1751
|
Zajac O, Leclere R, Nicolas A, Meseure D, Marchiò C, Vincent-Salomon A, Roman-Roman S, Schoumacher M, Dubois T. AXL Controls Directed Migration of Mesenchymal Triple-Negative Breast Cancer Cells. Cells 2020; 9:cells9010247. [PMID: 31963783 PMCID: PMC7016818 DOI: 10.3390/cells9010247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with high risk of relapse and metastasis. TNBC is a heterogeneous disease comprising different molecular subtypes including those with mesenchymal features. The tyrosine kinase AXL is expressed in mesenchymal cells and plays a role in drug resistance, migration and metastasis. We confirm that AXL is more expressed in mesenchymal TNBC cells compared to luminal breast cancer cells, and that its invalidation impairs cell migration while having no or little effect on cell viability. Here, we found that AXL controls directed migration. We observed that AXL displays a polarized localization at the Golgi apparatus and the leading edge of migratory mesenchymal TNBC cells. AXL co-localizes with F-actin at the front of the cells. In migratory polarized cells, the specific AXL inhibitor R428 displaces AXL and F-actin from the leading edge to a lateral area localized between the front and the rear of the cells where both are enriched in protrusions. In addition, R428 treatment disrupts the polarized localization of the Golgi apparatus towards the leading edge in migratory cells. Immunohistochemical analysis of aggressive chemo-resistant TNBC samples obtained before treatment reveals inter- and intra-tumor heterogeneity of the percentage of AXL expressing tumor cells, and a preference of these cells to be in contact with the stroma. Taken together, our study demonstrates that AXL controls directed cell migration most likely by regulating cell polarity.
Collapse
Affiliation(s)
- Olivier Zajac
- Breast Cancer Biology Group, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Renaud Leclere
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - André Nicolas
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - Didier Meseure
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Via Verdi 8, 10124 Torino TO, Italy;
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Marie Schoumacher
- Center for Therapeutic Innovation Oncology, Institut de Recherches Internationales SERVIER, 92284 Suresnes, France;
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
- Correspondence: ; Tel.: +33-156246250
| |
Collapse
|
1752
|
Feng Z, Yu Q, Zhang T, Tie W, Li J, Zhou X. Updates on mechanistic insights and targeting of tumour metastasis. J Cell Mol Med 2020; 24:2076-2086. [PMID: 31957271 PMCID: PMC7011147 DOI: 10.1111/jcmm.14931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Malignant tumours are one of the major diseases that seriously endanger human health. The characteristics of their invasion and metastasis are one of the main causes of death in cancer patients, and these features cannot be separated from the participation of various molecules-related cells living in the tumour microenvironment and specific structures. Tumour invasion can approximately be divided into several specific steps according to the movement of tumour cells. In each step, there are different actions in the tumour microenvironment that mediate the interactions among substances. Researchers are attempting to clarify every mechanism of the tumour dissemination. However, there is still a long way to the final determination. Here, we review these interactions in tumour invasion and metastasis at the structural, molecular and cellular levels. We also discuss the ongoing studies and the promise of targeting metastasis in tumour therapy.
Collapse
Affiliation(s)
- Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Qiuxuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Wanpeng Tie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
1753
|
HMGA Genes and Proteins in Development and Evolution. Int J Mol Sci 2020; 21:ijms21020654. [PMID: 31963852 PMCID: PMC7013770 DOI: 10.3390/ijms21020654] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.
Collapse
|
1754
|
Xu S, Zhang ZH, Fu L, Song J, Xie DD, Yu DX, Xu DX, Sun GP. Calcitriol inhibits migration and invasion of renal cell carcinoma cells by suppressing Smad2/3-, STAT3- and β-catenin-mediated epithelial-mesenchymal transition. Cancer Sci 2020; 111:59-71. [PMID: 31729097 PMCID: PMC6942435 DOI: 10.1111/cas.14237] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/02/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
Low vitamin D status is associated with progression in patients with renal cell carcinoma (RCC). The present study found that vimentin, a mesenchymal marker, was accordingly upregulated, and E-cadherin, an epithelial marker, was downregulated in RCC patients with low vitamin D status. Thus, we investigated the effects of calcitriol or vitamin D3, an active form of vitamin D, on epithelial-mesenchymal transition (EMT) in RCC cells. RCC cells were treated by two models. In model 1, three RCC cell lines, ACHN, 786-O and CAKI-2, were incubated with either LPS (2.0 μg/mL) or transforming growth factor (TGF)-β1 (10 ng/mL) in the presence or absence of calcitriol (200 nmol/L). In model 2, two RCC cell lines, ACHN and CAKI-2, were incubated with calcitriol (200 nmol/L) only. Calcitriol inhibited migration and invasion not only in TGF-β1-stimulated but also in TGF-β1-unstimulated RCC cells. Moreover, calcitriol suppressed E-cadherin downregulation and vimentin upregulation not only in TGF-β1-stimulated but also in TGF-β1-unstimulated ACHN and CAKI-2 cells. Calcitriol attenuated LPS-induced upregulation of MMP-2, MMP-7, MMP-9, MMP-26 and urokinase-type plasminogen activator (u-PA) in ACHN cells. In addition, calcitriol blocked TGF-β1-induced nuclear translocation of ZEB1, Snail and Twist1 in ACHN and CAKI-2 cells. Mechanistically, calcitriol suppressed EMT through different signaling pathways: (i) calcitriol suppressed Smad2/3 phosphorylation by reinforcing physical interaction between vitamin D receptor (VDR) and Smad3 in TGF-β1-stimulated RCC cells; (ii) calcitriol inhibited signal transducer and activator of transcription (STAT)3 activation in LPS-stimulated RCC cells; (iii) calcitriol inhibited β-catenin/TCF-4 activation by promoting integration of VDR with β-catenin in TGF-β1-unstimulated RCC cells. Taken together, calcitriol inhibits migration and invasion of RCC cells partially by suppressing Smad2/3-, STAT3- and β-catenin-mediated EMT.
Collapse
Affiliation(s)
- Shen Xu
- Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Jin Song
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Guo-Ping Sun
- Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
1755
|
Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, Zhang Z, Zhang S, Qi Y, Sun X, Xue H, Guo X, Zhao R, Li G. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol 2020; 14:407-425. [PMID: 31856384 PMCID: PMC6998390 DOI: 10.1002/1878-0261.12623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023] Open
Abstract
Gliomas are the most common primary malignant tumours of the central nervous system, and new molecular biomarkers are urgently needed for diagnosis and targeted therapy. Here, we report that increased beta-site APP-cleaving enzyme 2 (BACE2) expression is associated with increases in the grade of human glioma, the incidence of the mesenchymal molecular glioblastoma multiforme subtype and the likelihood of poor prognoses for patients. BACE2 knockdown suppressed cell invasion, cell migration and tumour growth both in vitro and in vivo, while BACE2 overexpression promoted the mesenchymal transition and cell proliferation. Furthermore, TGFβ1 stimulated BACE2 expression through Smad-dependent signalling, which modulated TNF-α-induced NF-κB activity through the PP1A/IKK pathway to promote tumorigenesis in both U87MG and U251 cells. Our study indicated that BACE2 plays a significant role in glioma development. Therefore, BACE2 is a potential therapeutic target for human gliomas due to its function and ability to be regulated.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Zihang Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Xiao Gao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Shouji Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Xiaopeng Sun
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China.,Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong Province, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
1756
|
McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic Fitness and Plasticity in Cancer Progression. Trends Cancer 2020; 6:49-61. [PMID: 31952781 DOI: 10.1016/j.trecan.2019.11.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
Cancer cells have enhanced metabolic needs due to their rapid proliferation. Moreover, throughout their progression from tumor precursors to metastases, cancer cells face challenging physiological conditions, including hypoxia, low nutrient availability, and exposure to therapeutic drugs. The ability of cancer cells to tailor their metabolic activities to support their energy demand and biosynthetic needs throughout disease progression is key for their survival. Here, we review the metabolic adaptations of cancer cells, from primary tumors to therapy resistant cancers, and the mechanisms underpinning their metabolic plasticity. We also discuss the metabolic coupling that can develop between tumors and the tumor microenvironment. Finally, we consider potential metabolic interventions that could be used in combination with standard therapeutic approaches to improve clinical outcome.
