1601
|
Devane WA, Axelrod J. Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc Natl Acad Sci U S A 1994; 91:6698-701. [PMID: 8022836 PMCID: PMC44270 DOI: 10.1073/pnas.91.14.6698] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anandamide, an endogenous eicosanoid derivative (arachidonoylethanolamide), binds to the cannabinoid receptor, a member of the G protein-coupled superfamily. It also inhibits both adenylate cyclase and N-type calcium channel opening. The enzymatic synthesis of anandamide in bovine brain tissue was examined by incubating brain membranes with [14C]ethanolamine and arachidonic acid. Following incubation and extraction into toluene, a radioactive product was identified which had the same Rf value as authentic anandamide in several thin-layer chromatographic systems. When structurally similar fatty acid substrates were compared, arachidonic acid exhibited the lowest EC50 and the highest activity for enzymatic formation of the corresponding ethanolamides. The concentration-response curve of arachidonic acid exhibited a steep slope, and at higher concentrations arachidonate inhibited enzymatic activity. When brain homogenates were separated into subcellular fractions by sucrose density gradient centrifugation, anandamide synthase activity was highest in fractions enriched in synaptic vesicles, myelin, and microsomal and synaptosomal membranes. When several areas of brain were examined, anandamide synthase activity was found to be highest in the hippocampus, followed by the thalamus, cortex, and striatum, and lowest in the cerebellum, pons, and medulla. The ability of brain tissue to enzymatically synthesize anandamide and the existence of specific receptors for this eicosanoid suggest the presence of anandamide-containing (anandaergic) neurons.
Collapse
Affiliation(s)
- W A Devane
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892
| | | |
Collapse
|
1602
|
Basu D, Malhotra A, Varma VK. Cannabis related psychiatric syndromes: a selective review. Indian J Psychiatry 1994; 36:121-8. [PMID: 21743686 PMCID: PMC2972478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Association between cannabis use and various psychiatric syndromes does exist, but their nature remains elusive. Cannabis intoxication, 'cannabis psychosis' and certain other conditions related with cannabis use like flashbacks and prolonged depersonalization are discussed in this paper. The controversial nature of the cannabis - schizophrenia link is noted, and various methodological issues in clinical cannabis research are highlighted.
Collapse
Affiliation(s)
- D Basu
- Debasish Basu, MD, DNB, Assistant Professor of Psychiatry, Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh - 160 012
| | | | | |
Collapse
|
1603
|
Kinoshita H, Hasegawa T, Katsumata Y, Kameyama T, Yamamoto I, Nabeshima T. Effect of dizocilpine (MK-801) on the catalepsy induced by delta 9-tetrahydrocannabinol in mice. J Neural Transm (Vienna) 1994; 95:137-43. [PMID: 7865168 DOI: 10.1007/bf01276432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mice treated with delta 9-tetrahydrocannabinol (THC; 5 and 10 mg/kg i.v.) showed the catalepsy in high bar test, and median descent latencies of catalepsy were about 150 sec. Dizocilpine (MK-801, 0.05 and 0.1 mg/kg), non-competitive N-methyl-D-aspartate (NMDA) antagonist, significantly attenuated THC-induced catalepsy. Furthermore, the anticataleptic effect of MK-801 on THC-induced catalepsy was blocked by acetylcholine agonist oxotremorine (0.005 mg/kg) and dopamine antagonist haloperidol (0.01 mg/kg), but not by NMDA. Oxotremorine, haloperidol, and NMDA themselves did not affect THC-induced catalepsy at the doses used. These results suggest that the anticataleptic effect of MK-801 on THC-induced catalepsy may be developed through dopaminergic and acetylcholinergic neuronal systems.
Collapse
Affiliation(s)
- H Kinoshita
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
1604
|
Pacheco MA, Ward SJ, Childers SR. Differential requirements of sodium for coupling of cannabinoid receptors to adenylyl cyclase in rat brain membranes. J Neurochem 1994; 62:1773-82. [PMID: 8158127 DOI: 10.1046/j.1471-4159.1994.62051773.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sodium is generally required for optimal inhibition of adenylyl cyclase by Gi/o-coupled receptors. Cannabinoids bind to specific receptors that act like other members of the Gi/o-coupled receptor superfamily to inhibit adenylyl cyclase. However, assay of cannabinoid inhibition of adenylyl cyclase in rat cerebellar membranes revealed that concentrations of NaCl ranging from 0 to 150 mM had no effect on agonist inhibition. This lack of effect of sodium was not unique to cannabinoid receptors, because the same results were observed using baclofen as an agonist for GABAB receptors in cerebellar membranes. The lack of sodium dependence was region-specific, because assay of cannabinoid and opioid inhibition of adenylyl cyclase in striatum revealed an expected sodium dependence, with 50 mM NaCl providing maximal inhibition levels by both sets of agonists. This difference in sodium requirements between these two regions was maintained at the G protein level, because agonist-stimulated low Km GTPase activity was maximal at 50 mM NaCl in striatal membranes, but was maximal in the absence of NaCl in cerebellar membranes. Assay of [3H]WIN 55212-2 binding in cerebellar membranes revealed that the binding of this labeled agonist was sensitive to sodium and guanine nucleotides like other Gi/o-coupled receptors, because both NaCl and the nonhydrolyzable GTP analogue Gpp(NH)p significantly inhibited binding. These results suggest that differences in receptor-G protein coupling exist for cannabinoid receptors between these two brain regions.
