1601
|
Yu X, Zhou Q, Li SC, Luo Q, Cai Y, Lin WC, Chen H, Yang Y, Hu S, Yu J. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One 2008; 3:e2997. [PMID: 18714353 PMCID: PMC2500172 DOI: 10.1371/journal.pone.0002997] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 07/28/2008] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. Methodology/Principal Findings We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Conclusions/Significance Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaomin Yu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhou
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Sung-Chou Li
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Qibin Luo
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Yimei Cai
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Wen-chang Lin
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Yue Yang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
1602
|
Moxon S, Schwach F, Dalmay T, Maclean D, Studholme DJ, Moulton V. A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 2008; 24:2252-3. [PMID: 18713789 DOI: 10.1093/bioinformatics/btn428] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Recent developments in high-throughput sequencing technologies have generated considerable demand for tools to analyse large datasets of small RNA sequences. Here, we describe a suite of web-based tools for processing plant small RNA datasets. Our tools can be used to identify micro RNAs and their targets, compare expression levels in sRNA loci, and find putative trans-acting siRNA loci. AVAILABILITY The tools are freely available for use at http://srna-tools.cmp.uea.ac.uk.
Collapse
Affiliation(s)
- Simon Moxon
- School of Computing Sciences, School of Biological Sciences, University of East Anglia, Norwich NR47TJ, UK
| | | | | | | | | | | |
Collapse
|
1603
|
Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 2008; 23:578-87. [PMID: 18715673 DOI: 10.1016/j.tree.2008.06.005] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 06/13/2008] [Accepted: 06/20/2008] [Indexed: 01/13/2023]
Abstract
Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into the origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have an RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral archaeal, bacterial and phage proteins that are involved in DNA repair and RNA processing.
Collapse
Affiliation(s)
- Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
1604
|
Abstract
Endogenous small RNAs, including microRNAs (miRNAs) and short-interfering RNAs (siRNAs), function as post-transcriptional or transcriptional regulators in plants. miRNA function is essential for normal plant development and therefore is likely to be important in the growth of the rice grain. To investigate the roles of miRNAs in rice grain development, we carried out deep sequencing of the small RNA populations of rice grains at two developmental stages. In a data set of approximately 5.5 million sequences, we found representatives of all 20 conserved plant miRNA families. We used an approach based on the presence of miRNA and miRNA* sequences to identify 39 novel, nonconserved rice miRNA families expressed in grains. Cleavage of predicted target mRNAs was confirmed for a number of the new miRNAs. We identified a putative mirtron, indicating that plants may also use spliced introns as a source of miRNAs. We also identified a miRNA-like long hairpin that generates phased 21 nt small RNAs, strongly expressed in developing grains, and show that these small RNAs act in trans to cleave target mRNAs. Comparison of the population of miRNAs and miRNA-like siRNAs in grains to those in other parts of the rice plant reveals that many are expressed in an organ-specific manner.
Collapse
|
1605
|
Heisel SE, Zhang Y, Allen E, Guo L, Reynolds TL, Yang X, Kovalic D, Roberts JK. Characterization of unique small RNA populations from rice grain. PLoS One 2008; 3:e2871. [PMID: 18716673 PMCID: PMC2518513 DOI: 10.1371/journal.pone.0002871] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 03/21/2008] [Indexed: 01/08/2023] Open
Abstract
Small RNAs (approximately 20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species.
Collapse
|
1606
|
Dolgosheina EV, Morin RD, Aksay G, Sahinalp SC, Magrini V, Mardis ER, Mattsson J, Unrau PJ. Conifers have a unique small RNA silencing signature. RNA (NEW YORK, N.Y.) 2008; 14:1508-15. [PMID: 18566193 PMCID: PMC2491476 DOI: 10.1261/rna.1052008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 04/25/2008] [Indexed: 05/19/2023]
Abstract
Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants approximately 260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes.
Collapse
Affiliation(s)
- Elena V Dolgosheina
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | | | |
Collapse
|
1607
|
Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. THE PLANT CELL 2008; 20:2238-51. [PMID: 18682547 PMCID: PMC2553615 DOI: 10.1105/tpc.108.059444] [Citation(s) in RCA: 572] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/07/2008] [Accepted: 07/22/2008] [Indexed: 05/18/2023]
Abstract
Nuclear factor Y (NF-Y) is a ubiquitous transcription factor composed of three distinct subunits (NF-YA, NF-YB, and NF-YC). We found that the Arabidopsis thaliana NFYA5 transcript is strongly induced by drought stress in an abscisic acid (ABA)-dependent manner. Promoter:beta-glucuronidase analyses showed that NFYA5 was highly expressed in vascular tissues and guard cells and that part of the induction by drought was transcriptional. NFYA5 contains a target site for miR169, which targets mRNAs for cleavage or translational repression. We found that miR169 was downregulated by drought stress through an ABA-dependent pathway. Analysis of the expression of miR169 precursors showed that miR169a and miR169c were substantially downregulated by drought stress. Coexpression of miR169 and NFYA5 suggested that miR169a was more efficient than miR169c at repressing the NFYA5 mRNA level. nfya5 knockout plants and plants overexpressing miR169a showed enhanced leaf water loss and were more sensitive to drought stress than wild-type plants. By contrast, transgenic Arabidopsis plants overexpressing NFYA5 displayed reduced leaf water loss and were more resistant to drought stress than the wild type. Microarray analysis indicated that NFYA5 is crucial for the expression of a number of drought stress-responsive genes. Thus, NFYA5 is important for drought resistance, and its induction by drought stress occurs at both the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Wen-Xue Li
- Key Laboratory of Plant and Soil Interactions, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1608
|
Abstract
MicroRNA (miRNAs) play essential roles in post-transcriptional gene regulation in animals and plants. Several existing computational approaches have been developed to complement experimental methods in discovery of miRNAs that express restrictively in specific environmental conditions or cell types. These computational methods require a sufficient number of characterized miRNAs as training samples, and rely on genome annotation to reduce the number of predicted putative miRNAs. However, most sequenced genomes have not been well annotated and many of them have a very few experimentally characterized miRNAs. As a result, the existing methods are not effective or even feasible for identifying miRNAs in these genomes. Aiming at identifying miRNAs from genomes with a few known miRNA and/or little annotation, we propose and develop a novel miRNA prediction method, miRank, based on our new random walks- based ranking algorithm. We first tested our method on Homo sapiens genome; using a very few known human miRNAs as samples, our method achieved a prediction accuracy greater than 95%. We then applied our method to predict 200 miRNAs in Anopheles gambiae, which is the most important vector of malaria in Africa. Our further study showed that 78 out of the 200 putative miRNA precursors encode mature miRNAs that are conserved in at least one other animal species. These conserved putative miRNAs are good candidates for further experimental study to understand malaria infection. Availability: MiRank is programmed in Matlab on Windows platform. The source code is available upon request. Contact:zhang@cse.wustl.edu
Collapse
Affiliation(s)
- Yunpen Xu
- Department of Computer Science and Engineering, Washington University, Saint Louis, MO 63130, USA
| | | | | |
Collapse
|
1609
|
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 2008; 18:1602-9. [PMID: 18653800 DOI: 10.1101/gr.080127.108] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In plants there are several classes of 21-24-nt short RNAs that regulate gene expression. The most conserved class is the microRNAs (miRNAs), although some miRNAs are found only in specific species. We used high-throughput pyrosequencing to identify conserved and nonconserved miRNAs and other short RNAs in tomato fruit and leaf. Several conserved miRNAs showed tissue-specific expression, which, combined with target gene validation results, suggests that miRNAs may play a role in fleshy fruit development. We also identified four new nonconserved miRNAs. One of the validated targets of a novel miRNA is a member of the CTR family involved in fruit ripening. However, 62 predicted targets showing near perfect complementarity to potential new miRNAs did not validate experimentally. This suggests that target prediction of plant short RNAs could have a high false-positive rate and must therefore be validated experimentally. We also found short RNAs from a Solanaceae-specific foldback transposon, which showed a miRNA/miRNA*-like distribution, suggesting that this element may function as a miRNA gene progenitor. The other Solanaceae-specific class of short RNA was derived from an endogenous pararetrovirus sequence inserted into the tomato chromosomes. This study opens a new avenue in the field of fleshy fruit biology by raising the possibility that fruit development and ripening may be under miRNA regulation.