Collapse
Affiliation(s)
- Shawn McGuirk
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yannick Audet-Delage
- Department of Biochemistry, Microbiology, and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, Microbiology, and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
1757
|
Zhang HS, Liu HY, Zhou Z, Sun HL, Liu MY. TSPAN8 promotes colorectal cancer cell growth and migration in LSD1-dependent manner. Life Sci 2020; 241:117114. [DOI: 10.1016/j.lfs.2019.117114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
1758
|
Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal 2020; 28:14-37. [DOI: 10.1016/j.jfda.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
|
1759
|
Liu C, Peng X, Li Y, Liu S, Hou R, Zhang Y, Zuo S, Liu Z, Luo R, Li L, Fang W. Positive feedback loop of FAM83A/PI3K/AKT/c-Jun induces migration, invasion and metastasis in hepatocellular carcinoma. Biomed Pharmacother 2019; 123:109780. [PMID: 31901550 DOI: 10.1016/j.biopha.2019.109780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
FAM83A is part of an 8-member protein family of unknown function and is reported to be a cancer-promoting and treatment-resistance factor in several cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Analysis of the Cancer Genome Atlas (TCGA) showed that FAM83A mRNA expression is upregulated in HCC, as are the protein expression levels in both HCC cell lines and tissues. Clinical data have demonstrated that high FAM83A expression is positively correlated with poor progression-free survival time, thus suggesting its cancer-promoting potential. Functional analyses showed that FAM83A overexpression promoted HCC cell migration and invasion in vitro and suppressed sorafenib sensitivity. Inhibiting FAM83A reversed these results. A pulmonary metastasis model further confirmed that FAM83A promoted HCC cell metastasis in vivo. Mechanistic analyses indicated that FAM83A activated the PI3K/AKT signaling pathway, its downstream c-JUN protein, and epithelial-to-mesenchymal transition (EMT)-related protein levels, including downregulation of E-cadherin and upregulation of Vimentin and N-cadherin. Interestingly, c-JUN induced FAM83A expression by directly binding to its promoter region and thus forming a positive-feedback loop for FAM83A/PI3K/AKT/c-JUN. In conclusion, we demonstrated that FAM83A, as a cancer-metastasis promoter, accelerates migration, invasion and metastasis by activating the PI3K/AKT/c-JUN pathway and inducing its self-expression via feedback, thus forming a FAM83A/PI3K/AKT/c-JUN positive-feedback loop to activate EMT signaling and finally promote HCC migration, invasion and metastasis.
Collapse
Affiliation(s)
- Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; The First Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Xuemei Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Shu Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Yewei Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Shi Zuo
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhan Liu
- Department of Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, 410002, China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Libo Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
1760
|
Li ZY, Li XH, Tian GW, Zhang DY, Gao H, Wang ZY. MAGI1 Inhibits the Proliferation, Migration and Invasion of Glioma Cells. Onco Targets Ther 2019; 12:11281-11290. [PMID: 31908493 PMCID: PMC6927608 DOI: 10.2147/ott.s230236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background Membrane-associated guanylate kinase inverted repeat member 1 (MAGI1) acts as a tumor suppressor in a variety of tumors; however, its expression and biological function in glioma are still unknown. Methods MAGI1 expression in glioma was examined by immunohistochemistry. In addition, overexpression of MAGI1 in U87 and U373 cells, colony formation and MTT assays were used to evaluate cell proliferation, Transwell assays to determine cell migration and invasion, and a xenograft model established using U87 cells to evaluate the effect of MAGI1 overexpression in vivo. Western blot assays were used to analyze the Akt, MMP2, MMP9 and E-cadherin/N-cadherin/vimentin pathway changes after overexpression of MAGI1. Results We demonstrated that MAGI1 was expressed at low levels in glioma. Low MAGI1 expression was positively correlated with the malignant progression of glioma and indicated a poor prognosis. Moreover, we found that overexpressed MAGI1 inhibited the proliferation, migration and invasion of glioma cells by regulating cell growth and EMT through Akt, MMP2, MMP9 and the E-cadherin/N-cadherin/vimentin pathway. Conclusion These findings demonstrate a novel function of MAGI1 in glioma progression and suggest that MAGI1 might be a target for the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Zhong-Yan Li
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.,Department of Neurosurgery, Fuxin Central Hospital, Fuxin, People's Republic of China
| | - Xue-Hua Li
- Department of Neurosurgery, Fuxin Central Hospital, Fuxin, People's Republic of China
| | - Guang-Wei Tian
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dong-Yong Zhang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hai Gao
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
1761
|
Kiełbus M, Czapiński J, Kałafut J, Woś J, Stepulak A, Rivero-Müller A. Genetically Engineered Lung Cancer Cells for Analyzing Epithelial-Mesenchymal Transition. Cells 2019; 8:E1644. [PMID: 31847480 PMCID: PMC6953058 DOI: 10.3390/cells8121644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Cell plasticity, defined as the ability to undergo phenotypical transformation in a reversible manner, is a physiological process that also exerts important roles in disease progression. Two forms of cellular plasticity are epithelial-mesenchymal transition (EMT) and its inverse process, mesenchymal-epithelial transition (MET). These processes have been correlated to the poor outcome of different types of neoplasias as well as drug resistance development. Since EMT/MET are transitional processes, we generated and validated a reporter cell line. Specifically, a far-red fluorescent protein was knocked-in in-frame with the mesenchymal gene marker VIMENTIN (VIM) in H2170 lung cancer cells. The vimentin reporter cells (VRCs) are a reliable model for studying EMT and MET showing cellular plasticity upon a series of stimulations. These cells are a robust platform to dissect the molecular mechanisms of these processes, and for drug discovery in vitro and in vivo in the future.
Collapse
Affiliation(s)
- Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (J.C.); (J.K.); (A.S.)
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (J.C.); (J.K.); (A.S.)
- Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (J.C.); (J.K.); (A.S.)
| | - Justyna Woś
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (J.C.); (J.K.); (A.S.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (J.C.); (J.K.); (A.S.)
- Faculty of Natural Sciences and Technology, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
1762
|
|
1763
|
Zhang C, Shen K, Zheng Y, Qi F, Luo J. Genome-wide screening of abberant methylated drivers combined with relative risk loci in bladder cancer. Cancer Med 2019; 9:768-782. [PMID: 31794632 PMCID: PMC6970050 DOI: 10.1002/cam4.2665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Background To explore important methylation‐driven genes (MDGs) and risk loci to construct risk model for prognosis of bladder cancer (BCa). Methods We utilized TCGA‐Assembler package to download 450K methylation data and corresponding transcriptome profiles. MethylMix package was used for identifying methylation‐driven genes and functional analysis was mainly performed based on ConsensusPathDB database. Then, Cox regression method was utilized to find prognostic MDGs, and we selected 17 hub genes via stepwise regression and multivariate Cox models. Kruskal‐Wallis test was implemented for comparisons between risk with other clinical variables. Moreover, we constructed the risk model and validated it in http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507. Gene set enrichment analysis was performed using the levels of risk score as the phenotype. Additionally, we further screened out the relative methylation sites associated with the 17 hub genes. Cox regression and Survival analysis were conducted to find the specifically prognostic sites. Results Two hundred and twenty‐eight MDGs were chosen by ConsensusPathDB database. Results revealed that most conspicuous pathways were transcriptional mis‐regulation pathways in cancer and EMT. After Cox regression analysis, 17 hub epigenetic MDGs were identified. We calculated the risk score and found satisfactory predictive efficiency by ROC curve (AUC = 0.762). In the validation group from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507, 17 hub genes remained higher predictive value with AUC = 0.723 and patients in high‐risk group. Meanwhile, Kruskal‐Wallis test revealed that higher risk score correlated with a higher level of TNM stage, tumor grade, and advanced pathological stages. Then, identified 38 risk methylated loci that highly associated with prognosis. Last, gene set enrichment analysis revealed that high‐risk level of MDGs may correlate with several important pathways, including MAPK signaling pathway and so on. Conclusion Our study indicated several hub‐MDGs, calculated novel risk score and explored the prognostic value in BCa, which provided a promising approach to BCA prognosis assessment.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kangjie Shen
- First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
1764
|
Yu Y, Min Z, Zhou zhihang, Linhong M, Tao R, Yan L, Song H. Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer. Exp Cell Res 2019; 385:111649. [DOI: 10.1016/j.yexcr.2019.111649] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
|
1765
|
Wang B, Cao C, Liu X, He X, Zhuang H, Wang D, Chen B. BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. Cell Oncol (Dordr) 2019; 43:223-235. [PMID: 31776938 DOI: 10.1007/s13402-019-00482-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE BRCA1-associated protein (BRAP) was first identified by its ability to bind to the nuclear localization signalling motif of BRCA1 and other proteins. Subsequently, human BRAP has been found to exert multiple functions, many of which are related to cancer development. Up till now, however, the role of BRAP in glioma development has remained obscure. Here, we report a role for BRAP in mediating the proliferation and migration of glioma cells both in vitro and in vivo. METHODS The expression of BRAP in 98 glioma patient samples was determined by immunohistochemistry, after which associations between BRAP expression and patient prognosis were assessed. A short hairpin RNA (shRNA) was used to knock down BRAP and an expression vector was used to exogenously overexpress BRAP in glioma cells. The effects of BRAP expression on tumour cell behaviour in vitro and in an in vivo xenograft mouse model were examined. RESULTS We found that in glioma patients BRAP expression was associated with a favourable prognosis. We also found that shRNA-mediated knockdown of BRAP facilitated the proliferation and migration of glioma cells and the self-renewal of glioma stem cells. In parallel, we found that BRAP knockdown increased tumour growth and invasion and decreased survival in an in vivo glioma xenograft mouse model. Mechanistically, we found that BRAP inhibited glioma cell proliferation and migration, as well as glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Together, our findings identify BRAP as a mediator of glioma cell proliferation, migration and glioma stem cell self-renewal.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, No.94 Weijin Road, Tianjin, 300071, China
| | - Chen Cao
- Department of Medical Imaging, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, No.6 Changjiang Road, Tianjin, 300100, China
| | - Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450008, Henan Province, China.