Collapse
Affiliation(s)
- M A Pacheco
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27157
| | | | | |
Collapse
|
1605
|
Navarro M, Rodríguez de Fonseca F, Hernández ML, Ramos JA, Fernández-Ruiz JJ. Motor behavior and nigrostriatal dopaminergic activity in adult rats perinatally exposed to cannabinoids. Pharmacol Biochem Behav 1994; 47:47-58. [PMID: 7906890 DOI: 10.1016/0091-3057(94)90110-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently reported several neurochemical alterations, measured at perinatal and peripubertal ages, in the maturation of nigrostriatal dopaminergic neurons following perinatal hashish exposure. In the present work, we tried to undertake whether these neurochemical changes during ontogeny: a) were accompanied by changes of motor behavior, the main neurobiological process regulated by nigrostriatal dopaminergic neurons; and b) persisted in adulthood, leading to disturbances in the expression of an adult motor activity. To this end, two different experiments were performed. In the first, we examined, by using an actimeter, the ontogeny of spontaneous locomotor activity in immature male and female rats born from mothers perinatally exposed to hashish extract. Results showed a complete absence of significant changes in locomotor activity in females, whereas males presented a constant trend to decrease, although never statistically significant, at all ages studied as a consequence of the perinatal cannabinoid exposure. In the second experiment, we evaluated neurochemical indices--dopamine (DA) and L-3,4-dihydroxyphenylacetic acid (DOPAC) contents, tyrosine hydroxylase (TH) activity, and number and affinity of D1 and D2 dopaminergic receptors in the striatum--and behavioral parameters--spontaneous locomotor activity and spontaneous and induced stereotypic behavior--both indicating nigrostriatal dopaminergic activity, in adult female and male rats perinatally exposed to hashish extract. Results were as follows. The spontaneous locomotor activity, measured in the actimeter, was not affected by perinatal hashish exposure in both adult males and females. This was also seen in an open-field test as measured by total number of sector crossings. However, when differentiated between internal and external sectors hashish-exposed males presented a higher number of external crossings than controls, which did not appear in females. Moreover, several induced stereotypic behaviors, such as self-grooming and shaking induced by water spraying, were also altered by hashish treatment in a sexually dimorphic manner, whereas the number of spontaneous rears and self-grooms, measured in the open-field test, was unchanged. Thus, the frequency of water spraying-induced self-grooming was significantly increased in both males and females perinatally exposed to hashish, although the increase was more marked in males (200.4%) than females (121.2%). In addition, the frequency of shaking was also markedly increased in males but remained unchanged in females. These behavioral effects were paralleled by modifications in striatal neurochemical parameters. Thus, there was a significant increase in the DOPAC/DA ratio, indicating increased presynaptic activity, in females perinatally exposed to hashish, but compensated by a lower density of D1 receptors.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Navarro
- Department of Psychobiology, Faculty of Psychology, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
1606
|
Martin BR, Welch SP, Abood M. Progress toward understanding the cannabinoid receptor and its second messenger systems. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 25:341-97. [PMID: 8204506 DOI: 10.1016/s1054-3589(08)60437-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B R Martin
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | | | |
Collapse
|
1607
|
Chang MC, Berkery D, Schuel R, Laychock SG, Zimmerman AM, Zimmerman S, Schuel H. Evidence for a cannabinoid receptor in sea urchin sperm and its role in blockade of the acrosome reaction. Mol Reprod Dev 1993; 36:507-16. [PMID: 8305215 DOI: 10.1002/mrd.1080360416] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Delta-9-tetrahydrocannabinol ((-)delta 9 THC), the primary psychoactive cannabinoid in marihuana, reduces the fertilizing capacity of sea urchin sperm by blocking the acrosome reaction that normally is stimulated by a specific ligand in the egg's jelly coat. The bicyclic synthetic cannabinoid [3H]CP-55,940 has been used as a ligand to demonstrate the presence of a cannabinoid receptor in mammalian brain. We now report that [3H]CP-55,940 binds to live sea urchin (Strongylocentrotus purpuratus) sperm in a concentration, sperm density, and time-dependent manner. Specific binding of [3H]CP-55,940 to sperm, defined as total binding displaced by (-)delta 9THC, was saturable: KD 5.16 +/- 1.02 nM; Hill coefficient 0.98 +/- 0.004. This suggests a single class of receptor sites and the absence of significant cooperative interactions. Sea urchin sperm contain 712 +/- 122 cannabinoid receptors per cell. Binding of [3H]CP-55,940 to sperm was reduced in a dose-dependent manner by increasing concentrations of CP-55,940, (-)delta 9THC, and (+)delta 9THC. The rank order of potency to inhibit binding of [3H]CP-55,940 to sperm and to block the egg jelly stimulated acrosome reaction was: CP-55,940 > (-)delta 9THC > (+)delta 9THC. These findings show that sea urchin sperm contain a stereospecific cannabinoid receptor that may play a role in inhibition of the acrosome reaction. The radioligand binding data obtained with live sea urchin sperm are remarkably similar to those previously published by other investigators using [3H]CP-55,940 on mammalian brain and nonneural tissues. The cannabinoid binding properties of this receptor appear to have been highly conserved during evolution. We postulate that the cannabinoid receptor may modulate cellular responses to stimulation.
