151
|
Affiliation(s)
- Nilay Bereli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Handan Yavuz
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
152
|
Sun L, Feng X, Zhong T, Zhang X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J Sep Sci 2020; 43:3315-3326. [DOI: 10.1002/jssc.202000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lifen Sun
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xiyun Feng
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Tianyi Zhong
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xufeng Zhang
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| |
Collapse
|
153
|
Material-Dependent Formation and Degradation of Bone Matrix-Comparison of Two Cryogels. Bioengineering (Basel) 2020; 7:bioengineering7020052. [PMID: 32517006 PMCID: PMC7378764 DOI: 10.3390/bioengineering7020052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
Cryogels represent ideal carriers for bone tissue engineering. We recently described the osteogenic potential of cryogels with different protein additives, e.g., platelet-rich plasma (PRP). However, these scaffolds raised concerns as different toxic substances are required for their preparation. Therefore, we developed another gelatin (GEL)-based cryogel. This study aimed to compare the two scaffolds regarding their physical characteristics and their influence on osteogenic and osteoclastic cells. Compared to the PRP scaffolds, GEL scaffolds had both larger pores and thicker walls, resulting in a lower connective density. PRP scaffolds, with crystalized calcium phosphates on the surface, were significantly stiffer but less mineralized than GEL scaffolds with hydroxyapatite incorporated within the matrix. The GEL scaffolds favored adherence and proliferation of the osteogenic SCP-1 and SaOS-2 cells. Macrophage colony-stimulating factor (M-CSF) and osteoprotegerin (OPG) levels seemed to be induced by GEL scaffolds. Levels of other osteoblast and osteoclast markers were comparable between the two scaffolds. After 14 days, mineral content and stiffness of the cryogels were increased by SCP-1 and SaOS-2 cells, especially of PRP scaffolds. THP-1 cell-derived osteoclastic cells only reduced mineral content and stiffness of PRP cryogels. In summary, both scaffolds present powerful advantages; however, the possibility to altered mineral content and stiffness may be decisive when it comes to using PRP or GEL scaffolds for bone tissue engineering.
Collapse
|
154
|
Influence of succinylation of a wide-pore albumin cryogels on their properties, structure, biodegradability, and release dynamics of dioxidine loaded in such spongy carriers. Int J Biol Macromol 2020; 160:583-592. [PMID: 32479937 DOI: 10.1016/j.ijbiomac.2020.05.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
The goal of this study was to reveal how the chemical modification, succinylation in this case, of the wide-pore serum-albumin-based cryogels affects on their osmotic characteristics (swelling extent), biodegradability and ability to be loaded with the bactericide substance - dioxidine, as well as on its release. The cryogels were prepared via the cryogenic processing (freezing - frozen storage - thawing) of aqueous solutions containing bovine serum albumin (50 g/L), denaturant (urea or guanidine hydrochloride, 1.0 mol/L) and reductant (cysteine, 0.01 mol/L). Freezing/frozen storage temperatures were either -15, or -20, or -25 °C. After defrosting, spongy cryogels were obtained that possessed the system of interconnected gross pores, whose shape and dimensions were dependent on the freezing temperature and on the type of denaturant introduced in the feed solution. Subsequent succinylation of the resultant cryogels caused the growth of the swelling degree of the pore walls of these spongy materials, resulted in strengthening of their resistance against of trypsinolysis and gave rise to an increase in their loading capacity with respect to dioxidine. With that, the microbiological tests showed a higher bactericidal activity of the dioxidine-loaded sponges based on the succinylated albumin cryogels as compared to that of the drug-carriers based on the non-modified protein sponges.