| | - Dong Wang
- Department of Neurosurgery, General Hospital; Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System; Tianjin Neurological Institute, Tianjin Medical University, No.154 Anshan Road, Tianjin, 300052, China.
| | - Budong Chen
- Department of Neurosurgery, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
1766
|
Huang QY, Liu GF, Qian XL, Tang LB, Huang QY, Xiong LX. Long Non-Coding RNA: Dual Effects on Breast Cancer Metastasis and Clinical Applications. Cancers (Basel) 2019; 11:E1802. [PMID: 31744046 PMCID: PMC6896003 DOI: 10.3390/cancers11111802] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.
Collapse
Affiliation(s)
- Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Guo-Feng Liu
- First Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- First Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Li-Bo Tang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
| |
Collapse
|
1767
|
RASSF6-TRIM16 axis promotes cell proliferation, migration and invasion in esophageal squamous cell carcinoma. J Genet Genomics 2019; 46:477-488. [PMID: 31812473 DOI: 10.1016/j.jgg.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023]
Abstract
Ras-association (RA) domain family number 6 (RASSF6) is a member of the Ras-association domain protein family. It is epigenetically inactive and negatively regulates the malignant progression of some tumors. However, its precise role in esophageal squamous cell carcinoma (ESCC) has not been reported. In this study, we performed immunohistochemistry (IHC) assay. The results show that RASSF6 is upregulated in ESCC and that the elevated expression level of RASSF6 is associated with lymph node metastasis and poor survival of ESCC patients. Consistent with the clinical observations, the upregulation of RASSF6 greatly promotes ESCC cell proliferation, migration and invasion as well as the cell cycle transition to G1/S phase in vitro. According to models in vivo, the downregulation of RASSF6 considerably inhibits ESCC tumor growth and lung metastasis. Mechanistically, RASSF6 negatively regulates the tumor suppressor tripartite-motif-containing protein 16 (TRIM16) by promoting its ubiquitination-dependent degradation and eventually activates pathways associated with the cell cycle and epithelial-mesenchymal transition (EMT). Together, these results indicate that the RASSF6-TRIM16 axis is a key effector in ESCC progression and that RASSF6 serves as a potential target for the treatment of ESCC.
Collapse
|
1768
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
1769
|
Li T, Deng L, He X, Jiang G, Hu F, Ye S, You Y, Duanmu J, Dai H, Huang G, Tang C, Lei X. MST4 Predicts Poor Prognosis And Promotes Metastasis By Facilitating Epithelial-Mesenchymal Transition In Gastric Cancer. Cancer Manag Res 2019; 11:9353-9369. [PMID: 31807065 PMCID: PMC6842314 DOI: 10.2147/cmar.s219689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metastasis is the main cause for gastric cancer (GC)-related deaths. Better understanding of GC metastatic mechanism would provide novel diagnostic markers and therapeutic targets. Though it has been reported that mammalian sterile-20-like kinase 4 (MST4) exerts the oncogenic role in other tumors, the prognostic value and biological role of MST4 in GC are still unknown. Methods The expression level of MST4 in GC was analyzed by using TCGA database. Then, Western blot and polymerase chain reaction (PCR) were used to determine the MST4 expression in GC tissues and cell lines. Immunohistochemistry was performed to investigate the expression of proteins in human GC tissues, and its correlation with clinicopathologic parameters as well as the prognosis for patients with GC was analyzed. In addition, the biological function and its molecular mechanism of MST4 in GC were investigated by in vitro and in vivo assays. Results It demonstrated that MST4 expression was significantly upregulated in GC tissues and cell lines. High expression of MST4 was correlated with aggressive clinicopathological parameters such as lymph node metastasis, lymphovascular invasion (all P < 0.05). GC patients with high MST4 expression had both shorter overall survival (OS) and disease-free survival (DFS) than those with low MST4 expression (all P < 0.05). MST4 expression was an independent and significant risk factor for OS and DFS of GC patients (all P < 0.05). Results of functional experiments showed that MST4 could promote GC cells migration, invasion in vitro and metastasis in vivo. In terms of mechanism, MST4 promoted metastasis by facilitating epithelial–mesenchymal transition (EMT) through activating Ezrin pathway in GC. Further studies indicate that down-regulated miR-124-3p expression contributes to upregulated MST4 expression in GC. Conclusion Our data showed that MST4 predicts poor prognosis and promotes metastasis by facilitating epithelial–mesenchymal transition in GC. Therefore, our study suggests that MST4 can be used as a valuable prognostic biomarker and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Li Deng
- Department of Diagnostic Medical Sonography, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, Jiangxi, People's Republic of China
| | - Xin He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Gongan Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Fang Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Shanping Ye
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yu You
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Jinzhong Duanmu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Hua Dai
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Guodong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Cheng Tang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
1770
|
Tian J, Sun HX, Li YC, Jiang L, Zhang SL, Hao Q. LOXL 2 Promotes The Epithelial-Mesenchymal Transition And Malignant Progression Of Cervical Cancer. Onco Targets Ther 2019; 12:8947-8954. [PMID: 31802904 PMCID: PMC6826188 DOI: 10.2147/ott.s217794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose Increasing evidence suggests that lysyl oxidase-like 2 (LOXL2) contributes to tumor progression. However, the role of LOXL2 in cervical cancer still remains unclear. Patients and methods We used the TCGA database to analyze the expression of LOXL2 in cervical cancer and its role on survival. The effects of LOXL2 on cervical cancer metastasis and EMT were verified by transwell and wound healing assay. Western blot assay was used to detect the effect of LOXL2 on EMT-related gene expression. In addition, we used animal experiments to observe the role of LOXL2 on tumor genesis and metastasis in cervical cancer. Results Here we found that LOXL2 participates in epithelial–mesenchymal transition-related cervical cancer progression. LOXL2 ablation in cervical cancer cells inhibited cell metastatic ability, whereas LOXL2 overexpression promoted cell metastasis. In addition, more clinical data from TCGA revealed that LOXL2 is closely related to the prognosis and is highly expressed in highly malignant and metastatic cervical tumors. Conclusion Taken together, our findings established a pathophysiologic role and new function for LOXL2 in cervical cancer metastasis.
Collapse
Affiliation(s)
- Jing Tian
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - He-Xi Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ying-Chun Li
- Department of Gynecology II, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Li Jiang
- Department of Gynecology and Obstetrics, First Hospital of Qinhuangdao, Qinhuangdao, People's Republic of China
| | - Shan-Ling Zhang
- Comprehensive Surgery Department, Tianjin Taishan Cancer Hospital and International Personalized Cancer Center, Tianjin, People's Republic of China
| | - Quan Hao
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
1771
|
Pecoraro A, Carotenuto P, Russo G, Russo A. Ribosomal protein uL3 targets E2F1 and Cyclin D1 in cancer cell response to nucleolar stress. Sci Rep 2019; 9:15431. [PMID: 31659203 PMCID: PMC6817900 DOI: 10.1038/s41598-019-51723-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Several experimental strategies in the treatment of cancer include drug alteration of cell cycle regulatory pathways as a useful strategy. Extra-ribosomal functions of human ribosomal protein L3 (uL3) may affect DNA repair, cell cycle arrest and apoptosis. In the present study, we demonstrated that uL3 is required for the activation of G1/S transition genes. Luciferase assays established that uL3 negatively regulates the activity of E2F1 promoter. Induced ribosome-free uL3 reduces Cyclin D1 mRNA and protein levels. Using protein/protein immunoprecipitation methods, we demonstrated that uL3 physically interacts with PARP-1 affecting E2F1 transcriptional activity. Our findings led to the identification of a new pathway mediated by uL3 involving E2F1 and Cyclin D1 in the regulation of cell cycle progression.