Collapse
Affiliation(s)
- M C Chang
- Department of Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York 14214
| | | | | | | | | | | | | |
Collapse
|
1608
|
Mailleux P, Vanderhaeghen JJ. Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem 1993; 61:1705-12. [PMID: 7901331 DOI: 10.1111/j.1471-4159.1993.tb09807.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By quantitative in situ hybridization, we examined in vivo in the rat caudate-putamen the effects on levels of cannabinoid receptor mRNA of an interruption of dopamine neurotransmission for up to 1 month, by either 6-hydroxydopamine lesioning of the medial forebrain bundle or dopamine receptor blockade. We found, in a first set of experiments, that unilateral 6-hydroxydopamine dopaminergic deafferentation of the striatum (characterized by a contralateral turning behavior in response to apomorphine, the almost complete disappearance of the tyrosine hydroxylase hybridization signal in the substantia nigra, and an increase of preproenkephalin A mRNA level in the striatum) was associated with significantly increased (45%) cannabinoid receptor mRNA levels in the homolateral caudate-putamen. In a second set of experiments, treatments with the dopamine D1 receptor antagonist SCH-23390, haloperidol, and the D2 receptor antagonist sulpiride induced significantly higher cannabinoid receptor mRNA levels (respectively, 67, 34, and 27%) in the caudate-putamen. These observations suggest for the first time that, in vivo, cannabinoid receptor gene expression in the caudate-putamen is under the negative control of dopamine receptor-mediated events.
Collapse
Affiliation(s)
- P Mailleux
- Laboratory of Neurosciences, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
1609
|
Molina-Holgado F, Molina-Holgado E, Leret ML, González MI, Reader TA. Distribution of indoleamines and [3H]paroxetine binding in rat brain regions following acute or perinatal delta 9-tetrahydrocannabinol treatments. Neurochem Res 1993; 18:1183-91. [PMID: 7504790 DOI: 10.1007/bf00978372] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of delta 9-tetrahydrocannabinol (delta 9-THC) administration on the central serotoninergic system were evaluated by biochemical assays of tissue levels of indoleamines; a measure of the serotonin (5-HT) innervation was obtained by using [3H]paroxetine as a marker of 5-HT uptake sites. Two different delta 9-THC treatments were chosen, i.e.: acute and chronic perinatal maternal exposure. Following acute treatment (5 mg/kg), the 5-HT content increased in dorsal hippocampus (+35%), Substantia nigra (+61%) and neostriatum (+62%) but remained unchanged in cingulate cortex, Raphe nuclei, Locus coeruleus and anterior hypothalamus. Endogenous 5-hydroxyindole-3-acetic acid (5-HIAA) decreased in anterior hypothalamus (-23%) and Raphe nuclei (-21%). Following maternal exposure to delta 9-THC (5 mg/kg per day; from gestational day 13 to postnatal day 7), levels of 5-HT were increased in the neostriatum (+22%) but decreased in anterior hypothalamus (-25%), Raphe nuclei (-29%) and Locus coeruleus (-20%) of the litters. Tissue 5-HIAA was increased in anterior hypothalamus (+23%) and Substantia nigra (+48%). There were no changes in 5-HT uptake site density, determined by [3H]paroxetine binding, except for an increase (+50%) in the cingulate cortex of perinatal-treated rats when compared to acutely-treated animals. The present results show that acute and maternal exposure to delta 9-THC produced different effects on the central 5-HT system of the offspring, with a clear regional specificity, but with no changes in the densities of 5-HT uptake sites.
Collapse
Affiliation(s)
- F Molina-Holgado
- Departamento de Biología Animal II, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|
1610
|
Navarro M, Fernández-Ruiz JJ, de Miguel R, Hernández ML, Cebeira M, Ramos JA. An acute dose of delta 9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav Brain Res 1993; 57:37-46. [PMID: 8292253 DOI: 10.1016/0166-4328(93)90059-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cannabinoid consumption has been reported to affect several neurotransmitter systems and their related behaviors. The present study has been designed to examine cannabinoid effects on certain behaviors, which have been currently located in the limbic forebrain, in parallel to their effects on mesolimbic dopaminergic neurons. To this end, male rats treated with an oral dose of delta 9-tetrahydrocannabinol (THC) or vehicle were used 1 h after treatment for two different behavioral tests or neurochemical analyses of mesolimbic dopaminergic activity. Treatments, behavioral tests and sacrifice were performed in the dark phase of photoperiod because it corresponds to the maximum behavioral expression in the rat. Behavioral tests were a dark-light emergence test, which allows measurements of emotional reactivity, and a socio-sexual approach behavior test, which allows measurements of sexual motivation and also of spontaneous and stereotypic activities. Neurochemical analyses consisted of measurements of dopamine (DA) and L-3,4-dihydroxyphenylacetic acid (DOPAC) contents, tyrosine hydroxylase activity, in vitro DA release and number and affinity of D1 receptors in the limbic forebrain. Results were as follows. THC exposure markedly altered the pattern executed by the animals in both tests. Concretely, THC-exposed animals exhibited a low number of visits to an incentive female in addition to high time spent in the vicinity of an incentive male, both observed in the socio-sexual approach behavior test, and an increased emergence latency to go out of a dark compartment in the dark-light emergence test. However, the fact that THC also decreased spontaneous activity and the frequency of rearing and self-grooming behaviors, in addition to the observations of either low total number of visits to both incentive sexual areas or high escape latency to go out of a light compartment, when the animal is placed in this compartment, also suggest the possible existence of an accompanying motor deficit. These behavioral effects were accompanied by increases in DA and DOPAC contents and in D1 receptor density in the limbic forebrain and to a slight decrease in the pattern of K(+)-evoked DA release in vitro from perifused limbic fragments, with no changes in the remaining neurochemical parameters. Collectively, these results allow us to conclude that acute THC markedly altered the behavioral pattern executed by the animals in a socio-sexual approach behavior test and in a dark-light emergence test, presumably indicating loss of sexual motivation and increased emotionality, although also accompanied by motor deficiencies.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Navarro
- Department of Psychobiology, Faculty of Psychology, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
1611
|
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365:61-5. [PMID: 7689702 DOI: 10.1038/365061a0] [Citation(s) in RCA: 3639] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The major active ingredient of marijuana, delta 9-tetrahydrocannabinol (delta 9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and delta 9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of vomiting. The clinical application of cannabinoids has, however, been limited by their psychoactive effects, and this has led to interest in the biochemical bases of their action. Progress stemmed initially from the synthesis of potent derivatives of delta 9-THC, and more recently from the cloning of a gene encoding a G-protein-coupled receptor for cannabinoids. This receptor is expressed in the brain but not in the periphery, except for a low level in testes. It has been proposed that the nonpsychoactive effects of cannabinoids are either mediated centrally or through direct interaction with other, non-receptor proteins. Here we report the cloning of a receptor for cannabinoids that is not expressed in the brain but rather in macrophages in the marginal zone of spleen.