Collapse
Affiliation(s)
- Simon Moxon
- School of Computing, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1610
|
|
1611
|
The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A 2008; 105:9970-5. [PMID: 18632569 DOI: 10.1073/pnas.0803356105] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The results of genetic studies in Arabidopsis indicate that three proteins, the RNase III DICER-Like1 (DCL1), the dsRNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the C2H2 Zn-finger protein SERRATE (SE), are required for the accurate processing of microRNA (miRNA) precursors in the plant cell nucleus. To elucidate the biochemical mechanism of miRNA processing, we developed an in vitro miRNA processing assay using purified recombinant proteins. We find that DCL1 alone releases 21-nt short RNAs from dsRNA as well as synthetic miR167b precursor RNAs. However, correctly processed miRNAs constitute a minority of the cleavage products. We show that recombinant HYL1 and SE proteins accelerate the rate of DCL1-mediated cleavage of pre- and pri-miR167b substrates and promote accurate processing.
Collapse
|
1612
|
Abstract
The development and function of neuronal circuits within the brain are orchestrated by sophisticated gene regulatory mechanisms. Recently, microRNAs have emerged as a novel class of small RNAs that fine-tune protein synthesis. microRNAs are abundantly expressed in the vertebrate nervous system, where they contribute to the specification of neuronal cell identity. Moreover, microRNAs also play an important role in mature neurons. This review summarizes the current knowledge about the function of microRNAs in the nervous system with special emphasis on synapse formation and plasticity. The second part of this work will discuss the potential involvement of microRNAs in neurologic diseases. The study of brain microRNAs promises to expand our understanding of the mechanisms underlying higher cognitive functions and neurologic diseases.
Collapse
Affiliation(s)
- Silvia Bicker
- Interdisziplinäes Zentrum fü Neurowissenschaften, SFB488 Junior Group, Universitä Heidelberg, and Institut fü Neuroanatomie, Universitäsklinikum Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
1613
|
Martínez-Priego L, Donaire L, Barajas D, Llave C. Silencing suppressor activity of the Tobacco rattle virus-encoded 16-kDa protein and interference with endogenous small RNA-guided regulatory pathways. Virology 2008; 376:346-56. [PMID: 18456303 DOI: 10.1016/j.virol.2008.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/20/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Higher plants use RNA silencing as a defense mechanism against viral infections, but viruses may encode suppressor proteins that counteract these defenses. Several virus-encoded suppressors also exert an inhibitory effect on endogenous small RNA regulatory pathways. Here we characterized the Tobacco rattle virus-encoded 16-kDa (TRV-16K) protein as a suppressor that blocked local RNA silencing induced by single (s)- and double-stranded (ds) RNA, indicating that TRV-16K interfered with a step in the silencing pathway downstream of dsRNA formation. The suppressor activity of TRV-16K was severely compromised by moderate to high dosages of dsRNA inducer. When silencing was locally triggered by ssRNA or low levels of dsRNA, silencing suppression by TRV-16K was associated with reduced accumulation of silencing-related siRNAs. TRV-16K also prevented partially cell-to-cell movement and systemic propagation of silencing but not transitive amplification of RNA silencing. We showed that neither TRV nor TRV-16K caused a global deregulation of the microRNA-regulatory pathway in Arabidopsis, suggesting that interference with microRNA biology was not a prerequisite for TRV, and probably many other plant viruses, to develop systemic infections in plants.
Collapse
Affiliation(s)
- Llucia Martínez-Priego
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
1614
|
Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:131-51. [PMID: 18363789 DOI: 10.1111/j.1365-313x.2008.03497.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a group of small non-coding RNAs, have recently become the subject of intense study. They are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. However, little is known about their regulatory roles in the responses of trees to the stressful environments incurred over their long-term growth. Here, we report the cloning of small RNAs from abiotic stressed tissues of Populus trichocarpa (Ptc) and the identification of 68 putative miRNA sequences that can be classified into 27 families based on sequence homology. Among them, nine families are novel, increasing the number of the known Ptc-miRNA families from 33 to 42. A total of 346 targets was predicted for the cloned Ptc-miRNAs using penalty scores of </=2.5 for mismatched patterns in the miRNA:mRNA duplexes as the criterion. Six of the selected targets were validated experimentally. The expression of a majority of the novel miRNAs was altered in response to cold, heat, salt, dehydration, and mechanical stresses. Microarray analysis of known Ptc-miRNAs identified 19 additional cold stress-responsive Ptc-miRNAs from 14 miRNA gene families. Interestingly, we found that individual miRNAs of a family responded differentially to stress, which suggests that the members of a family may have different functions. These results reveal possible roles for miRNAs in the regulatory networks associated with the long-term growth of tree species and provide useful information for developing trees with a greater level of stress resistance.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
1615
|
Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. PLANT MOLECULAR BIOLOGY 2008; 67:403-17. [PMID: 18392778 DOI: 10.1007/s11103-008-9329-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/21/2008] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are approximately 21-nt RNAs that reduce target accumulation through mRNA cleavage or translational repression. Arabidopsis miR398 regulates mRNAs encoding two copper superoxide dismutase (CSD) enzymes and a cytochrome c oxidase subunit. miR398 itself is down-regulated in response to copper and stress. Here we show that miR398 is positively regulated by sucrose, resulting in decreased CSD1 and CSD2 mRNA and protein accumulation. This sucrose regulation is maintained both in the presence and absence of physiologically relevant levels of supplemental copper. Additionally, we show that plants expressing CSD1 and CSD2 mRNAs with altered miR398 complementarity sites display increased mRNA accumulation, whereas CSD1 and CSD2 protein accumulation remain sensitive to miR398 levels, suggesting that miR398 can act as a translational repressor when target site complementarity is reduced. These results reveal a novel miR398 regulatory mechanism and demonstrate that plant miRNA targets can resist miRNA regulation at the mRNA level while maintaining sensitivity at the level of protein accumulation. Our results suggest that even in plants, where miRNAs are thought to act primarily through target mRNA cleavage, monitoring target protein levels along with target mRNA levels is necessary to fully assess the consequences of disrupted miRNA-mRNA pairing. Moreover, the limited complementarity required to maintain robust miR398-directed repression of target protein accumulation suggests that similarly regulated endogenous plant miRNA targets may have eluded detection.