Collapse
Affiliation(s)
- Annalisa Pecoraro
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutics Unit 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
1772
|
Li X, Zhang H, Wang Y, Sun S, Shen Y, Yang H. Silencing circular RNA hsa_circ_0004491 promotes metastasis of oral squamous cell carcinoma. Life Sci 2019; 239:116883. [PMID: 31669576 DOI: 10.1016/j.lfs.2019.116883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
AIMS Oral squamous cell carcinoma (OSCC) is an oral cavity malignancy which is the eighth most common cancer. However, the molecular mechanisms underlying the pathogenesis of OSCC remain largely unknown, and effective methods for the prognosis and diagnosis of this disease are lacking. Circular RNAs (circRNAs) are widely expressed among mammals. A growing number of studies have shown that circRNA expression is altered in cancers. In this study, we investigated the role of hsa_circ_0004491 in OSCC cell migration and invasion and examined the clinical characteristics associated with its expression. MAIN METHODS Hsa_circ_0004491 expression was examined in 40 paired OSCC and normal tissue samples using quantitative real-time PCR (qRT-PCR). Wound healing, transwell and western blotting assays were conducted in OSCC cells up- or down-regulation of hsa_circ_0004491 to evaluate changes in cell migration, invasion and protein expression. KEYFINDINGS: qRT-PCR analysis revealed that hsa_circ_0004491 was significantly downregulated in OSCC tissues compared with paired normal tissues (P < 0.001), and this low expression was associated with lymph node metastasis (P = 0.0398; area under ROC curve = 0.7510). Hsa_circ_000449 silencing or overexpression significantly affected the invasion and migration abilities of OSCC cells. Western blotting analysis showed that EMT-related proteins expression was significantly changed after hsa_circ_000449 silencing or overexpression. SIGNIFICANCE The expression level of hsa_circ_0004491 affects the migration and invasion of OSCC cells. Hsa_circ_0004491 may therefore play a role in the progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hanyu Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong Province, PR China
| | - Yufan Wang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, PR China
| | - Shuai Sun
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, PR China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, PR China.
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
1773
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
1774
|
Xiang X, Xiong R, Yu C, Deng L, Bie J, Xiao D, Chen Z, Zhou Y, Li X, Liu K, Feng G. Tex10 promotes stemness and EMT phenotypes in esophageal squamous cell carcinoma via the Wnt/β‑catenin pathway. Oncol Rep 2019; 42:2600-2610. [PMID: 31638260 PMCID: PMC6859441 DOI: 10.3892/or.2019.7376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
A previous study by our group suggested that testis expressed 10 (Tex10) contributes to tumor progression by promoting stem cell-like features in hepatocellular carcinoma. However, the relevance of pluripotency factor Tex10 in esophageal squamous cell carcinoma (ESCC) has remained elusive. The objective of the present study was to investigate the role of Tex10 in ESCC. For this purpose, the mRNA and protein expression of Tex10 was detected by reverse transcription-quantitative PCR, western blot analysis and immunohistochemistry. In a loss-of-function experiment, EC109 cells were transfected with lentiviral vectors containing Tex10 short hairpin RNA or negative control. Cell proliferation was assessed using a Cell Counting kit-8, and flow cytometry was used to analyze apoptosis and the cell cycle. Transwell assays were employed to examine the migratory and invasive capacity, and a sphere formation assay was performed to assess the clonogenicity of the EC109 cells. The results revealed that the elevated expression of Tex10 was positively associated with malignancy and with epithelial-mesenchymal transition (EMT)-associated mesenchymal markers in human ESCC specimens. The knockdown of Tex10 led to the inhibition of cell proliferation, the induction of apoptosis and cell cycle arrest, and decreased the stemness, migratory and invasive capacity of the EC109 cells. Furthermore, the silencing of Tex10 enhanced the sensitivity of the ESCC cells to 5-fluorouracil. In addition, the present study revealed that Tex10 plays an essential role in regulating EMT via the activation of Wnt/β-catenin signaling. On the whole, the findings of the present study suggest that the downregulation of Tex10 in ESCC specimens is significantly associated with tumor malignancy, and that Tex10 promotes stem cell-like features and induces the EMT of ESCC cells through the enhancement of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chunlei Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li Deng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Bie
- Department of Oncology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dongqin Xiao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuchuan Zhou
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolei Li
- Department of Thoracic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
1775
|
Li F, Zhang C, Fu L. PRR14 overexpression promotes cell growth, epithelial to mesenchymal transition and metastasis of colon cancer via the AKT pathway. PLoS One 2019; 14:e0218839. [PMID: 31596887 PMCID: PMC6785111 DOI: 10.1371/journal.pone.0218839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background PRR14 (Proline rich protein 14) was firstly identified for its ability to specify and localize heterochromatin during cell cycle progression. Aberrant expression of PRR14 is associated with the tumorigenesis and progression of lung cancer. However, its involvement in colon cancer remains unknown. Herein, we report the role of PRR14 in colon cancer. Methods Colon cancer tissue microarray was used to analyze and compare the expression of PRR14 among some clinicopathological characteristics of colon cancer. HCT116 and RKO cells were transfected with siRNA to downregulate PRR14 expression. The roles of PRR14 in proliferation, migration and invasion of the cell lines were determined using cell counting kit-8, colony formation assay, wound healing assay and transwell assays respectively. The expression of PRR14 was measured using immunofluorescence, qRT- PCR and western blot. Epithelial-mesenchymal transition (EMT) markers were determined by western blot. Results PRR14 was highly expressed in colon cancer tissues, and the expression level was correlated with tumor size, distant metastasis and Tumor Node Metastasis stages. Functional study revealed that downregulation of PRR14 inhibited colon cancer cells growth, migration and invasion. Furthermore, knockdown of PRR14 inhibited epithelial-mesenchymal transition (EMT) process, cell cycle-associated proteins expression and p-AKT level. Conclusion PRR14 may promote the progression and metastasis of colon cancer, and may be a novel prognostic and therapeutic marker for the disease.