Collapse
Affiliation(s)
- S Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
1612
|
Vogel Z, Barg J, Levy R, Saya D, Heldman E, Mechoulam R. Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J Neurochem 1993; 61:352-5. [PMID: 8515284 DOI: 10.1111/j.1471-4159.1993.tb03576.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A putative endogenous cannabinoid ligand, arachidonylethanolamide (termed "anandamide"), was isolated recently from porcine brain. Here we demonstrate that this compound is a specific cannabinoid agonist and exerts its action directly via the cannabinoid receptors. Anandamide specifically binds to membranes from cells transiently (COS) or stably (Chinese hamster ovary) transfected with an expression plasmid carrying the cannabinoid receptor DNA but not to membranes from control nontransfected cells. Moreover, anandamide inhibited the forskolin-stimulated adenylate cyclase in the transfected cells and in cells that naturally express cannabinoid receptors (N18TG2 neuroblastoma) but not in control nontransfected cells. As with exogenous cannabinoids, the inhibition by anandamide of the forskolin-stimulated adenylate cyclase was blocked by treatment with pertussis toxin. These data indicate that anandamide is an endogenous agonist that may serve as a genuine neurotransmitter for the cannabinoid receptor.
Collapse
Affiliation(s)
- Z Vogel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
1613
|
Bonnin A, Fernández-Ruiz JJ, Martín M, Rodríguez de Fonseca F, Hernández ML, Ramos JA. delta 9-Tetrahydrocannabinol affects mesolimbic dopaminergic activity in the female rat brain: interactions with estrogens. J Neural Transm (Vienna) 1993; 92:81-95. [PMID: 8103663 DOI: 10.1007/bf01244868] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this work, we studied the possible estrogenic modulation of the effects of delta 9-tetrahydrocannabinol (THC) on mesolimbic dopaminergic activity, by examining the effects of an acute dose of this cannabinoid: (i) during the estrous cycle; (ii) after ovariectomy, chronic estrogen-replacement and tamoxifen (TMX)-induced blockade of estrogenic receptors; and (iii) combined with a single and physiological injection of estradiol to ovariectomized rats. THC significantly decreased the density of D 1 dopaminergic receptors and non-significantly increased the L-3,4-dihydroxyphenylacetic acid (DOPAC) content in the limbic forebrain of ovariectomized rats chronically replaced with estrogens. The decrease in D 1 receptors was also produced by TMX, whereas the coadministration of both THC and TMX did not lead to a major decrease. In addition to the trend of THC increasing DOPAC content, this cannabinoid was also able to increase the ratio between DOPAC and dopamine, although this last effect only occurred after coadministration of THC and TMX, which had been ineffective administered individually. All these effects were not seen when THC was administered to normal cycling rats during each phase of estrous cycle and to ovariectomized rats without chronic estrogen replacement or only submitted to a single and acute dose of estradiol. This observation might be related to the fact that the density of limbic cannabinoid receptors increased in chronic estrogen-replaced ovariectomized rats versus normal cycling, ovariectomized or acutely estrogen-treated ovariectomized rats. Interestingly, THC administration in ovariectomized rats was followed by a slight, although significant, increase in tyrosine hydroxylase activity, which was also observed after coadministration of THC with a short-time and acute dose of estradiol. In summary, THC stimulated the presynaptic activity of mesolimbic dopaminergic neurons, but accompanied by a decrease in their postsynaptic sensitivity. These effects did not appear in normal cycling rats being only evident after ovariectomy and chronic estrogen replacement, which might be related to changes in binding characteristics of cannabinoid receptors in this area. Moreover, some of them appeared after TMX-induced blockade of estrogenic cytosolic receptors, which likely suggests the existence of a certain estrogenic modulation of the actions of THC on mesolimbic neurons. On the contrary, coadministration of THC with a single and shortly tested dose of estradiol was always ineffective in modifying THC effects.
