this study, the WP can still measure CBF with reasonable accuracy.
Collapse
|
1591
|
Qiao XJ, Ellingson BM, Kim HJ, Wang DJJ, Salamon N, Linetsky M, Sepahdari AR, Jiang B, Tian JJ, Esswein SR, Cloughesy TF, Lai A, Nghiemphu L, Pope WB. Arterial spin-labeling perfusion MRI stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. AJNR Am J Neuroradiol 2014; 36:672-7. [PMID: 25542879 DOI: 10.3174/ajnr.a4196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/27/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma is a common primary brain tumor with a poor but variable prognosis. Our aim was to investigate the feasibility of MR perfusion imaging by using arterial spin-labeling for determining the prognosis of patients with glioblastoma. MATERIALS AND METHODS Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired before surgery on 53 patients subsequently diagnosed with glioblastoma. The calculated CBF color maps were visually evaluated by 3 independent readers blinded to patient history. Pathologic and survival data were correlated with CBF map findings. Arterial spin-labeling values in tumor tissue were also quantified by using manual fixed-size ROIs. RESULTS Two perfusion patterns were characterized by visual evaluation of CBF maps on the basis of either the presence (pattern 1) or absence (pattern 2) of substantial hyperperfused tumor tissue. Evaluation of the perfusion patterns was highly concordant among the 3 readers (κ = 0.898, P < .001). Pattern 1 (versus pattern 2) was associated with significantly shorter progression-free survival by Kaplan-Meier analysis (median progression-free survival of 182 days versus 485 days, P < .01) and trended with shorter overall survival (P = .079). There was a significant association between pattern 1 and epidermal growth factor receptor variant III expression (P < .01). CONCLUSIONS Qualitative evaluation of arterial spin-labeling CBF maps can be used to stratify survival and predict epidermal growth factor receptor variant III expression in patients with glioblastoma.
Collapse
Affiliation(s)
- X J Qiao
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - B M Ellingson
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - H J Kim
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - D J J Wang
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - N Salamon
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - M Linetsky
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - A R Sepahdari
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - B Jiang
- Department of Radiology (B.J.), Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J J Tian
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - S R Esswein
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - T F Cloughesy
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - A Lai
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - L Nghiemphu
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - W B Pope
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| |
Collapse
|
1592
|
Stewart SB, Koller JM, Campbell MC, Black KJ. Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2014; 2:e687. [PMID: 25538867 PMCID: PMC4266850 DOI: 10.7717/peerj.687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022] Open
Abstract
A carefully controlled study allowed us to compare the sensitivity of ASL (arterial spin labeling) and BOLD (blood oxygen level dependent) fMRI for detecting the effects of the adenosine A2a antagonist tozadenant in Parkinson disease. The study compared the effect of drug directly or the interaction of the drug with a cognitive task. Only ASL detected the direct effect of tozadenant. BOLD was more sensitive to the cognitive task, which (unlike most drugs) allows on–off comparisons over short periods of time. Neither ASL nor BOLD could detect a cognitive-pharmacological interaction. These results are consistent with the known relative advantages of each fMRI method, and suggest that for drug development, directly imaging pharmacodynamic effects with ASL may have advantages over cognitive-pharmacological interaction BOLD, which has hitherto been the more common approach to pharmacological fMRI.