Collapse
Affiliation(s)
- Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Department of Reproductive Biology, Chongqing Medical University, Chongqing, China
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Lijuan Fu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Department of Reproductive Biology, Chongqing Medical University, Chongqing, China
- Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
1776
|
Jusino S, Saavedra HI. Role of E2Fs and mitotic regulators controlled by E2Fs in the epithelial to mesenchymal transition. Exp Biol Med (Maywood) 2019; 244:1419-1429. [PMID: 31575294 DOI: 10.1177/1535370219881360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings: development, wound healing and fibrosis, and tumor progression. Despite occurring in three independent biological settings, EMT signaling shares some molecular mechanisms that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that confer cells invasive and migratory capacity to distant sites. Here we summarize the molecular mechanism that delineates EMT and we will focus on the role of E2 promoter binding factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable due to their control in numerous pivotal cellular functions and due to the lack of selectivity against individual E2Fs, we will also discuss the role of three mitotic regulators and/or mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be useful as drug targets. Impact statement The study of the epithelial to mesenchymal transition (EMT) is an active area of research since it is one of the early intermediates to invasion and metastasis—a state of the cancer cells that ultimately kills many cancer patients. We will present in this review that besides their canonical roles as regulators of proliferation, unregulated expression of the E2F transcription factors may contribute to cancer initiation and progression to metastasis by signaling centrosome amplification, chromosome instability, and EMT. Since our discovery that the E2F activators control centrosome amplification and mitosis in cancer cells, we have identified centrosome and mitotic regulators that may represent actionable targets against EMT and metastasis in cancer cells. This is impactful to all of the cancer patients in which the Cdk/Rb/E2F pathway is deregulated, which has been estimated to be most cancer patients with solid tumors.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| |
Collapse
|
1777
|
Yin L, Gao S, Shi H, Wang K, Yang H, Peng B. TIP-B1 promotes kidney clear cell carcinoma growth and metastasis via EGFR/AKT signaling. Aging (Albany NY) 2019; 11:7914-7937. [PMID: 31562290 PMCID: PMC6782011 DOI: 10.18632/aging.102298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Kidney clear cell carcinoma (KIRC) is the most prevalent kidney malignancy. Accumulating evidence shows that high expression of TIP-B1 correlates with development of tumor progression. However, the detailed functions of TIP-B1 in the KIRC remain to be further elucidated. Here, we firstly found TIP-B1 expression was significantly increased in KIRC compared with adjacent normal tissues. What’s more, higher expression of TIP-B1 were correlated with aggressive clinico-pathological characteristics. In vitro assay found TIP-B1 knockdown dramatically inhibited KIRC cells proliferation, migration and invasion. In vivo assay found down regulated TIP-B1 could suppress tumor growth and metastasis. Mechanism analysis indicated that TIP-B1 could bind EGFR and suppress EGFR degradation, then promoted EGF-induced AKT signaling. Together, TIP-B1 could be applied as an independent risk factor to predict KIRC progression and metastasis. Targeting TIP-B1 might be a new potential therapeutic strategy for KIRC treatment.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Shenglin Gao
- Department of Urology, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China.,Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| |
Collapse
|
1778
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
1779
|
Tuo Z, Zong Y, Li J, Xiao G, Zhang F, Li G, Wang S, Lv Y, Xia J, Liu J. PD-L1 regulation by SDH5 via β-catenin/ZEB1 signaling. Oncoimmunology 2019; 8:1655361. [PMID: 31741753 PMCID: PMC6844322 DOI: 10.1080/2162402x.2019.1655361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 01/29/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a crucial target for lung cancer immunotherapy. In lung cancer patients with high PD-L1 expression, blocking or reducing its expression can inhibit tumor growth. PD-L1 is regulated by signaling pathways, transcription factors and epigenetic factors, such as the GSK3β/β-catenin pathway, P53 protein and EMT. In our previous study, succinate dehydrogenase 5 (SDH5) was reported to regulate ZEB1 expression, induce EMT and lead to lung cancer metastasis via the GSK3β/β-catenin pathway. It is possible that SDH5 is involved in the mechanisms of PD-L1 regulation.In the present study, we observed a negative correlation between the expression of PD-L1 and SDH5 in vivo and in vitro. The examination of patient tissues also confirmed our results. Furthermore, we also found that SDH5 could reverse PD-L1 expression by the GSK3β/β-catenin/ZEB1 pathways. All these results reveal that SDH5 regulates PD-L1 expression and suggest that SDH5 can be used as a marker to predict tumor immune micro-states and provide guidance for clinical immunotherapy.
Collapse
Affiliation(s)
- Zhan Tuo
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangqin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Furong Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sihua Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lv
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
1780
|
Teeuwssen M, Fodde R. Cell Heterogeneity and Phenotypic Plasticity in Metastasis Formation: The Case of Colon Cancer. Cancers (Basel) 2019; 11:cancers11091368. [PMID: 31540068 PMCID: PMC6770401 DOI: 10.3390/cancers11091368] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
The adenoma-to-carcinoma progression in colon cancer is driven by a sequential accumulation of genetic alterations at specific tumor suppressors and oncogenes. In contrast, the multistage route from the primary site to metastasis formation is underlined by phenotypic plasticity, i.e., the capacity of disseminated tumor cells to undergo transiently and reversible transformations in order to adapt to the ever-changing environmental contexts. Notwithstanding the considerable body of evidence in support of the role played by epithelial-to-mesenchymal transition (EMT)/mesenchymal-to-epithelial transition (MET) in metastasis, its rate-limiting function, the detailed underlying cellular and molecular mechanisms, and the extension of the necessary morphologic and epigenetic changes are still a matter of debate. Rather than leading to a complete epithelial or mesenchymal state, the EMT/MET-program generates migrating cancer cells displaying intermediate phenotypes featuring both epithelial and mesenchymal characteristics. In this review, we will address the role of colon cancer heterogeneity and phenotypic plasticity in metastasis formation and the contribution of EMT to these processes. The alleged role of hybrid epithelial/mesenchymal (E/M) in collective and/or single-cell migration during local dissemination at the primary site and more systemic spreading will also be highlighted.
Collapse
Affiliation(s)
- Miriam Teeuwssen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| | - Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
1781
|
Wang H, Kuang Y, Li J, Shen R, Sun R, Huang D, Sheng Z, Shi J, Zhang M, Huang F, Yang H, Fei J. Dnmt3a is required for the tumor stemness of B16 melanoma cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:945-952. [PMID: 31435645 DOI: 10.1093/abbs/gmz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 11/14/2022] Open
Abstract
The relationship of carcinogenesis and DNA methyltransferases has attracted extensive attention in tumor research. We reported previously that inhibition of de novo DNA methyltransferase 3a (Dnmt3a) in murine B16 melanoma cells significantly suppressed tumor growth and metastasis in xenografted mouse model. Here, we further demonstrated that knockdown of Dnmt3a enhanced the proliferation in anchor-independent conditions of B16 cells, but severely disrupted its multipotent differentiation capacity in vitro. Furthermore, transforming growth factor β1, a key trigger in stem cell differentiation and tumor cell epithelial-mesenchymal transition (EMT), mainly induced apoptosis, but not EMT in Dnmt3a-deficient B16 cells. These data suggested that Dnmt3a is required for maintaining the tumor stemness of B16 cells and it assists B16 cells to escape from death during cell differentiation. Thus it is hypothesized that not only extraordinary self-renewal ability, but also the capacity of multipotent differentiation is necessary for the melanoma tumorigenesis. Inhibition of multipotent differentiation of tumor cells may shed light on the tumor treatment.
Collapse
Affiliation(s)
- Haoyue Wang
- School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Kuang
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Jun Li
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Ruling Shen
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Danyi Huang
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Zhejin Sheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and The Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| |
Collapse
|
1782
|
Wang M, Jiang S, Zhang Y, Li P, Wang K. The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers (Basel) 2019; 11:1313. [PMID: 31492049 PMCID: PMC6770479 DOI: 10.3390/cancers11091313] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| |
Collapse
|
1783
|
Bocci F, Kumar Jolly M, Onuchic JN. A Biophysical Model Uncovers the Size Distribution of Migrating Cell Clusters across Cancer Types. Cancer Res 2019; 79:5527-5535. [DOI: 10.1158/0008-5472.can-19-1726] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
1784
|
郑 幸, 刘 雯, 刘 锋, 李 静, 向 俊, 刘 鹏, 吕 毅. [Decellularized matrix of human fatty liver used for three-dimensional culture of hepatocellular carcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:930-936. [PMID: 31511213 PMCID: PMC6765591 DOI: 10.12122/j.issn.1673-4254.2019.08.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a decellularized matrix of human fatty liver as the scaffold for three-dimensional (3D) culture of hepatocarcinoma cells. METHODS Human fatty liver decellularized matrix (hFLM) was prepared by repeated freezingthawing, perfusion with gradient SDS and 1% Triton X-100 through the portal vein and hepatic artery, and repeated agitation with Triton X-100. HepG2 cells were cultured in the prepared hFLM, and the cell survival, morphology, proliferation and cellular expressions of the adhesion molecules were detected. RESULTS The decellularization procedure shortened the time for scaffold preparation and preserved the 3D ultrastructure and the composition of the extracellular matrix. HepG2 cells cultured in hFLM scaffold maintained proliferation for up to 15 days and showed a growth pattern with a long lag phase and a slow growth rate, which was similar to the growth pattern in vivo. The cultured HepG2 exhibited a low expression of E-cadherin and a high expression of vimentin, which was consistent with the xenograft but opposite to 2D cultured cells. However, the lack of adequate nutrient transport in this hepatocarcinoma cell model led to a slowdown of cell proliferation in the later stage. The PCNA index of HepG2 cells cultured in hFLM was lowered by 29.3% on day 12 as compared with that on day 6. CONCLUSIONS We established a new protocol for preparing hFLM and confirmed the feasibility of constructing hepatocarcinoma cell models using the hFLM scaffold.
Collapse
Affiliation(s)
- 幸龙 郑
- 西安交通大学第一附属医院心血管外科,陕西 西安 710061Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 雯雁 刘
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 锋锋 刘
- 西安交通大学第一附属医院心血管外科,陕西 西安 710061Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 静 李
- 西安交通大学第一附属医院心血管外科,陕西 西安 710061Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 俊西 向
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 鹏 刘
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 毅 吕
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
1785
|
CTCs 2020: Great Expectations or Unreasonable Dreams. Cells 2019; 8:cells8090989. [PMID: 31461978 PMCID: PMC6769853 DOI: 10.3390/cells8090989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are cellular elements that can be scattered into the bloodstream from primary cancer, metastasis, and even from a disseminated tumor cell (DTC) reservoir. CTCs are “seeds”, able to give rise to new metastatic lesions. Since metastases are the cause of about 90% of cancer-related deaths, the significance of CTCs is unquestionable. However, two major issues have stalled their full clinical exploitation: rarity and heterogeneity. Therefore, their full clinical potential has only been predicted. Finding new ways of studying and using such tremendously rare and important events can open new areas of research in the field of cancer research, and could drastically improve tumor companion diagnostics, personalized treatment strategies, overall patients management, and reduce healthcare costs.