Collapse
Affiliation(s)
- A Bonnin
- Department of Biochemistry, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
1614
|
Navarro M, Fernández-Ruiz JJ, De Miguel R, Hernández ML, Cebeira M, Ramos JA. Motor disturbances induced by an acute dose of delta 9-tetrahydrocannabinol: possible involvement of nigrostriatal dopaminergic alterations. Pharmacol Biochem Behav 1993; 45:291-8. [PMID: 8392200 DOI: 10.1016/0091-3057(93)90241-k] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exposure to cannabinoids has been reported to affect several neurotransmitter systems and their related behaviors. The present study has been designed to further explore the effects of cannabinoids on motor behavior and test the involvement of nigrostriatal dopaminergic neurotransmission and other neurotransmitters as possible neurochemical targets for these cannabinoid effects. Male rats treated with an oral dose of delta 9-tetrahydrocannabinol (THC), the main psychoactive ingredient of cannabinoid derivatives, or vehicle were used 1 h after treatment for analyses of spontaneous motor and stereotypic activities together with neurochemical analyses of the nigrostriatal dopaminergic activity. Treatments and analyses were performed in the dark phase of photoperiod because it corresponds to the maximum behavioral expression in the rat. Neurochemical analyses were measurements of presynaptic activity--dopamine (DA) and L-3,4-dihydroxyphenylacetic acid (DOPAC) contents, tyrosine hydroxylase (TH) activity, and in vitro DA release--and postsynaptic sensitivity--number and affinity of D1 and D2 receptors--in the striatum. In addition, measurements of 5-hydroxytryptamine (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) contents were also performed to evaluate serotoninergic activity in the striatum. An oral dose of THC produced a loss of spontaneous motor activity, measured in both actimeter and open-field test, and a decrease in the frequency of several stereotypic behaviors, such as rearing and self-grooming. This decrease was correlated to a low number of D1-dopaminergic receptors in the striatum, although neither DA and DOPAC contents nor TH activity and D2 receptors were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Navarro
- Department of Psychobiology (Faculty of Psychology), Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
1615
|
Abstract
Cannabinoid receptor mRNA was localized in adult rat brain by 35S-tailed oligonucleotide probes and in situ hybridization histochemistry. Labelling is described as uniform or non-uniform depending on the relative intensities of individual cells expressing cannabinoid receptor mRNA within a given region or nucleus. Uniform labelling was found in the hypothalamus, thalamus, basal ganglia, cerebellum and brainstem. Non-uniform labelling that resulted from the presence of cells displaying two easily distinguishable intensities of hybridization signals was observed in several regions and nuclei in the forebrain (cerebral cortex, hippocampus, amygdala, certain olfactory structures). Olfactory-associated structures, basal ganglia, hippocampus, and cerebellar cortex displayed the heaviest amounts of labelling. Many regions that displayed cannabinoid receptor mRNA could reasonably be identified as sources for cannabinoid receptors on the basis of well documented hodologic data. Other sites that were also clearly labelled could not be assigned as logical sources of cannabinoid receptors. The localization of cannabinoid receptor mRNA indicates that sensory, motor, cognitive, limbic, and autonomic systems should all be influenced by the activation of this receptor by either exogenous cannabimimetics, including marijuana, or the yet unknown endogenous "cannabinoid" ligand.
Collapse
Affiliation(s)
- L A Matsuda
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
1616
|
Zuardi AW, Cosme RA, Graeff FG, Guimarães FS. Effects of ipsapirone and cannabidiol on human experimental anxiety. J Psychopharmacol 1993; 7:82-8. [PMID: 22290374 DOI: 10.1177/026988119300700112] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of ipsapirone and cannabidiol (CBD) on healthy volunteers submitted to a simulated public speaking (SPS) test were compared with those of the anxiolytic benzodiazepine diazepam and placebo. Four independent groups of 10 subjects received, under a double-blind design, placebo or one of the following drugs: CBD (300 mg), diazepam (10 mg) or ipsapirone (5 mg). Subjective anxiety was evaluated through the Visual Analogue Mood Scale (VAMS) and the State-trait Anxiety Inventory (STAI). The VAMS anxiety factor showed that ipsapirone attenuated SPS-induced anxiety while CBD decreased anxiety after the SPS test. Diazepam, on the other hand, was anxiolytic before and after the SPS test, but had no effect on the increase in anxiety induced by the speech test. Only ipsapirone attenuated the increase in systolic blood pressure induced by the test. Significant sedative effects were only observed with diazepam. The results suggest that ipsapirone and CBD have anxiolytic properties in human volunteers submitted to a stressful situation.
Collapse
Affiliation(s)
- A W Zuardi
- Laboratory of Psychobiology, FFCLRP, Campus USP, Ribeirao Preto, SP 14049, Brazil
| | | | | | | |
Collapse
|
1617
|
Kaminski NE. Evidence for a cannabinoid receptor in immunomodulation by cannabinoid compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 335:115-20. [PMID: 8237584 DOI: 10.1007/978-1-4615-2980-4_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- N E Kaminski
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| |
Collapse
|
1618
|
Chapter 4. Molecular/Cell Biology of G-Protein Coupled CNS Receptors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
1619
|
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258:1946-9. [PMID: 1470919 DOI: 10.1126/science.1470919] [Citation(s) in RCA: 3974] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Arachidonylethanolamide, an arachidonic acid derivative in porcine brain, was identified in a screen for endogenous ligands for the cannabinoid receptor. The structure of this compound, which has been named "anandamide," was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by synthesis. Anandamide inhibited the specific binding of a radiolabeled cannabinoid probe to synaptosomal membranes in a manner typical of competitive ligands and produced a concentration-dependent inhibition of the electrically evoked twitch response to the mouse vas deferens, a characteristic effect of psychotropic cannabinoids. These properties suggest that anandamide may function as a natural ligand for the cannabinoid receptor.