Collapse
Affiliation(s)
- Diana V Dugas
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
1616
|
Brown JWS, Marshall DF, Echeverria M. Intronic noncoding RNAs and splicing. TRENDS IN PLANT SCIENCE 2008; 13:335-42. [PMID: 18555733 DOI: 10.1016/j.tplants.2008.04.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 05/23/2023]
Abstract
The gene organization of small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) varies within and among different organisms. This diversity is reflected in the maturation pathways of these small noncoding RNAs (ncRNAs). The presence of noncoding RNAs in introns has implications for the biogenesis of both mature small RNAs and host mRNA. The balance of the interactions between the processing or ribonucleoprotein assembly of intronic noncoding RNAs and the splicing process can regulate the levels of ncRNA and host mRNA. The processing of snoRNAs - both intronic and non-intronic - is well characterised in yeast, plants and animals and provides a basis for examining how intronic plant miRNAs are processed.
Collapse
Affiliation(s)
- John W S Brown
- Plant Sciences Division, University of Dundee at the Scottish Crop Research Institute (SCRI), Invergowrie, Dundee, DD2 5DA, UK.
| | | | | |
Collapse
|
1617
|
Mallory AC, Bouché N. MicroRNA-directed regulation: to cleave or not to cleave. TRENDS IN PLANT SCIENCE 2008; 13:359-67. [PMID: 18501664 DOI: 10.1016/j.tplants.2008.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 05/18/2023]
Abstract
Gene expression is regulated by transcriptional and post-transcriptional pathways, which are crucial for optimizing gene output and for coordinating cellular programs. MicroRNAs (miRNAs) regulate gene expression networks necessary for proper development, cell viability and stress responses. In plants and animals, 20-24-nt miRNAs direct cleavage and translational repression of partially complementary mRNA target transcripts, through conserved ARGONAUTE proteins. In plants, certain miRNAs indirectly regulate developmental programs by instigating the production of small interfering RNAs (siRNAs). In addition, non-cleavable plant miRNA targets sequester miRNAs, thus regulating miRNA availability. This review summarizes the complexities and diversity of plant miRNA-directed gene regulatory mechanisms and highlights the use of miRNAs for the specific knockdown of gene expression in plants.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France.
| | | |
Collapse
|
1618
|
Shannon AJ, Tyson T, Dix I, Boyd J, Burnell AM. Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus. BMC Mol Biol 2008; 9:58. [PMID: 18565215 PMCID: PMC2453295 DOI: 10.1186/1471-2199-9-58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 06/19/2008] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Gene silencing by RNA interference (RNAi) is a powerful tool for functional genomics. Although RNAi was first described in Caenorhabditis elegans, several nematode species are unable to mount an RNAi response when exposed to exogenous double stranded RNA (dsRNA). These include the satellite model organisms Pristionchus pacificus and Oscheius tipulae. Available data also suggest that the RNAi pathway targeting exogenous dsRNA may not be fully functional in some animal parasitic nematodes. The genus Panagrolaimus contains bacterial feeding nematodes which occupy a diversity of niches ranging from polar, temperate and semi-arid soils to terrestrial mosses. Thus many Panagrolaimus species are adapted to tolerate freezing and desiccation and are excellent systems to study the molecular basis of environmental stress tolerance. We investigated whether Panagrolaimus is susceptible to RNAi to determine whether this nematode could be used in large scale RNAi studies in functional genomics. RESULTS We studied two species: Panagrolaimus sp. PS1159 and Panagrolaimus superbus. Both nematode species displayed embryonic lethal RNAi phenotypes following ingestion of Escherichia coli expressing dsRNA for the C. elegans embryonic lethal genes Ce-lmn-1 and Ce-ran-4. Embryonic lethal RNAi phenotypes were also obtained in both species upon ingestion of dsRNA for the Panagrolaimus genes ef1b and rps-2. Single nematode RT-PCR showed that a significant reduction in mRNA transcript levels occurred for the target ef1b and rps-2 genes in RNAi treated Panagrolaimus sp. 1159 nematodes. Visible RNAi phenotypes were also observed when P. superbus was exposed to dsRNA for structural genes encoding contractile proteins. All RNAi phenotypes were highly penetrant, particularly in P. superbus. CONCLUSION This demonstration that Panagrolaimus is amenable to RNAi by feeding will allow the development of high throughput methods of RNAi screening for P. superbus. This greatly enhances the utility of this nematode as a model system for the study of the molecular biology of anhydrobiosis and cryobiosis and as a possible satellite model nematode for comparative and functional genomics. Our data also identify another nematode infraorder which is amenable to RNAi and provide additional information on the diversity of RNAi phenotypes in nematodes.
Collapse
Affiliation(s)
- Adam J Shannon
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Trevor Tyson
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Ilona Dix
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Jacqueline Boyd
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham Rd., Southwell, NG25 0QF, UK
| | - Ann M Burnell
- Biology Department, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
1619
|
Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 2008; 582:2445-52. [PMID: 18558089 DOI: 10.1016/j.febslet.2008.06.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/22/2008] [Accepted: 06/02/2008] [Indexed: 12/17/2022]
Abstract
Nine conserved miRNA families and three potential novel miRNAs in Brassica rapa were identified from a small RNA library. The expression patterns of some conserved miRNAs had different tissue specificity in Brassica and Arabidopsis. One of the three potential miRNAs, named bra-miR1885, was verified as a true functional miRNA. It could be induced specifically by Turnip mosaic virus (TuMV) infection, and target TIR-NBS-LRR class disease-resistant transcripts for cleavage. Based on the hypothesis for de novo generation of new miRNA genes and the sequence similarity between bra-MIR1885 precursor loci and target transcript sequences, we suggest that bra-MIR1885 is a new miRNA gene that originated through inverted duplication events from TIR-NBS-LRR class disease-resistant protein-coding gene sequences, which became bra-miR1885 targets.
Collapse
|
1620
|
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 2008; 283:15932-45. [PMID: 18408011 PMCID: PMC3259626 DOI: 10.1074/jbc.m801406200] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/03/2008] [Indexed: 11/06/2022] Open
Abstract
In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting. The down-regulation of copper/zinc superoxide dismutase expression in response to low copper involves a microRNA, miR398. Interestingly, in Arabidopsis and other plants, three additional microRNA families, miR397, miR408, and miR857, are predicted to target the transcripts for the copper protein plantacyanin and members of the laccase copper protein family. We confirmed the predicted targets of miR397, miR408, and miR857 experimentally by cleavage site analysis. To study the spatial expression pattern of these microRNAs and the effect of copper on their expression, we analyzed Arabidopsis grown hydroponically on different copper regimes. On low amounts of copper the plants accumulated miR397, miR408, and miR857. The microRNA expression pattern was negatively correlated with the accumulation of transcripts for plantacyanin and laccases. Furthermore, the expression of other laccases that are not predicted targets for known microRNAs was similarly regulated in response to copper. For some of these laccases, the regulation was disrupted in a microRNA maturation mutant (hen1-1), suggesting the presence of other copper-regulated microRNAs. Thus, in Arabidopsis, microRNA-mediated down-regulation is a general mechanism to regulate nonessential copper proteins. We propose that this mechanism allows plants to save copper for the most essential functions during limited copper supply.