Collapse
|
1786
|
FAM83A signaling induces epithelial-mesenchymal transition by the PI3K/AKT/Snail pathway in NSCLC. Aging (Albany NY) 2019; 11:6069-6088. [PMID: 31444970 PMCID: PMC6738414 DOI: 10.18632/aging.102163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
Abstract
Family with sequence similarity 83, member A (FAM83A), as a potential tumor promoter, was reported to contribute to the progression of several malignant tumors. However, the significance of FAM83A in invasion and metastasis of non-small cell lung cancer (NSCLC) remains largely unknown. In this study, we found that FAM83A expression was significantly increased in NSCLC tissues. High expression of FAM83A was positively associated with tumor metastasis and poor survival of NSCLC patients. Functional experiments revealed that FAM83A knockdown could suppress NSCLC cell migration and invasion both in vivo and in vitro. While opposite results were observed in FAM83A-transfected cells. Mechanically, we found that FAM83A promoted NSCLC cell migration and invasion by inducing epithelial-mesenchymal transition (EMT) via PI3K/ATK/Snail signaling. Rescue experiment demonstrated that inhibition of either AKT or Snail could partially counteract the promoting effect of FAM83A overexpression in NSCLC metastasis. Taken together, our findings are the first time to demonstrate that increased expression of FAM83A in NSCLC was correlated with EMT and tumor metastasis, which may provide a novel therapeutic target in NSCLC treatment.
Collapse
|
1787
|
Jiang Y, Cao W, Wu K, Qin X, Wang X, Li Y, Yu B, Zhang Z, Wang X, Yan M, Xu Q, Zhang J, Chen W. LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus. J Exp Clin Cancer Res 2019; 38:365. [PMID: 31429766 PMCID: PMC6700841 DOI: 10.1186/s13046-019-1364-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The lncRNA LINC00460 plays crucial roles in several epithelial cancers, although its mechanisms of action differ greatly in different cellular contexts. In this study, we aimed to determine the potential clinical applications of LINC00460 and elucidate the mechanisms by which LINC00460 affects the development and progression of head and neck squamous cell carcinoma (HNSCC). METHODS The biological functions of LINC00460 were assessed in several epithelial cancer cell lines. The subcellular localization of LINC00460 was evaluated by cell nuclear/cytoplasmic fractionation and fluorescence in situ hybridization. RNA pull-down assays, LS-MS/MS analysis, and RNA and chromatin immunoprecipitation assays were performed to identify the molecular mechanism by which LINC00460 promotes HNSCC progression. The clinical pathological features of LINC00460 and PRDX1 were evaluated in HNSCC tissues and paired adjacent normal tissues. RESULTS LINC00460 enhanced HNSCC cell proliferation and metastasis in vitro and in vivo and induced epithelial-mesenchymal transition (EMT). LINC00460 primarily localized within the cytoplasm of HNSCC cells, physically interacted with PRDX1 and facilitated PRDX1 entry into the nucleus. PRDX1 promoted the transcription of LINC00460, forming a positive feedback loop. In addition, PRDX1 also promoted the transcription of EMT-related genes (such as ZEB1, ZEB2 and VIM) through enrichment on gene promoters in the nucleus. LINC00460 effectively induced HNSCC cell EMT in a PRDX1-dependent manner, and PRDX1 mainly mediated the EMT-promoting effect of LINC00460. High levels of LINC00460 and PRDX1 expression were positively associated with lymph metastasis, pathological differentiation and tumor size in HNSCC patients. CONCLUSIONS LINC00460 promoted EMT in HNSCC cells by facilitating PRDX1 entry into the nucleus. LINC00460 and PRDX1 are promising candidate prognostic predictors and potential targets for cancer therapy for HNSCC.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Department of Dentistry, Affiliated Hospital, Weifang Medical University, Weifang, 261031 China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Kun Wu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Yan Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Binbin Yu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
1788
|
Chen Z, He S, Zhan Y, He A, Fang D, Gong Y, Li X, Zhou L. TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine 2019; 47:208-220. [PMID: 31420300 PMCID: PMC6796540 DOI: 10.1016/j.ebiom.2019.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metastatic bladder cancer (BLCA) is a lethal disease with an unmet need for study. Transgelin (TAGLN) is an actin-binding protein that affects the dynamics of the actin cytoskeleton indicating its robust potential as a metastasis initiator. Here, we sought to explore the expression pattern of TAGLN and elucidate its specific functioning and mechanisms in BLCA. Methods A comprehensive assessment of TAGLN expression in BLCA was performed in three cohorts with a total of 847 patients. The potential effects of TAGLN on BLCA were further determined using clinical genomic analyses that guided the subsequent functional and mechanistic studies. In vitro migration, invasion assays and in vivo metastatic mouse model were performed to explore the biological functions of TAGLN in BLCA cells. Immunofluorescence, western blot and correlation analysis were used to investigate the molecular mechanisms of TAGLN. Findings TAGLN was highly expressed in BLCA and correlated with advanced prognostic features. TAGLN promoted cell colony formation and cell migration and invasion both in vitro and in vivo by inducing invadopodia formation and epithelial-mesenchymal transition, during which a significant correlation between TAGLN and Slug was observed. The progression-dependent correlation between TGF-β and TAGLN was analysed at both the cellular and tissue levels, while TGF-β-mediated migration was abolished by the suppression of TAGLN. Interpretation Overall, TAGLN is a promising novel prognosis biomarker of BLCA, and its metastatic mechanisms indicate that TAGLN may represent a novel target agent that can be utilized for the clinical management of invasive and metastatic BLCA. Fund This work was supported by the National Natural Science Foundation of China [81772703, 81672546, 81602253]; the Natural Science Foundation of Beijing [71772219, 7152146]. and Innovative Fund for Doctoral Students of Peking University Health Science Center (BUM2018BSS002). Funders had no role in the design of the study, data collection, data analysis, interpretation, or the writing of this report.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| |
Collapse
|
1789
|
Konno M, Taniguchi M, Ishii H. Significant epitranscriptomes in heterogeneous cancer. Cancer Sci 2019; 110:2318-2327. [PMID: 31187550 PMCID: PMC6676114 DOI: 10.1111/cas.14095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Precision medicine places significant emphasis on techniques for the identification of DNA mutations and gene expression by deep sequencing of gene panels to obtain medical data. However, other diverse information that is not easily readable using bioinformatics, including RNA modifications, has emerged as a novel diagnostic and innovative therapy owing to its multifunctional aspects. It is suggested that this breakthrough innovation might open new avenues for the elucidation of uncharacterized cancer cellular functions to develop more precise medical applications. The functional characteristics and regulatory mechanisms of RNA modifications, ie, the epitranscriptome (ETR), which reflects RNA metabolism, remains unclear, mainly due to detection methods being limited. Recent studies have revealed that N6‐methyl adenosine, the most common modification in mRNA in eukaryotes, is affected in various types of cancer and, in some cases, cancer stem cells, but also affects cellular responses to viral infections. The ETR can control cancer cell fate through mRNA splicing, stability, nuclear export, and translation. Here we report on the recent progress of ETR detection methods, and biological findings regarding the significance of ETR in cancer precision medicine.