Collapse
Affiliation(s)
- W A Devane
- Department of Natural Products, Medical Faculty, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1620
|
Kaminski NE, Abood ME, Kessler FK, Martin BR, Schatz AR. Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation. Mol Pharmacol 1992; 42:736-42. [PMID: 1279376 PMCID: PMC3657723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extensive behavioral and biochemical characterization of cannabinoid-mediated effects on the central nervous system has revealed at least three lines of evidence supporting the role of a putative guanine nucleotide-binding protein-coupled cannabinoid receptor for cannabimimetic effects, (i) stereoselectivity, (ii) inhibition of the adenylate cyclase/cAMP second messenger system, and (iii) radioligand-binding studies with the synthetic cannabinoid [3H]CP-55,940 indicating a high degree of specific binding to brain tissue preparations. Based on recent findings from our laboratory demonstrating that delta 9-tetrahydrocannabinol markedly inhibited forskolin-stimulated cAMP accumulation in mouse spleen cells, the presence of a guanine nucleotide-binding protein-coupled cannabinoid receptor associated with mouse spleen cells and its functional role in immune modulation were investigated. In the present studies, stereoselective immune modulation was observed with the synthetic bicyclic cannabinoid (-)-CP-55,940 versus (+) CP-56,667 and with 11-OH-delta 8-tetrahydrocannabinol-dimethylheptyl, (-)-HU-210 versus (+)-HU-211. In both cases, the (-)-enantiomer demonstrated greater immunoinhibitory potency than the (+)-isomer, as measured by the in vitro sheep red blood cell antibody-forming cell response. Radioligand binding studies produced a saturation isotherm exhibiting approximately 45-65% specific binding to mouse spleen cells. Scatchard analysis demonstrated a single binding site on spleen cells, possessing a Kd of 910 pM and a Bmax of approximately 1000 receptors/spleen cell. RNA polymerase chain reaction of isolated splenic RNA using specific primers for the cannabinoid receptor resulted in the amplification of a 854-kilobase predicted product that hybridized with cannabinoid receptor cDNA, demonstrating the presence of cannabinoid receptor mRNA in mouse spleen. Together, these findings strongly support the role of a cannabinoid receptor in immune modulation by cannabimimetic agents.
Collapse
Affiliation(s)
- N E Kaminski
- Department of Pharmacology and Toxicology, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298
| | | | | | | | | |
Collapse
|
1621
|
Herkenham M. Cannabinoid receptor localization in brain: relationship to motor and reward systems. Ann N Y Acad Sci 1992; 654:19-32. [PMID: 1385932 DOI: 10.1111/j.1749-6632.1992.tb25953.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M Herkenham
- Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
1622
|
Childers SR, Fleming L, Konkoy C, Marckel D, Pacheco M, Sexton T, Ward S. Opioid and cannabinoid receptor inhibition of adenylyl cyclase in brain. Ann N Y Acad Sci 1992; 654:33-51. [PMID: 1321574 DOI: 10.1111/j.1749-6632.1992.tb25954.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Both opioids and cannabinoids bind to G-protein-coupled receptors to inhibit adenylyl cyclase in neurons. These reactions were assayed in brain membranes, where maximal inhibitory activity occurred in the following regions: mu-opioid inhibition in rat thalamus, delta-opioid inhibition in rat striatum, kappa-opioid inhibition in guinea pig cerebellum, and cannabinoid inhibition in cerebellum. The inhibition of adenylyl cyclase by both cannabinoid and opioid agonists was typical of G-protein-linked receptors: they required GTP, they were not supported by non-hydrolyzable GTP analogs, and they were abolished (in primary neuronal cell culture) by pertussis toxin treatment. The immediate targets of this system were determined by assaying protein phosphorylation in the presence of receptor agonists and App(NH)p, a substrate for adenylyl cyclase. In striatal membranes, opioid agonists inhibited the phosphorylation of at least two bands of MW 85 and 63 kDa, which may be synapsins I and II, respectively. Other experiments determined the long-term effects of this second messenger system. In primary neuronal cultures, opioid-inhibited adenylyl cyclase attenuated forskolin-stimulated pro-enkephalin mRNA levels, thus providing a feedback regulation of opioid synthesis. Finally, in cerebellar granule cells, both cannabinoid and opioid receptors may exist on the same cells. In these cells, agonists which bind to different receptor types may produce similar biological responses.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Imidodiphosphate/pharmacology
- Analgesics/pharmacology
- Animals
- Brain/drug effects
- Brain/enzymology
- Brain/physiology
- Cannabinoids/metabolism
- Cannabinoids/pharmacology
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Enkephalin, Leucine-2-Alanine/analogs & derivatives
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalins/genetics
- Enkephalins/pharmacology
- Male
- Neurons/drug effects
- Neurons/enzymology
- Protein Precursors/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Cannabinoid
- Receptors, Drug/drug effects
- Receptors, Drug/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
Collapse
Affiliation(s)
- S R Childers
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103
| | | | | | | | | | | | | |
Collapse
|
1623
|
Affiliation(s)
- Gabriel Nahas
- Department of AnesthesiologyCollege of Physicians and Surgeons of Columbia UniversityINSERMHopital Fernand Widal Paris 630 West 168th Street New York NY 10032
| | - Colette Latour
- Laboratoire de Pharmacologie et Toxicologie CeliulairesINSERMHopital Fernand Widal Paris
| |
Collapse
|
1624
|