Collapse
Affiliation(s)
- Salah E. Abdel-Ghany
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| | - Marinus Pilon
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
1621
|
Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ. Regulatory network of microRNA399 and PHO2 by systemic signaling. PLANT PHYSIOLOGY 2008; 147:732-46. [PMID: 18390805 PMCID: PMC2409027 DOI: 10.1104/pp.108.116269] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 03/24/2008] [Indexed: 05/17/2023]
Abstract
Recently, we showed that microRNA399s (miR399s) control inorganic phosphate (Pi) homeostasis by regulating the expression of PHO2 encoding a ubiquitin-conjugating E2 enzyme 24. Arabidopsis (Arabidopsis thaliana) plants overexpressing miR399 or the pho2 mutant overaccumulate Pi in shoots. The association of Pi translocation and coexpression of miR399s and PHO2 in vascular tissues suggests their involvement in long-distance signaling. In this study, we used reciprocal grafting between wild-type and miR399-overexpressing transgenic plants to dissect the systemic roles of miR399 and PHO2. Arabidopsis rootstocks overexpressing miR399 showed high accumulation of Pi in the wild-type scions because of reduced PHO2 expression in the rootstocks. Although miR399 precursors or expression was not detected, we found a small but substantial amount of mature miR399 in the wild-type rootstocks grafted with transgenic scions, which indicates the movement of miR399 from shoots to roots. Suppression of PHO2 with miR399b or c was less efficient than that with miR399f. Of note, findings in grafted Arabidopsis were also discovered in grafted tobacco (Nicotiana benthamiana) plants. The analysis of the pho1 mutant provides additional support for systemic suppression of PHO2 by the movement of miR399 from Pi-depleted shoots to Pi-sufficient roots. We propose that the long-distance movement of miR399s from shoots to roots is crucial to enhance Pi uptake and translocation during the onset of Pi deficiency. Moreover, PHO2 small interfering RNAs mediated by the cleavage of miR399s may function to refine the suppression of PHO2. The regulation of miR399 and PHO2 via long-distance communication in response to Pi deficiency is discussed.
Collapse
Affiliation(s)
- Shu-I Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
1622
|
Rose RJ. Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:253-264. [PMID: 32688781 DOI: 10.1071/fp07297] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/16/2008] [Indexed: 05/08/2023]
Abstract
Medicago truncatula Gaertn. cv. Jemalong, a pasture species used in Australian agriculture, was first proposed as a model legume in 1990. Since that time M. truncatula, along with Lotus japonicus (Regal) Larsen, has contributed to major advances in understanding rhizobia Nod factor perception and the signalling pathway involved in nodule formation. Research using M. truncatula as a model has expanded beyond nodulation and the allied mycorrhizal research to investigate interactions with insect pests, plant pathogens and nematodes. In addition to biotic stresses the genetic mechanisms to ameliorate abiotic stresses such as salinity and drought are being investigated. Furthermore, M. truncatula is being used to increase understanding of plant development and cellular differentiation, with nodule differentiation providing a different perspective to organogenesis and meristem biology. This legume plant represents one of the major evolutionary success stories of plant adaptation to its environment, and it is particularly in understanding the capacity to integrate biotic and abiotic plant responses with plant growth and development that M. truncatula has an important role to play. The expanding genomic and genetic toolkit available with M. truncatula provides many opportunities for integrative biological research with a plant which is both a model for functional genomics and important in agricultural sustainability.
Collapse
Affiliation(s)
- Ray J Rose
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia. Email
| |
Collapse
|
1623
|
Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F. MicroRNA166 controls root and nodule development in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:876-87. [PMID: 18298674 DOI: 10.1111/j.1365-313x.2008.03448.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.
Collapse
Affiliation(s)
- Adnane Boualem
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1624
|
Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 2008; 14:854-66. [PMID: 18486559 DOI: 10.1016/j.devcel.2008.04.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/01/2008] [Accepted: 04/23/2008] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are abundant endogenous small RNAs (smRNAs) that control transcript expression through posttranscriptional gene silencing. Here, we show that concomitant loss of XRN4/EIN5, a 5'-3' exoribonuclease, and ABH1/CBP80, a subunit of the mRNA cap binding complex, results in Arabidopsis plants manifesting myriad developmental defects. We find that ABH1/CBP80 is necessary to obtain proper mature miRNA levels, which suggests this protein affects the miRNA-mediated RNA silencing pathway. Additionally, we show that XRN4/EIN5 affects the levels of a smRNA class that is processed from both sense and antisense strands of approximately 130 endogenous transcripts that apparently are converted to double-stranded RNA (dsRNA) and subsequently processed. We find that the parent transcripts of these smRNAs accumulate in an uncapped form upon loss of XRN4/EIN5, which suggests that uncapped endogenous transcripts can become smRNA biogenesis substrates. Overall, our results reveal unexpected connections between RNA metabolism and silencing pathways.
Collapse
Affiliation(s)
- Brian D Gregory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
1625
|
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008; 320:1185-90. [PMID: 18483398 DOI: 10.1126/science.1159151] [Citation(s) in RCA: 986] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High complementarity between plant microRNAs (miRNAs) and their messenger RNA targets is thought to cause silencing, prevalently by endonucleolytic cleavage. We have isolated Arabidopsis mutants defective in miRNA action. Their analysis provides evidence that plant miRNA-guided silencing has a widespread translational inhibitory component that is genetically separable from endonucleolytic cleavage. We further show that the same is true of silencing mediated by small interfering RNA (siRNA) populations. Translational repression is effected in part by the ARGONAUTE proteins AGO1 and AGO10. It also requires the activity of the microtubule-severing enzyme katanin, implicating cytoskeleton dynamics in miRNA action, as recently suggested from animal studies. Also as in animals, the decapping component VARICOSE (VCS)/Ge-1 is required for translational repression by miRNAs, which suggests that the underlying mechanisms in the two kingdoms are related.
Collapse
Affiliation(s)
- Peter Brodersen
- Institut de Biologie Moléculaire des Plantes du CNRS, Unité Propre de Recherche 2357, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
1626
|
The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008; 453:803-6. [PMID: 18463630 DOI: 10.1038/nature07015] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/22/2008] [Indexed: 11/09/2022]
Abstract
In contrast to microRNAs and Piwi-associated RNAs, short interfering RNAs (siRNAs) are seemingly dispensable for host-directed gene regulation in Drosophila. This notion is based on the fact that mutants lacking the core siRNA-generating enzyme Dicer-2 or the predominant siRNA effector Argonaute 2 are viable, fertile and of relatively normal morphology. Moreover, endogenous Drosophila siRNAs have not yet been identified. Here we report that siRNAs derived from long hairpin RNA genes (hpRNAs) programme Slicer complexes that can repress endogenous target transcripts. The Drosophila hpRNA pathway is a hybrid mechanism that combines canonical RNA interference factors (Dicer-2, Hen1 (known as CG12367) and Argonaute 2) with a canonical microRNA factor (Loquacious) to generate approximately 21-nucleotide siRNAs. These novel regulatory RNAs reveal unexpected complexity in the sorting of small RNAs, and open a window onto the biological usage of endogenous RNA interference in Drosophila.