Collapse
Affiliation(s)
- Stephanie B Stewart
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA
| | - Meghan C Campbell
- Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine , St Louis, MO , USA ; Division of Biology and Biomedical Sciences, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|
1593
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
1594
|
Castellaro M, Peruzzo D, Mehndiratta A, Pillonetto G, Petersen ET, Golay X, Chappell MA, Bertoldo A. Estimation of arterial arrival time and cerebral blood flow from QUASAR arterial spin labeling using stable spline. Magn Reson Med 2014; 74:1758-67. [PMID: 25427245 DOI: 10.1002/mrm.25525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/01/2014] [Accepted: 10/20/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE QUASAR arterial spin labeling (ASL) permits the application of deconvolution approaches for the absolute quantification of cerebral perfusion. Currently, oscillation index regularized singular value decomposition (oSVD) combined with edge-detection (ED) is the most commonly used method. Its major drawbacks are nonphysiological oscillations in the impulse response function and underestimation of perfusion. The aim of this work is to introduce a novel method to overcome these limitations. METHODS A system identification method, stable spline (SS), was extended to address ASL peculiarities such as the delay in arrival of the arterial blood in the tissue. The proposed framework was compared with oSVD + ED in both simulated and real data. SS was used to investigate the validity of using a voxel-wise tissue T1 value instead of using a single global value (of blood T1 ). RESULTS SS outperformed oSVD + ED in 79.9% of simulations. When applied to real data, SS exhibited a physiologically realistic range for perfusion and a higher mean value with respect to oSVD + ED (55.5 ± 9.5 SS, 34.9 ± 5.2 oSVD + ED mL/100 g/min). CONCLUSION SS can represent an alternative to oSVD + ED for the quantification of QUASAR ASL data. Analysis of the retrieved impulse response function revealed that using a voxel wise tissue T1 might be suboptimal.
Collapse
Affiliation(s)
- Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Denis Peruzzo
- Department of Neuroimaging, Research institute IRCCS "E. Medea", Bosisio Parini, LC, Italy
| | - Amit Mehndiratta
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, India
| | | | - Esben Thade Petersen
- Departments of Radiology and Radiotherapy, University Medical Center, Utrecht, Netherlands
| | - Xavier Golay
- University College London, Institute of Neurology, London, United Kingdom
| | - Michael A Chappell
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
1595
|
Jann K, Gee DG, Kilroy E, Schwab S, Smith RX, Cannon TD, Wang DJJ. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks. Neuroimage 2014; 106:111-22. [PMID: 25463468 DOI: 10.1016/j.neuroimage.2014.11.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022] Open
Abstract
Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain's intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2 × 2 × 2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test-retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905 ± 0.033 between-sessions; 0.885 ± 0.052 between-scanners) than ASL (0.545 ± 0.048; 0.575 ± 0.059). Nevertheless, ASL provided highly reproducible (0.955 ± 0.021; 0.970 ± 0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners.
Collapse
Affiliation(s)
- Kay Jann
- Department of Neurology, UCLA, 90025 Los Angeles, USA.
| | - Dylan G Gee
- Department of Psychology, UCLA, 90025 Los Angeles, USA
| | - Emily Kilroy
- Department of Neurology, UCLA, 90025 Los Angeles, USA
| | - Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University Bern, 3000 Bern 60, Switzerland
| | | | - Tyrone D Cannon
- Department of Psychology, Yale University, 06520 New Haven, USA
| | | |
Collapse
|
1596
|
Idiopathic normal pressure hydrocephalus: cerebral perfusion measured with pCASL before and repeatedly after CSF removal. J Cereb Blood Flow Metab 2014; 34:1771-8. [PMID: 25138210 PMCID: PMC4269752 DOI: 10.1038/jcbfm.2014.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/08/2022]
Abstract
Pseudo-continuous arterial spin labeling (pCASL) measurements were performed in 20 patients with idiopathic normal pressure hydrocephalus (iNPH) to investigate whether cerebral blood flow (CBF) increases during the first 24 hours after a cerebrospinal fluid tap test (CSF TT). Five pCASL magnetic resonance imaging (MRI) scans were performed. Two scans were performed before removal of 40 mL CSF, and the other three at 30 minutes, 4 hours, and 24 hours, respectively after the CSF TT. Thirteen different regions of interest (ROIs) were manually drawn on coregistered MR images. In patients with increased CBF in lateral and frontal white matter after the CSF TT, gait function improved more than it did in patients with decreased CBF in these regions. However, in the whole sample, there was no significant increase in CBF after CSF removal compared with baseline investigations. The repeatability of CBF measurements at baseline was high, with intraclass correlation coefficients of 0.60 to 0.90 for different ROIs, but the median regional variability was in the range of 5% to 17%. Our results indicate that CBF in white matter close to the lateral ventricles plays a role in the reversibility of symptoms after CSF removal in patients with iNPH.