Collapse
Affiliation(s)
- Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
1790
|
Nath B, Bidkar AP, Kumar V, Dalal A, Jolly MK, Ghosh SS, Biswas G. Deciphering Hydrodynamic and Drug-Resistant Behaviors of Metastatic EMT Breast Cancer Cells Moving in a Constricted Microcapillary. J Clin Med 2019; 8:E1194. [PMID: 31404980 PMCID: PMC6722803 DOI: 10.3390/jcm8081194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) induces cell migration, invasion, and drug resistance, and consequently, contributes to cancer metastasis and disease aggressiveness. This study attempted to address crucial biological parameters to correlate EMT and drug-treated cancer cells traversing through microcapillaries, reminiscent of metastatic conditions. MDA-MB-468 breast cancer cells induced to undergo EMT by treatment with 20 ng/mL of epidermal growth factor (EGF) were initially passed through several blockages and then through a constricted microchannel, mimicking the flow of invasive metastatic cells through constricted blood microcapillaries. EMT cells acquired enhanced migratory properties and retained 50% viability, even after migration through wells 10-15 μm in size and a constricted passage of 7 μm and 150 μm in length at a constant flow rate of 50 μL/h. The hydrodynamic properties revealed cellular deformation with a deformation index, average transit velocity, and entry time of 2.45, 12.3 mm/s, and 31,000 μs, respectively for a cell of average diameter 19 μm passing through one of the 7 μm constricted sections. Interestingly, cells collected at the channel outlet regained epithelial character, undergoing reverse transition (mesenchymal to epithelial transition, MET) in the absence of EGF. Remarkably, real-time polymerase chain reaction (PCR) analysis confirmed increases of 2- and 2.7-fold in the vimentin and fibronectin expression in EMT cells, respectively; however, their expression reduced to basal level in the MET cells. A scratch assay revealed the pronounced migratory nature of EMT cells compared with MET cells. Furthermore, the number of colonies formed from EMT cells and paclitaxel-treated EMT cells after passing through a constriction were found to be 95 ± 10 and 79 ± 4, respectively, confirming that the EMT cells were more drug resistant with a concomitant two-fold higher expression of the multi-drug resistance (MDR1) gene. Our results highlight the hydrodynamic and drug-evading properties of cells that have undergone an EMT, when passed through a constricted microcapillary that mimics their journey in blood circulation.
Collapse
Affiliation(s)
- Binita Nath
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Anil P Bidkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Vikash Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Amaresh Dalal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bangalore 560 012, India
| | - Siddhartha S Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Gautam Biswas
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| |
Collapse
|
1791
|
Yu HL, Ma XD, Tong JF, Li JQ, Guan XJ, Yang JH. WTAP is a prognostic marker of high-grade serous ovarian cancer and regulates the progression of ovarian cancer cells. Onco Targets Ther 2019; 12:6191-6201. [PMID: 31496724 PMCID: PMC6689666 DOI: 10.2147/ott.s205730] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Background The Wilms' tumor suppressor WT1 is reported to work in a range of physiological processes at both transcriptional and posttranscriptional level. WT1-associating protein (WTAP), a nuclear protein co-localized with splicing factors, also plays a vital role in cellular function and cancer progression. However, little is known about the role of WTAP in ovarian cancer and the underlying mechanism. Materials and methods To evaluate the expression of WTAP, multiple means were applied in clinical tissues, including immunohistochemistry, quantitative reverse transcriptase PCR (qRT-PCR), and Western blot. Two representative ovarian cancer cell lines (3AO and SKOV3) were used to assess the malignant influence of WTAP on proliferation, apoptosis, and migration. To explore its function, WTAP was additionally down-regulated by lentivirus. Results High expression of WTAP in high-grade serous ovarian carcinoma (HGSOC) predicted a shorter overall survival (P<0.01). Furthermore, WTAP expression was higher in HGSOC, compared with that in normal ovary group (P<0.01), benign ovarian tumor group (P<0.01), and non-HGSOC group (P<0.05). In HGSOC, high expression of WTAP was significantly related with the lymph node metastasis (P<0.05). In ovarian cancer cell lines, cell proliferation and migration were considerably reduced after WTAP was down-regulated, while apoptotic rate was increased. Moreover, the effect of WTAP in 3AO and SKOV3 might be relevant with MAPK and AKT signaling pathways. Conclusion WTAP is highly expressed in HGSOC, and indicates a worse survival outcome. Therefore, it is highly possible that WTAP has a prognostic implication in the patients of HGSOC. In addition, WTAP down-regulation also plays a tumor suppressor role in 3AO and SKOV3 cell lines.
Collapse
Affiliation(s)
- Hai-Lan Yu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xu-Dong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jin-Fei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jian-Qiong Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiao-Jing Guan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jian-Hua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
1792
|
Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 2019; 3:267-279. [PMID: 31440741 PMCID: PMC6702449 DOI: 10.15698/cst2019.08.195] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid cancers with dismal prognosis. Several mechanisms that are mainly responsible for aggressiveness and therapy resistance of PDAC cells include epithelial to mesenchymal transition (EMT), stemness and Mitogen Activated Protein Kinase (MAPK) signaling. Strategies that inhibit these mechanisms are critically important to improve therapeutic outcome in PDAC. In the current study, we wanted to investigate whether gold nanoparticles (AuNPs) could sensitize pancreatic cancer cells to the chemotherapeutic agent gemcitabine. We demonstrated that treatment with AuNPs of 20 nm diameter inhibited migration and colony forming ability of pancreatic cancer cells. Pre-treatment with AuNPs sensitized pancreatic cancer cells to gemcitabine in both viability and colony forming assays. Mechanistically, pre-treatment of pancreatic cancer cells with AuNPs decreased gemcitabine induced EMT, stemness and MAPK activation. Taken together, these findings suggest that AuNPs could be considered as a potential agent to sensitize pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Yanyan Huai
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yushan Zhang
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xunhao Xiong
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Shamik Das
- Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
1793
|
ZEB2 in T-cells and T-ALL. Adv Biol Regul 2019; 74:100639. [PMID: 31383581 DOI: 10.1016/j.jbior.2019.100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
The identification of the rare but recurrent t(2; 14)(q22; q32) translocation involving the ZEB2 locus in T-cell acute lymphoblastic leukemia, suggested that ZEB2 is an oncogenic driver of this high-risk subtype of leukemia. ZEB2, a zinc finger E-box homeobox binding transcription factor, is a master regulator of cellular plasticity and its expression is correlated with poor overall survival of cancer patients. Recent loss- and gain-of-function in the mouse revealed important roles of ZEB2 during different stages of hematopoiesis, including the T-cell lineage. Here, we summarize the roles of ZEB2 in T-cells, their development, and malignant transformation to T-ALL.
Collapse
|
1794
|
Tiwari A, Swamynathan S, Alexander N, Gnalian J, Tian S, Kinchington PR, Swamynathan SK. KLF4 Regulates Corneal Epithelial Cell Cycle Progression by Suppressing Canonical TGF-β Signaling and Upregulating CDK Inhibitors P16 and P27. Invest Ophthalmol Vis Sci 2019; 60:731-740. [PMID: 30786277 PMCID: PMC6383833 DOI: 10.1167/iovs.18-26423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Krüppel-like factor 4 (KLF4) promotes corneal epithelial (CE) cell fate while suppressing mesenchymal properties. TGF-β plays a crucial role in cell differentiation and development, and if dysregulated, it induces epithelial-mesenchymal transition (EMT). As KLF4 and TGF-β regulate each other in a context-dependent manner, we evaluated the role of the crosstalk between KLF4 and TGF-β-signaling in CE homeostasis. Methods We used spatiotemporally regulated ablation of Klf4 within the adult mouse CE in ternary transgenic Klf4Δ/ΔCE (Klf4LoxP/LoxP/ Krt12rtTA/rtTA/ Tet-O-Cre) mice and short hairpin RNA (shRNA)-mediated knockdown or lentiviral vector-mediated overexpression of KLF4 in human corneal limbal epithelial (HCLE) cells to evaluate the crosstalk between KLF4 and TGF-β-signaling components. Expression of TGF-β signaling components and cyclin-dependent kinase (CDK) inhibitors was quantified by quantitative PCR, immunoblots, and/or immunofluorescent staining. Results CE-specific ablation of Klf4 resulted in (1) upregulation of TGF-β1, -β2, -βR1, and -βR2; (2) downregulation of inhibitory Smad7; (3) hyperphosphorylation of Smad2/3; (4) elevated nuclear localization of phospho-Smad2/3 and Smad4; and (5) downregulation of CDK inhibitors p16 and p27. Consistently, shRNA-mediated knockdown of KLF4 in HCLE cells resulted in upregulation of TGF-β1 and -β2, hyperphosphorylation and nuclear localization of SMAD2/3, downregulation of SMAD7, and elevated SMAD4 nuclear localization. Furthermore, overexpression of KLF4 in HCLE cells resulted in downregulation of TGF-β1, -βR1, and -βR2 and upregulation of SMAD7, p16, and p27. Conclusions Collectively, these results demonstrate that KLF4 regulates CE cell cycle progression by suppressing canonical TGF-β signaling and overcomes the undesirable concomitant decrease in TGF-β–dependent CDK inhibitors p16 and p27 expression by directly upregulating them.