Collapse
|
1627
|
Johansen W, Wilson RC. Viral suppressor proteins show varying abilities and effectiveness to suppress transgene-induced post-transcriptional gene silencing of endogenous Chalcone synthase in transgenic Arabidopsis. PLANT CELL REPORTS 2008; 27:911-921. [PMID: 18246354 DOI: 10.1007/s00299-008-0508-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/02/2008] [Accepted: 01/14/2008] [Indexed: 05/25/2023]
Abstract
Many, if not most, plant viruses encode proteins that interfere with RNA silencing pathways in plants. These proteins, known as viral suppressor proteins interfere at different key steps of the silencing pathways, and are able to suppress, to varying degree, transgene-induced silencing in plants. In this study, we report the ability and effectiveness of four different viral suppressor proteins that interfere with post-transcriptional gene silencing (PTGS) of the endogenous chalcone synthase gene (CHS) in Arabidopsis when the silencing trigger and the viral suppressor protein were expressed from the same transgene locus. The silencing trigger consisted of an inverted-repeat transgene construct that induces PTGS of the endogenous Arabidopsis CHS gene with high efficiency. Real-time PCR analyses were used to monitor the transcript levels of both the viral mRNAs and the target CHS mRNAs in transgenic Arabidopsis. Our results show that only one of the viral suppressor proteins tested, the p38 protein of Turnip Crinkle Virus, was able to efficiently, albeit to varying degrees, interfere with PTGS of CHS in individual transgenic Arabidopsis plants. Moreover, we show that the degree of CHS silencing suppression was dependent on the transcript level of p38. In contrast to earlier reports, we also found that constitutive expression of p38 in transgenic Arabidopsis is correlated with morphological defects in leaves and flowers.
Collapse
Affiliation(s)
- Wenche Johansen
- Department of Natural Science and Technology, Faculty of Education and Natural Science, Hedmark University College, PO Box 4010, 2306 Hamar, Norway.
| | | |
Collapse
|
1628
|
Romero DG, Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology 2008; 149:2477-83. [PMID: 18218696 PMCID: PMC2329274 DOI: 10.1210/en.2007-1686] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs that decrease the expression levels of specific genes by translational repression, sequestration, and degradation of their mRNAs. Angiotensin II is an important modulator of adrenal zona glomerulosa cell physiology, including steroidogenesis and proliferation among many other physiological processes. Because each miRNA may regulate the expression levels of multiple genes, thereby resembling the transcription regulatory networks triggered by transcription factors, we hypothesize that specific miRNAs may be involved in angiotensin II-mediated adrenocortical cell physiology. The human adrenocortical cell line H295R is the only adrenal cell line available with a steroid secretion pattern and regulation similar to freshly isolated adrenocortical cells. We screened for miRNAs regulated by angiotensin II in H295R cells and found that miRNA-21 expression levels were specifically modulated by angiotensin II. Angiotensin II time dependently increased miRNA-21 expression reaching a 4.4-fold induction after 24 h. Angiotensin II-mediated miRNA-21 expression resulted in biologically active miRNA-21, determined using a fusion mRNA reporter system carrying miRNA-21 target sequences in its 3' untranslated region. Up-regulation of miRNA-21 intracellular levels increased aldosterone secretion but not cortisol. Elevation of miRNA-21 levels also increased cell proliferation in H295R cells. In summary, miRNA-21 is an endogenously expressed miRNA in human adrenal cells. miRNA-21 expression is up-regulated by angiotensin II, and its overexpression caused an increase in aldosterone secretion and cell proliferation. Alterations in miRNA-21 expression levels or function may be involved in dysregulation of angiotensin II signaling and abnormal aldosterone secretion by adrenal glands in humans.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine , University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | |
Collapse
|
1629
|
Rotthues A, Kappler J, Lichtfuss A, Kloos DU, Stahl DJ, Hehl R. Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta vulgaris L.). PLANTA 2008; 227:1321-1332. [PMID: 18324413 DOI: 10.1007/s00425-008-0704-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
Sixteen post-harvest upregulated genes from sugar beet comprising five novel sequences were isolated by subtractive cloning. Transcription profiles covering a period of up to 49 days after harvest under controlled storage conditions and in field clamps are reported. Post-harvest induced genes are involved in wound response, pathogen defense, dehydration stress, and detoxification of reactive oxygen species. An early induction of a cationic peroxidase indicates a response to post-harvest damage. Wound response reactions may also involve genes required for cell division such as a regulator of chromatin condensation and a precursor of the growth stimulating peptide phytohormone phytosulfokine-alpha. Surprisingly, also three putative non-protein coding genes were isolated. Two of these genes show intron specific and storage temperature dependent splicing of a precursor mRNA. The temperature dependent splicing of an intron containing sugar beet mRNA is also maintained in transgenic Arabidopsis thaliana. The storage induced genes are integrated into a model that proposes the response to several post-harvest stress conditions. Temperature regulated splicing may be a mechanism to sense seasonal temperature changes.
Collapse
Affiliation(s)
- Alexander Rotthues
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
1630
|
Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC PLANT BIOLOGY 2008; 8:37. [PMID: 18416839 PMCID: PMC2358906 DOI: 10.1186/1471-2229-8-37] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 04/16/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are recently discovered small non-coding RNAs that play pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals. Identification of miRNAs in large number of diverse plant species is important to understand the evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are conserved in higher plants, a homology based search using these databases can help identify orthologs or paralogs in plants. RESULTS We searched all publicly available nucleotide databases of genome survey sequences (GSS), high-throughput genomics sequences (HTGS), expressed sequenced tags (ESTs) and nonredundant (NR) nucleotides and identified 682 miRNAs in 155 diverse plant species. We found more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in important model legumes such as Medicago, Lotus and soybean. Five miRNA families - miR319, miR156/157, miR169, miR165/166 and miR394 - were found in 51, 45, 41, 40 and 40 diverse plant species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444 homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots, thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore, we provide computational and/or experimental evidence for the conservation of 6 newly found Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840) and 2 small RNAs (small-85 and small-87) in Brassica spp. CONCLUSION Using all publicly available nucleotide databases, 682 miRNAs were identified in 155 diverse plant species. By combining the expression analysis with the computational approach, we found that 6 miRNAs and 2 small RNAs that have been identified only in Arabidopsis thus far, are also conserved in Brassica spp. These findings will be useful for tracing the evolution of small RNAs by examining their expression in common ancestors of the Arabidopsis-Brassica lineage.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
1631
|
Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 2008; 9:160. [PMID: 18402695 PMCID: PMC2335117 DOI: 10.1186/1471-2164-9-160] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 04/10/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small RNAs regulate a number of developmental processes in plants and animals. However, the role of small RNAs in legume-rhizobial symbiosis is largely unexplored. Symbiosis between legumes (e.g. soybean) and rhizobia bacteria (e.g. Bradyrhizobium japonicum) results in root nodules where the majority of biological nitrogen fixation occurs. We sought to identify microRNAs (miRNAs) regulated during soybean-B. japonicum symbiosis. RESULTS We sequenced approximately 350000 small RNAs from soybean roots inoculated with B. japonicum and identified conserved miRNAs based on similarity to miRNAs known in other plant species and new miRNAs based on potential hairpin-forming precursors within soybean EST and shotgun genomic sequences. These bioinformatics analyses identified 55 families of miRNAs of which 35 were novel. A subset of these miRNAs were validated by Northern analysis and miRNAs differentially responding to B. japonicum inoculation were identified. We also identified putative target genes of the identified miRNAs and verified in vivo cleavage of a subset of these targets by 5'-RACE analysis. Using conserved miRNAs as internal control, we estimated that our analysis identified approximately 50% of miRNAs in soybean roots. CONCLUSION Construction and analysis of a small RNA library led to the identification of 20 conserved and 35 novel miRNA families in soybean. The availability of complete and assembled genome sequence information will enable identification of many other miRNAs. The conserved miRNA loci and novel miRNAs identified in this study enable investigation of the role of miRNAs in rhizobial symbiosis.