Collapse
|
1597
|
Li X, Wang D, Auerbach EJ, Moeller S, Ugurbil K, Metzger GJ. Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. Neuroimage 2014; 106:170-81. [PMID: 25462690 DOI: 10.1016/j.neuroimage.2014.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022] Open
Abstract
Multi-band echo planar imaging (MB-EPI), a new approach to increase data acquisition efficiency and/or temporal resolution, has the potential to overcome critical limitations of standard acquisition strategies for obtaining high-resolution whole brain perfusion imaging using arterial spin labeling (ASL). However, the use of MB also introduces confounding effects, such as spatially varying amplified thermal noise and leakage contamination, which have not been evaluated to date as to their effect on cerebral blood flow (CBF) estimation. In this study, both the potential benefits and confounding effects of MB-EPI were systematically evaluated through both simulation and experimentally using a pseudo-continuous arterial spin labeling (pCASL) strategy. These studies revealed that the amplified noise, given by the geometry factor (g-factor), and the leakage contamination, assessed by the total leakage factor (TLF), have a minimal impact on CBF estimation. Furthermore, it is demonstrated that MB-EPI greatly benefits high-resolution whole brain pCASL studies in terms of improved spatial and temporal signal-to-noise ratio efficiencies, and increases compliance with the assumptions of the commonly used single blood compartment model, resulting in improved CBF estimates.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - Dingxin Wang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Siemens Healthcare, Minneapolis, MN, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
1598
|
Jahng GH, Li KL, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 2014; 15:554-77. [PMID: 25246817 PMCID: PMC4170157 DOI: 10.3348/kjr.2014.15.5.554] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/05/2014] [Indexed: 12/16/2022] Open
Abstract
Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.
Collapse
Affiliation(s)
- Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 134-727, Korea
| | - Ka-Loh Li
- Wolfson Molecular Imaging Center, The University of Manchester, Manchester M20 3LJ, UK
| | - Leif Ostergaard
- Center for Functionally Integrative Neuroscience, Department of Neuroradiology, Aarhus University Hospital, Aarhus C 8000, Denmark
| | - Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
1599
|
Wiest R, Abela E, Missimer J, Schroth G, Hess CW, Sturzenegger M, Wang DJJ, Weder B, Federspiel A. Interhemispheric cerebral blood flow balance during recovery of motor hand function after ischemic stroke--a longitudinal MRI study using arterial spin labeling perfusion. PLoS One 2014; 9:e106327. [PMID: 25191858 PMCID: PMC4156327 DOI: 10.1371/journal.pone.0106327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. OBJECTIVE To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. METHODS Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. RESULTS Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. CONCLUSIONS Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.
Collapse
Affiliation(s)
- Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- * E-mail:
| | - Eugenio Abela
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - John Missimer
- Paul Scherrer Institute, Laboratory of Biomolecular Research, Villigen, Switzerland
| | - Gerhard Schroth
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Christian W. Hess
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Matthias Sturzenegger
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Danny J. J. Wang
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bruno Weder
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| |
Collapse
|
1600
|
Boudes E, Gilbert G, Leppert IR, Tan X, Pike GB, Saint-Martin C, Wintermark P. Measurement of brain perfusion in newborns: pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL). NEUROIMAGE-CLINICAL 2014; 6:126-33. [PMID: 25379424 PMCID: PMC4215516 DOI: 10.1016/j.nicl.2014.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. OBJECTIVE To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. DESIGN/METHODS We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. RESULTS A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). CONCLUSION This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures.
Collapse
Affiliation(s)
- Elodie Boudes
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| | | | | | - Xianming Tan
- Center for Innovative Medicine, Research Institute, McGill University Health Centre, Montreal, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada ; Department of Radiology, University of Calgary, Calgary, Canada
| | - Christine Saint-Martin
- Department of Radiology, Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| |
Collapse
|