Pertwee RG, Stevenson LA, Elrick DB, Mechoulam R, Corbett AD. Inhibitory effects of certain enantiomeric cannabinoids in the mouse vas deferens and the myenteric plexus preparation of guinea-pig small intestine. Br J Pharmacol 1992; 105:980-4. [PMID: 1324060 PMCID: PMC1908724 DOI: 10.1111/j.1476-5381.1992.tb09088.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The psychoactive cannabinoids (-)-delta 9-tetrahydrocannabinol ((-)-delta 9-THC) and the 1,1-dimethyl-heptyl homologue of (-)-11-hydroxy-delta 8-tetrahydrocannabinol ((-)-DMH) both inhibited electrically-evoked contractions of the mouse isolated vas deferens and the myenteric plexus-longitudinal muscle preparation of the guinea-pig small intestine. 2. Concentrations of (-)-delta 9-THC and (-)-DMH that decreased twitch heights by 50% were 6.3 and 0.15 nM respectively in the mouse vas deferens and 60 nM and 1.4 nM respectively in the myenteric plexus preparation. (-)-DMH was about 40 times more potent than (-)-delta 9-THC in both preparations, supporting the notion that their mode of action in each tissue is the same. 3. The psychically inactive cannabinoid, (+)-DMH, had no inhibitory effect in the mouse vas deferens at a concentration of 30 nM, showing it to be at least 1000 times less potent than (-)-DMH. In the myenteric plexus preparation, (+)-DMH was about 500 times less potent than its (-)-enantiomer. 4. The inhibitory effects of sub-maximal concentrations of (-)-delta 9-THC were not attenuated by 300 nM naloxone. 5. The findings that (-)-delta 9-THC and (-)-DMH are highly potent as inhibitors of the twitch response of the mouse vas deferens and guinea-pig myenteric plexus preparation and that DMH shows considerable stereoselectivity suggest that the inhibitory effects of cannabinoids in these preparations are mediated by cannabinoid receptors.
Collapse
Affiliation(s)
- R G Pertwee
- Division of Pharmacology, School of Biomedical Sciences, Marischal College, University of Aberdeen
| | | | | | | | | |
Collapse
|
1625
|
Abstract
Intracranial drug injections are useful in localizing brain areas where drugs of abuse initiate their habit-forming actions. However, serious methodological problems accompany such studies. Pharmacological controls are necessary to assess non-receptor-mediated local actions of the drug, anatomical controls are necessary to rule out drug efflux to distal sites of action, and behavioral controls are necessary to separate rewarding from general activating effects of drugs. Five brain sites have been advanced as sites of rewarding opiate actions: the ventral tegmental area (VTA), nucleus accumbens septi (NAS), lateral hypothalamus, periaqueductal gray, and hippocampus. Current evidence appears to confirm two of these--VTA and NAS; evidence is currently incomplete in the case of the hippocampus and is conflicting in the case of the lateral hypothalamus and periaqueductal gray. Two sites have been advanced as sites of rewarding psychomotor stimulant actions: NAS and the frontal cortex; each site seems implicated, but puzzling differences between amphetamine and cocaine findings remain to be resolved. Each of the clearly implicated sites is local to dopamine cell bodies or dopamine terminals that have been implicated in the rewarding effects of brain stimulation, food, and sex.
Collapse
Affiliation(s)
- R A Wise
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
1626
|
Prescott WR, Gold LH, Martin BR. Evidence for separate neuronal mechanisms for the discriminative stimulus and catalepsy induced by delta 9-THC in the rat. Psychopharmacology (Berl) 1992; 107:117-24. [PMID: 1317040 DOI: 10.1007/bf02244975] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cataleptogenic effect of delta 9-THC was compared to its discriminative stimulus effects in rats. The ED50s for the discriminative stimulus and catalepsy were 0.8 and 4.0 mg/kg, respectively, while their time courses were very similar. The ED50 of delta 9-THC for catalepsy in experimentally naive rats was not different from that in rats trained with the drug discrimination procedure, indicating that the cataleptogenic effect was not appreciably attenuated by long-term exposure to low doses of delta 9-THC. Pharmacologically, the catalepsy produced by delta 9-THC more closely resembled that of haloperidol than of morphine, since anticholinergic pretreatment eliminated the delta 9-THC-induced catalepsy while pre-treatment with naloxone had no effect. Although the cataleptogenic effect of delta 9-THC could be pharmacologically manipulated by anticholinergic pre-treatment, its discriminative stimulus effects were not changed in the same animals. These results demonstrate that distinctive mechanisms of action exist for these cannabinoid-induced behaviors.
Collapse
Affiliation(s)
- W R Prescott
- Department of Pharmacology and Toxicology, Commonwealth of Virginia Drug Abuse Research Center, Virginia Commonwealth University, Richmond 23298
| | | | | |
Collapse
|
1627
|
Abstract
The present study demonstrates that desacetyllevonantradol, a synthetic cannabinoid analog, reduces cyclic AMP levels in rat striatal slices stimulated with vasoactive intestinal peptide or SKF 38393, a D1-dopamine agonist. Desacetyllevonantradol and the D2 agonist LY 171555 both inhibited D1-stimulated cyclic AMP accumulation in the striatum. Spiperone, a specific D2-dopamine antagonist, fully reversed the inhibitory effect of LY 171555 but not that of desacetyllevonantradol, indicating that this cannabinoid response is not occurring through a D2-dopaminergic mechanism. Morphine also inhibited cyclic AMP accumulation in striatal slices stimulated with either SKF 38393 or vasoactive intestinal peptide. Naloxone, an opioid antagonist, fully reversed the effect of morphine but not that of desacetyllevonantradol, indicating that cannabinoid drugs are not acting via a mechanism involving opioid receptors. The response to maximally effective concentrations of desacetyllevonantradol was not additive to that of maximally effective concentrations of either morphine or LY 171555, suggesting that dopaminergic, opioid, and cannabinoid receptors may be present on the same populations of cells.