Collapse
Affiliation(s)
- Senthil Subramanian
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| | - Yan Fu
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - W Brad Barbazuk
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| | - Jian-Kang Zhu
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, 975 N Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
1632
|
Ehrenreich IM, Purugganan MD. Sequence variation of MicroRNAs and their binding sites in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:1974-82. [PMID: 18305205 PMCID: PMC2287364 DOI: 10.1104/pp.108.116582] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 02/19/2008] [Indexed: 05/18/2023]
Abstract
Major differences exist between plants and animals both in the extent of microRNA (miRNA)-based gene regulation and the sequence complementarity requirements for miRNA-messenger RNA pairing. Whether these differences affect how these sites evolve at the molecular level is unknown. To determine the extent of sequence variation at miRNAs and their targets in a plant species, we resequenced 16 miRNA families (66 miRNAs in total) and all 52 of the characterized binding sites for these miRNAs in the plant model Arabidopsis (Arabidopsis thaliana), accounting for around 50% of the known miRNAs and binding sites in this species. As has been shown previously in humans, we find that both miRNAs and their target binding sites have very low nucleotide variation and divergence compared to their flanking sequences in Arabidopsis, indicating strong purifying selection on these sites in this species. Sequence data flanking the mature miRNAs, however, exhibit normal levels of polymorphism for the accessions in this study and, in some cases, nonneutral evolution or subtle effects on predicted pre-miRNA secondary structure, suggesting that there is raw material for the differential function of miRNA alleles. Overall, our results show that despite differences in the architecture of miRNA-based regulation, miRNAs and their targets are similarly constrained in both plants and animals.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
1633
|
Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 2008; 105:4951-6. [PMID: 18353984 DOI: 10.1073/pnas.0708743105] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Small RNAs (21-24 nt) are involved in gene regulation through translation inhibition, mRNA cleavage, or directing chromatin modifications. In rice, currently approximately 240 microRNAs (miRNAs) have been annotated. We sequenced more than four million small RNAs from rice and identified another 24 miRNA genes. Among these, we found a unique class of miRNAs that derive from natural cis-antisense transcript pairs. This configuration generates miRNAs that can perfectly match their targets. We provide evidence that the miRNAs function by inducing mRNA cleavage in the middle of their complementary site. Their production requires Dicer-like 1 (DCL1) activity, which is essential for canonical miRNA biogenesis. All of the natural antisense miRNAs (nat-miRNAs) identified in this study have large introns in their precursors that appear critical for nat-miRNA evolution and for the formation of functional miRNA loci. These findings suggest that other natural cis-antisense loci with similar exon-intron arrangements could be another source of miRNA genes.
Collapse
|
1634
|
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 2008; 133:116-27. [PMID: 18342361 DOI: 10.1016/j.cell.2008.02.034] [Citation(s) in RCA: 981] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/04/2008] [Accepted: 02/15/2008] [Indexed: 11/16/2022]
Abstract
Argonaute (AGO) proteins recruit small RNAs to form the core of RNAi effector complexes. Arabidopsis encodes ten AGO proteins and a large network of small RNAs. How these small RNAs are sorted into specific AGO complexes remains largely unknown. We have cataloged small RNAs resident in four AGO complexes. We found that AGO2 and AGO4 preferentially recruit small RNAs with a 5' terminal adenosine, whereas AGO1 harbors microRNAs (miRNAs) that favor a 5' terminal uridine. AGO5 predominantly binds small RNAs that initiate with cytosine. Changing the 5' terminal nucleotide of an miRNA predictably redirected it into a different AGO complex and alters its biological activity. These results reveal a role for small RNA sequences in assorting among AGO complexes. This suggests that specialization of AGO complexes might involve remodeling the 5' end-binding pocket to accept certain small RNA sequences, perhaps explaining the evolutionary drive for miRNAs to initiate with uridine.
Collapse
Affiliation(s)
- Shijun Mi
- National Institute of Biological Sciences, No.7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1635
|
Zeller G, Clark RM, Schneeberger K, Bohlen A, Weigel D, Rätsch G. Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Res 2008; 18:918-29. [PMID: 18323538 DOI: 10.1101/gr.070169.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whole-genome oligonucleotide resequencing arrays have allowed the comprehensive discovery of single nucleotide polymorphisms (SNPs) in eukaryotic genomes of moderate to large size. With this technology, the detection rate for isolated SNPs is typically high. However, it is greatly reduced when other polymorphisms are located near a SNP as multiple mismatches inhibit hybridization to arrayed oligonucleotides. Contiguous tracts of suppressed hybridization therefore typify polymorphic regions (PRs) such as clusters of SNPs or deletions. We developed a machine learning method, designated margin-based prediction of polymorphic regions (mPPR), to predict PRs from resequencing array data. Conceptually similar to hidden Markov models, the method is trained with discriminative learning techniques related to support vector machines, and accurately identifies even very short polymorphic tracts (<10 bp). We applied this method to resequencing array data previously generated for the euchromatic genomes of 20 strains (accessions) of the best-characterized plant, Arabidopsis thaliana. Nonredundantly, 27% of the genome was included within the boundaries of PRs predicted at high specificity ( approximately 97%). The resulting data set provides a fine-scale view of polymorphic sequences in A. thaliana; patterns of polymorphism not apparent in SNP data were readily detected, especially for noncoding regions. Our predictions provide a valuable resource for evolutionary genetic and functional studies in A. thaliana, and our method is applicable to similar data sets in other species. More broadly, our computational approach can be applied to other segmentation tasks related to the analysis of genomic variation.
Collapse
Affiliation(s)
- Georg Zeller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72070, Germany
| | | | | | | | | | | |
Collapse
|
1636
|
Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J. Identification and characterization of small RNAs from the phloem of Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:739-49. [PMID: 18005229 DOI: 10.1111/j.1365-313x.2007.03368.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic signalling is indispensable for the coordination of diverse physiological processes during development, defence and nutrient allocation. Indirect evidence suggests that plant small RNAs (smRNAs) could be involved in long-distance information transfer via the vasculature of the plant. Analyses of the smRNA complements of vascular exudates from oilseed rape (Brassica napus) showed that xylem sap is devoid of RNA, whereas phloem sap contained a large number of smRNAs. In addition to 32 annotated microRNAs (miRNAs) from 18 different families that could be identified and approved, a set of unknown smRNAs, predominantly of 21 and 24 nucleotides in length, was obtained, and selected candidates were found to be highly abundant in phloem sap. Moreover, we could demonstrate that the levels of three miRNAs known to respond to nutrient deprivation in non-vascular tissue, miR395 (sulphate), miR398 (copper) and miR399 (phosphate), were increased in phloem sap during the growth of plants under the respective starvation conditions. Interestingly, only mature miRNA molecules were found to be stress responsive, demonstrating that single-stranded sense miRNAs are most likely to represent the physiologically relevant molecules. The strong responses in the phloem suggest a role of miRNAs in systemic information transfer via this long-distance transport system.