Collapse
Affiliation(s)
- Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Nicholas Alexander
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,School of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shenghe Tian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
1795
|
Rodriguez D, Ramkairsingh M, Lin X, Kapoor A, Major P, Tang D. The Central Contributions of Breast Cancer Stem Cells in Developing Resistance to Endocrine Therapy in Estrogen Receptor (ER)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11071028. [PMID: 31336602 PMCID: PMC6678134 DOI: 10.3390/cancers11071028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer stem cells (BCSC) play critical roles in the acquisition of resistance to endocrine therapy in estrogen receptor (ER)-positive (ER + ve) breast cancer (BC). The resistance results from complex alterations involving ER, growth factor receptors, NOTCH, Wnt/β-catenin, hedgehog, YAP/TAZ, and the tumor microenvironment. These mechanisms are likely converged on regulating BCSCs, which then drive the development of endocrine therapy resistance. In this regard, hormone therapies enrich BCSCs in ER + ve BCs under both pre-clinical and clinical settings along with upregulation of the core components of “stemness” transcriptional factors including SOX2, NANOG, and OCT4. SOX2 initiates a set of reactions involving SOX9, Wnt, FXY3D, and Src tyrosine kinase; these reactions stimulate BCSCs and contribute to endocrine resistance. The central contributions of BCSCs to endocrine resistance regulated by complex mechanisms offer a unified strategy to counter the resistance. ER + ve BCs constitute approximately 75% of BCs to which hormone therapy is the major therapeutic approach. Likewise, resistance to endocrine therapy remains the major challenge in the management of patients with ER + ve BC. In this review we will discuss evidence supporting a central role of BCSCs in developing endocrine resistance and outline the strategy of targeting BCSCs to reduce hormone therapy resistance.
Collapse
Affiliation(s)
- David Rodriguez
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Marc Ramkairsingh
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, Hamilton, ON L8S 4K1, Canada
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON, L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
1796
|
Ishay-Ronen D, Christofori G. Targeting Cancer Cell Metastasis by Converting Cancer Cells into Fat. Cancer Res 2019; 79:5471-5475. [PMID: 31331908 DOI: 10.1158/0008-5472.can-19-1242] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
Cancer is a systemic heterogeneous disease that can undergo several rounds of latency and activation. Malignant tumors evolve through dynamic responses to microenvironmental signals and development of resistance following therapeutic interventions. Cancer cell adaptation is required for cell survival during metastatic dissemination and outgrowth. Epithelial-mesenchymal transition (EMT) plays a major role in facilitating cell plasticity in cancer and allows cancer cells to escape chemotherapies and targeted therapies through dedifferentiation and signaling adaptation processes. In our recent study, we showed that breast cancer cells that have undergone EMT can be terminally differentiated into adipocytes using the PPARγ agonist rosiglitazone combined with the MEK inhibitor trametinib. The conversion of invasive cancer cells into adipocytes repressed primary tumor invasion and metastasis formation in mouse models of breast cancer. The transdifferentiated cancer cell-derived adipocytes were growth-arrested and lost their cellular plasticity. These results indicate the high potential of utilizing the increased cell plasticity inherent to invasive cancer cells for transdifferentiation therapy.
Collapse
Affiliation(s)
- Dana Ishay-Ronen
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
1797
|
STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8042489. [PMID: 32258098 PMCID: PMC7099867 DOI: 10.1155/2019/8042489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
Abstract
Aberrant expression of stanniocalcin 2 (STC2) is implicated in cancer development. STC2 acts as a tumor promoter to drive some cancers. However, its contribution to the development of pancreatic cancer remains unclear. This study showed that the expression of STC2 was significantly upregulated in pancreatic cancer tissues. Moreover, its expression was positively correlated with tumor size and lymph node metastasis and negatively correlated with 5-year survival rate of pancreatic cancer patients. Additionally, the expression levels of STC2 were a novel biomarker for predicting overall survival rate after surgery. Furthermore, overexpression of STC2 could promote the proliferation, migration, and invasion of pancreatic cancer cell lines, while knocking down of STC2 led to antiproliferation and antimetastasis activities. Further mechanistic investigations revealed that the expression of STC2 could significantly promote the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. These data indicated that the overexpression of STC2 in pancreatic cancer contributes to the metastasis through the promotion of EMT, suggesting that STC2 is a potential prognostic biomarker and therapeutic target for pancreatic cancer.
Collapse
|
1798
|
Leskela S, Pérez-Mies B, Rosa-Rosa JM, Cristobal E, Biscuola M, Palacios-Berraquero ML, Ong S, Matias-Guiu Guia X, Palacios J. Molecular Basis of Tumor Heterogeneity in Endometrial Carcinosarcoma. Cancers (Basel) 2019; 11:cancers11070964. [PMID: 31324031 PMCID: PMC6678708 DOI: 10.3390/cancers11070964] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Endometrial carcinosarcoma (ECS) represents one of the most extreme examples of tumor heterogeneity among human cancers. ECS is a clinically aggressive, high-grade, metaplastic carcinoma. At the morphological level, intratumor heterogeneity in ECS is due to an admixture of epithelial (carcinoma) and mesenchymal (sarcoma) components that can include heterologous tissues, such as skeletal muscle, cartilage, or bone. Most ECSs belong to the copy-number high serous-like molecular subtype of endometrial carcinoma, characterized by the TP53 mutation and the frequently accompanied by a large number of gene copy-number alterations, including the amplification of important oncogenes, such as CCNE1 and c-MYC. However, a proportion of cases (20%) probably represent the progression of tumors initially belonging to the copy-number low endometrioid-like molecular subtype (characterized by mutations in genes such as PTEN, PI3KCA, or ARID1A), after the acquisition of the TP53 mutations. Only a few ECS belong to the microsatellite-unstable hypermutated molecular type and the POLE-mutated, ultramutated molecular type. A common characteristic of all ECSs is the modulation of genes involved in the epithelial to mesenchymal process. Thus, the acquisition of a mesenchymal phenotype is associated with a switch from E- to N-cadherin, the up-regulation of transcriptional repressors of E-cadherin, such as Snail Family Transcriptional Repressor 1 and 2 (SNAI1 and SNAI2), Zinc Finger E-Box Binding Homeobox 1 and 2 (ZEB1 and ZEB2), and the down-regulation, among others, of members of the miR-200 family involved in the maintenance of an epithelial phenotype. Subsequent differentiation to different types of mesenchymal tissues increases tumor heterogeneity and probably modulates clinical behavior and therapy response.
Collapse
Affiliation(s)
- Susanna Leskela
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Belen Pérez-Mies
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Juan Manuel Rosa-Rosa
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Cristobal
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
| | - Michele Biscuola
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Instituto de Biomedicina de Sevilla (IBiS), 41013 Seville, Spain
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - SuFey Ong
- NanoString Technologies, Inc, Seattle, WA 98109, USA
| | - Xavier Matias-Guiu Guia
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital U Arnau de Vilanova, 25198 Lleida, Spain
- Department of Pathology, Hospital U de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- IRBLLEIDA, IDIBELL, University of Lleida, 25003 Lleida, Spain
| | - José Palacios
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain.
| |
Collapse
|
1799
|
High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. J Clin Med 2019; 8:jcm8070997. [PMID: 31323969 PMCID: PMC6678140 DOI: 10.3390/jcm8070997] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10–15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients’ management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.
Collapse
|
1800
|
Kim Y, Jang HH. The Role of Peroxiredoxin Family in Cancer Signaling. J Cancer Prev 2019; 24:65-71. [PMID: 31360686 PMCID: PMC6619859 DOI: 10.15430/jcp.2019.24.2.65] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress by reducing intracellular accumulation of reactive oxygen species (ROS). In mammalian cells, the six Prx isoforms are ubiquitously expressed in diverse intracellular locations. They are involved in the regulation of various physiological processes including cell growth, differentiation, apoptosis, immune response and metabolism as well as intracellular ROS homeostasis. Although there are increasing evidences that Prxs are involved in carcinogenesis of many cancers, their role in cancer is controversial. The ROS levels in cancer cells are increased compared to normal cells, thus promoting cancer development. Nevertheless, for various cancer types, an overexpression of Prxs has been found to be associated with poor patient prognosis, and an increasing number of studies have reported that tumorigenesis is either facilitated or inhibited by regulation of cancer-associated signaling pathways. This review summarizes Prx isoforms and their basic functions, the relationship between the expression level and the physiological role of Prxs in cancer cells, and their roles in regulating cancer-associated signaling pathways.
Collapse
Affiliation(s)
- Yosup Kim
- Department of Health Sciences and Technology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Ho Hee Jang
- Department of Health Sciences and Technology, Graduate School of Medicine, Gachon University, Incheon, Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|