Collapse
Affiliation(s)
- M Bidaut-Russell
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104
| | | |
Collapse
|
1628
|
Gérard CM, Mollereau C, Vassart G, Parmentier M. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 1991; 279 ( Pt 1):129-34. [PMID: 1718258 PMCID: PMC1151556 DOI: 10.1042/bj2790129] [Citation(s) in RCA: 468] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cDNA clone encoding a receptor protein which presents all the characteristics of a guanine-nucleotide-binding protein (G-protein)-coupled receptor was isolated from a human brain stem cDNA library. The probe used (HGMP08) was a 600 bp DNA fragment amplified by a low-stringency PCR, using human genomic DNA as template and degenerate oligonucleotide primers corresponding to conserved sequences amongst the known G-protein-coupled receptors. The deduced amino acid sequence encodes a protein of 472 residues which shares 97.3% identity with the rat cannabinoid receptor cloned recently [Matsuda, Lolait, Brownstein, Young & Bronner (1990) Nature (London) 346, 561-564]. Abundant transcripts were detected in the brain, as expected, but lower amounts were also found in the testis. The same probe was used to screen a human testis cDNA library. The cDNA clones obtained were partially sequenced, demonstrating the identity of the cannabinoid receptors expressed in both tissues. Specific binding of the synthetic cannabinoid ligand [3H]CP55940 was observed on membranes from Cos-7 cells transfected with the recombinant receptor clone. In stably transfected CHO-K1 cell lines, cannabinoid agonists mediated a dose-dependent and stereoselective inhibition of forskolin-induced cyclic AMP accumulation. The ability to express the human cannabinoid receptor in mammalian cells should help in developing more selective drugs, and should facilitate the search for the endogenous cannabinoid ligand(s).
Collapse
Affiliation(s)
- C M Gérard
- Institut de Recherche Interdisciplinaire, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
1629
|
Zuardi AW, Rodrigues JA, Cunha JM. Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology (Berl) 1991; 104:260-4. [PMID: 1678894 DOI: 10.1007/bf02244189] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of cannabidiol (CBD) were compared to those produced by haloperidol in rats submitted to experimental models predictive of antipsychotic activity. Several doses of CBD (15-480 mg/kg) and haloperidol (0.062-1.0 mg/kg) were tested in each model. First, CBD increased the effective doses 50% (or) ED50 of apomorphine for induction of the sniffing and biting stereotyped behaviors. In addition, both CBD and haloperidol reduced the occurrence of stereotyped biting induced by apomorphine (6.4 mg/kg), increased plasma prolactin levels and produced palpebral ptosis, as compared to control solutions. However, CBD did not induce catalepsy even at the highest doses, in contrast to haloperidol. Such a pharmacological profile is compatible with that of an "atypical" antipsychotic agent, though the mechanism of action is uncertain and may not be identical to that of the dopamine antagonists.
Collapse
Affiliation(s)
- A W Zuardi
- School of Medicine of Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
1630
|
Gordon PM, Siegel C, Razdan RK. An expedient and efficient synthesis of an optically active terpene synthon for Δ9-cannabinoids. ACTA ACUST UNITED AC 1991. [DOI: 10.1039/c39910000692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1631
|
In vitro effect of delta 9-tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E2. Proc Natl Acad Sci U S A 1990; 87:10063-6. [PMID: 1979873 PMCID: PMC55315 DOI: 10.1073/pnas.87.24.10063] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous in vivo studies have shown that delta 9-tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were designed to determine the mechanism of these effects. Various doses of THC were incubated with either stalk median eminence fragments (MEs) or mediobasal hypothalamic (MBH) fragments in vitro. Although THC (10 nM) did not alter basal release of LH-releasing hormone (LHRH) from MEs in vitro, it completely blocked the stimulatory action of dopamine or norepinephrine on LHRH release. The effective doses to block LHRH release were associated with a blockade of synthesis and release of prostaglandin E2 (PGE2) from MBH in vitro. In contrast to the suppressive effect of THC on LHRH release, somatostatin release from MEs was enhanced in a dose-related manner with a minimal effective dose of 1 nM. Since PGE2 suppresses somatostatin release, this enhancement may also be related to the suppressive effect of THC on PGE2 synthesis and release. We speculate that these actions are mediated by the recently discovered THC receptors in the tissue. The results indicate that the suppressive effect of THC on LH release is mediated by a blockade of LHRH release, whereas the suppressive effect of the compound on growth hormone release is mediated, at least in part, by a stimulation of somatostatin release.
Collapse
|
1632
|
|
1633
|
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346:561-4. [PMID: 2165569 DOI: 10.1038/346561a0] [Citation(s) in RCA: 3607] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.
Collapse
Affiliation(s)
- L A Matsuda
- Laboratory of Cell Biology, National Institutes of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|