Collapse
Affiliation(s)
- Anja Buhtz
- Department Lothar Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14 476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
1637
|
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC PLANT BIOLOGY 2008; 8:25. [PMID: 18312648 PMCID: PMC2292181 DOI: 10.1186/1471-2229-8-25] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Small RNA-guided gene silencing at the transcriptional and post-transcriptional levels has emerged as an important mode of gene regulation in plants and animals. Thus far, conventional sequencing of small RNA libraries from rice led to the identification of most of the conserved miRNAs. Deep sequencing of small RNA libraries is an effective approach to uncover rare and lineage- and/or species-specific microRNAs (miRNAs) in any organism. RESULTS In order to identify new miRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. A total of 58,781, 43,003 and 80,990 unique genome-matching small RNAs were obtained from the control, drought and salt stress libraries, respectively. Sequence analysis confirmed the expression of most of the conserved miRNAs in rice. Importantly, 23 new miRNAs mostly each derived from a unique locus in rice genome were identified. Six of the new miRNAs are conserved in other monocots. Additionally, we identified 40 candidate miRNAs. Allowing not more than 3 mis-matches between a miRNA and its target mRNA, we predicted 20 targets for 9 of the new miRNAs. CONCLUSION Deep sequencing proved to be an effective strategy that allowed the discovery of 23 low-abundance new miRNAs and 40 candidate miRNAs in rice.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Yun Zheng
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
1638
|
Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 2008; 8:R96. [PMID: 17543110 PMCID: PMC2394755 DOI: 10.1186/gb-2007-8-6-r96] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/27/2007] [Accepted: 06/01/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. So far, identification of miRNAs has been limited to a few model plant species, such as Arabidopsis, rice and Populus, whose genomes have been sequenced. Wheat is one of the most important cereal crops worldwide. To date, only a few conserved miRNAs have been predicted in wheat and the computational identification of wheat miRNAs requires the genome sequence, which is unknown. RESULTS To identify novel as well as conserved miRNAs in wheat (Triticum aestivum L.), we constructed a small RNA library. High throughput sequencing of the library and subsequent analysis revealed the identification of 58 miRNAs, comprising 43 miRNA families. Of these, 35 miRNAs belong to 20 conserved miRNA families. The remaining 23 miRNAs are novel and form 23 miRNA families in wheat; more importantly, 4 of these new miRNAs (miR506, miR510, miR514 and miR516) appear to be monocot-specific. Northern blot analysis indicated that some of the new miRNAs are preferentially expressed in certain tissues. Based on sequence homology, we predicted 46 potential targets. Thus, we have identified a large number of monocot-specific and wheat-specific miRNAs. These results indicate that both conserved and wheat-specific miRNAs play important roles in wheat growth and development, stress responses and other physiological processes. CONCLUSION This study led to the discovery of 58 wheat miRNAs comprising 43 miRNA families; 20 of these families are conserved and 23 are novel in wheat. It provides a first large scale cloning and characterization of wheat miRNAs and their predicted targets.
Collapse
Affiliation(s)
- Yingyin Yao
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Ganggang Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK74078, USA
| | - Jinkun Du
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| |
Collapse
|
1639
|
Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008; 135:1201-14. [PMID: 18287206 DOI: 10.1242/dev.005629] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several distinct classes of small RNAs, some newly identified, have been discovered to play important regulatory roles in diverse cellular processes. These classes include siRNAs, miRNAs, rasiRNAs and piRNAs. Each class binds to distinct members of the Argonaute/Piwi protein family to form ribonucleoprotein complexes that recognize partially, or nearly perfect, complementary nucleic acid targets, and that mediate a variety of regulatory processes, including transcriptional and post-transcriptional gene silencing. Based on the known relationship of Argonaute/Piwi proteins with distinct classes of small RNAs, we can now predict how many new classes of small RNAs or silencing processes remain to be discovered.
Collapse
Affiliation(s)
- Thalia A Farazi
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | | | | |
Collapse
|
1640
|
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9:102-14. [PMID: 18197166 DOI: 10.1038/nrg2290] [Citation(s) in RCA: 3962] [Impact Index Per Article: 233.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function.
Collapse
|
1641
|
Seymour G, Poole M, Manning K, King GJ. Genetics and epigenetics of fruit development and ripening. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:58-63. [PMID: 17997126 DOI: 10.1016/j.pbi.2007.09.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 05/03/2023]
Abstract
Fruits come in a vast variety of forms with both dry and fleshy types being essential components of the human diet. Elegant studies on the dry fruits of Arabidopsis have identified a suite of transcription factors involved in their development and dehiscence. Recent discoveries in tomato have revealed a hitherto unsuspected regulatory network involved in the developmental regulation of ripening in these fleshy fruits. Intriguingly it has become apparent that tomato shares some elements of its regulatory network in common with those involved in fruit development in Arabidopsis. Furthermore epigenetic variation has been shown to influence tomato ripening. These discoveries are likely to have a major impact on strategies for crop improvement in fruit bearing species.
Collapse
Affiliation(s)
- Graham Seymour
- Plant Science Division, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK.
| | | | | | | |
Collapse
|
1642
|
Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:674-90. [PMID: 18269576 DOI: 10.1111/j.1365-313x.2007.03328.x] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Comprehensive analysis of gene function requires the detailed examination of mutant alleles. In Arabidopsis thaliana, large collections of sequence-indexed insertion and chemical mutants provide potential loss-of-function alleles for most annotated genes. However, limitations for phenotypic analysis include gametophytic or early sporophytic lethality, and the ability to recombine mutant alleles in closely linked genes, especially those present as tandem duplications. Transgene-mediated gene silencing can overcome some of these shortcomings through tissue-specific, inducible and partial gene inactivation, or simultaneous targeting of several, sequence-related genes. In addition, gene silencing is a convenient approach in species or varieties for which exhaustive mutant collections are not yet available. Typically, gene function is reduced post-transcriptionally, effected by small RNAs that act in a sequence-specific manner by base pairing to complementary mRNA molecules. A recently introduced approach is the use of artificial microRNAs (amiRNAs). Here, we review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species.
Collapse
Affiliation(s)
- Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | |
Collapse
|
1643
|
Marcon E, Babak T, Chua G, Hughes T, Moens PB. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res 2008; 16:243-60. [DOI: 10.1007/s10577-007-1190-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
1644
|
Lindow M, Jacobsen A, Nygaard S, Mang Y, Krogh A. Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants. PLoS Comput Biol 2008; 3:e238. [PMID: 18052543 PMCID: PMC2098865 DOI: 10.1371/journal.pcbi.0030238] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/17/2007] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are important post-transcriptional regulators, but the extent of this regulation is uncertain, both with regard to the number of miRNA genes and their targets. Using an algorithm based on intragenomic matching of potential miRNAs and their targets coupled with support vector machine classification of miRNA precursors, we explore the potential for regulation by miRNAs in three plant genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. We find that the intragenomic matching in conjunction with a supervised learning approach contains enough information to allow reliable computational prediction of miRNA candidates without requiring conservation across species. Using this method, we identify ∼1,200, ∼2,500, and ∼2,100 miRNA candidate genes capable of extensive base-pairing to potential target mRNAs in A. thaliana, P. trichocarpa, and O. sativa, respectively. This is more than five times the number of currently annotated miRNAs in the plants. Many of these candidates are derived from repeat regions, yet they seem to contain the features necessary for correct processing by the miRNA machinery. Conservation analysis indicates that only a few of the candidates are conserved between the species. We conclude that there is a large potential for miRNA-mediated regulatory interactions encoded in the genomes of the investigated plants. We hypothesize that some of these interactions may be realized under special environmental conditions, while others can readily be recruited when organisms diverge and adapt to new niches. microRNAs (miRNAs) are small RNA molecules that regulate gene expression by complementary basepairing to mRNAs. In plants, this base-pairing is almost perfect along the whole length of miRNAs. This long stretch of complementarity makes it relatively easy to make computational predictions of the targets for known miRNAs. To predict novel miRNA genes, we take advantage of this and reverse the target prediction: instead of predicting targets for known miRNAs, we predict novel miRNA candidates for all known mRNAs. Because matching between target and miRNA candidates is integral to the method, it is possible to achieve good predictions without having to rely on evolutionary conservation, as most other current methods do. This means that we can predict new miRNAs that are specific to an organism. Interestingly, this could help explain the difference between species that have very similar protein-coding genes, but highly different phenotypes. Furthermore, it turns out that many of these new miRNA candidates derive from genomic repeat regions such as transposons, which points to a possible active role for repeats/transposons in the regulation of gene expression.
Collapse
Affiliation(s)
- Morten Lindow
- Bioinformatics Centre, Department of Molecular Biology and Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
1645
|
Oh TJ, Wartell RM, Cairney J, Pullman GS. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). THE NEW PHYTOLOGIST 2008; 179:67-80. [PMID: 18433430 DOI: 10.1111/j.1469-8137.2008.02448.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are known to regulate plant development, but have not been studied in gymnosperm seed tissues. The presence and characteristics of several miRNAs were examined in zygotic embryos (ZEs) and female gametophytes (FGs) of Pinus taeda (loblolly pine). Evidence for miRNAs was obtained using northern analyses and quantitative reverse transcription polymerase chain reaction (qRT-PCR) mediated with poly(A) polymerase. Partial sequences of two miRNAs were verified. Three regions of putative mRNA targets were analyzed by qRT-PCR to monitor the occurrence of stage-dependent miRNA-mediated cleavage. Five miRNAs were identified in ZEs and FGs along with partial sequences of Pta-miR166 and Pta-miR167. Both miRNAs showed differing degrees of tissue-specific and stage-specific modulation. Analysis of HB15L mRNA (a potential Pta-miR166 target) suggested miRNA-guided cleavage in ZEs and FGs. Analysis of ARF8L mRNA (a potential Pta-miR167 target) implied cleavage in ZEs but not in FGs. Argonaute9-like mRNA (ptAGO9L) showed stage-specific modulation of expression in ZEs that appeared to be inverted in the corresponding FGs. MicroRNAs and argonaute genes varied spatiotemporally during seed development. The peak levels of Pta-miR166 in FGs and ptAGO9L in embryos occurred at stage 9.1, a critical transition point during embryo development and a point where somatic embryo maturation often stops. MicroRNAs identified in FG tissue may play a role in embryogenesis.
Collapse
Affiliation(s)
- Thomas J Oh
- Forest Biology, Institute of Paper Science and Technology (IPST)
| | - Roger M Wartell
- School of Biology and
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA
| | - John Cairney
- Forest Biology, Institute of Paper Science and Technology (IPST)
- School of Biology and
| | - Gerald S Pullman
- Forest Biology, Institute of Paper Science and Technology (IPST)
- School of Biology and
| |
Collapse
|
1646
|
Nonogaki H. Repression of transcription factors by microRNA during seed germination and postgerminaiton: Another level of molecular repression in seeds. PLANT SIGNALING & BEHAVIOR 2008; 3:65-7. [PMID: 19704775 PMCID: PMC2633965 DOI: 10.4161/psb.3.1.4918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 05/03/2023]
Abstract
There are multiple layers of molecular repression during seed germination and seedling growth which are important to maintain normal developmental programs at the early stages of plant growth. Genes involved in hormone biosynthesis and deactivation which determine the dormant or germinative status of seeds are generally controlled at the transcriptional level. In contrast, regulation involving protein modification and degradation which occur at the posttranslational level seem to be more important for the removal of proteins suppressing seed germination and seedling growth. Recent work indicates that posttranscriptional repression, another level of molecular regulation, is also critical for seed germination and postgermination. This addendum highlights recent findings concerning the repression of transcription factors by microRNA (miRNA) in Arabidopsis seeds and seedlings. Characterization of the mutant expressing miR160-resistant AUXIN RESPONSE FACTOR10 suggested the possible involvement of auxin-ABA crosstalk in seed germination. The new findings are integrated into the current model of seed germination mechanisms depicting a balance between embryo growth potential and endosperm mechanical resistance.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- Department of Horticulture; Oregon State University; Corvallis, Oregan USA
| |
Collapse
|
1647
|
Abstract
Plants control the time at which they flower by integrating environmental cues such as day length and temperature with an endogenous program of development. Flowering time is a quantitative trait and a model for how precision in gene regulation is delivered. In this review, we reveal that flowering time control is particularly rich in RNA processing-based gene regulatory phenomena. We review those factors which function in conserved RNA processing events like alternative 3' end formation, splicing, RNA export and miRNA biogenesis and how they affect flowering time. Likewise, we review the novel plant-specific RNA-binding proteins identified as regulators of flowering time control. In addition, we add to the network of flowering time control pathways, information on alternative processing of flowering time gene pre-mRNAs. Finally, we describe new approaches to dissect the mechanisms which underpin this control.
Collapse
Affiliation(s)
- L C Terzi
- Scottish Crop Research Institute, Invergowrie, UK
| | | |
Collapse
|
1648
|
Abstract
Elucidation of the molecular basis of disease depends upon continued progress in defining the mechanisms by which genomic information is encoded and expressed. Transcription factor-mediated regulation of mRNA is clearly a major source of regulatory control and has been well studied. The more recent discovery of small RNAs as key regulators of gene function has introduced a new level and mechanism of regulation. Mammalian genomes contain hundreds of microRNAs (miRNAs) that each can potentially downregulate many target genes. This suggests a new source for broad control over gene regulation and has inspired extensive interest in defining miRNAs and their functions. Here, the identification of miRNAs, their biogenesis, and some examples of miRNA effects on biology and disease are reviewed and discussed. Emphasis is placed on the possible role for miRNA in nervous system development, function, and disease.
Collapse
Affiliation(s)
- Douglas J Guarnieri
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
1649
|
|
1650
|
Abstract
Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed.
Collapse
Affiliation(s)
- Terri A. Long
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| | - Siobhan M. Brady
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| | - Philip N. Benfey
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|