Collapse
|
155
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
156
|
Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110957. [PMID: 32487379 DOI: 10.1016/j.msec.2020.110957] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated that the freeze gelation method was successful in obtaining porous morphologies for all the fabricated alginate-gelatin samples as previously was seen in single-polymer fabrication using this method. The alginate to gelatin ratio affected swelling, biodegradation, cell culture and mechanical properties of the matrices. The scaffold with the lowest content of gelatin had the highest swelling ratio while biodegradation and cell proliferation and viability were increased with the gelatin content. Regarding the mechanical properties, as the gelatin content increased, the scaffold became more ductile and showed higher tensile strength. The in-vivo results also showed the biocompatibility of the blend scaffold and its positive role in wound healing process in rats. The low-cost procedure used in this study to fabricate the porous alginate-gelatin scaffolds can be adapted and modified to suit different tissue engineering applications.
Collapse
Affiliation(s)
- Homa Afjoul
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ali Kamali
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
157
|
Saraswathy K, Agarwal G, Srivastava A. Hyaluronic acid microneedles‐laden collagen cryogel plugs for ocular drug delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Krishnapriya Saraswathy
- Department of Medical deviceNational Institute of Pharmaceutical Education and Research Gandhinagar India
| | - Gopal Agarwal
- Department of BiotechnologyNational Institute of Pharmaceutical Education and Research Gandhinagar India
| | - Akshay Srivastava
- Department of Medical deviceNational Institute of Pharmaceutical Education and Research Gandhinagar India
| |
Collapse
|
158
|
Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable Cryogels for Biomedical Applications. Trends Biotechnol 2020; 38:418-431. [DOI: 10.1016/j.tibtech.2019.09.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
|
159
|
Alendronate-functionalized poly(amido amine) cryogels of high-toughness for biomedical applications. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
160
|
Lin T, Hsu S. Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901388. [PMID: 32042553 PMCID: PMC7001655 DOI: 10.1002/advs.201901388] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/27/2019] [Indexed: 05/27/2023]
Abstract
Hydrogels are widely used in tissue engineering owing to their high water retention and soft characteristics. It remains a challenge to develop hydrogels with tunable degradation rates, proper environmental responsiveness, and injectability. In this study, biodegradable difunctional polyurethane (DFPU) nanoparticle dispersions are synthesized from an eco-friendly waterborne process involving the use of glyoxal. Such DFPU is used to crosslink chitosan (CS). Schiff base linkages between DFPU and CS successfully produce self-healing hydrogels at room temperature. Moreover, cryogels are generated after being frozen at -20 °C. These gels are found to be sensitive to low pH and amine-containing molecules owing to the property of Schiff bases. Furthermore, the degradation rates can be adjusted by the type of the component oligodiols in DFPU. Rheological evaluation verifies the excellent self-healing properties (≈100% recovery after damage). Both the self-healing gels and cryogels are injectable (through 26-gauge and 18-gauge needles, respectively) and biocompatible. Rat implantation at 14 d shows the low immune responses of cryogels. The functionalized biodegradable polyurethane nanoparticles represent a new platform of crosslinkers for biomacromolecules such as chitosan through the dynamic Schiff reaction that may give rise to a wide variety of self-healing gels and cryogels for biomedical applications.
Collapse
Affiliation(s)
- Tzu‐Wei Lin
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617TaiwanROC
| | - Shan‐hui Hsu
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617TaiwanROC
| |
Collapse
|
161
|
Dragan ES, Dinu MV. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104372] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
162
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
163
|
Rogers ZJ, Bencherif SA. Cryogelation and Cryogels. Gels 2019; 5:gels5040046. [PMID: 31816989 PMCID: PMC6956035 DOI: 10.3390/gels5040046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Laboratory of Biomechanics & Bioengineering (BMBI), Sorbonne University, University of Technology of Compiègne (UTC), 60200 Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
164
|
Guo B, Ma Z, Pan L, Shi Y. Properties of conductive polymer hydrogels and their application in sensors. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Guo
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
165
|
Singh A, Tayalia P. Three-dimensional cryogel matrix for spheroid formation and anti-cancer drug screening. J Biomed Mater Res A 2019; 108:365-376. [PMID: 31654478 DOI: 10.1002/jbm.a.36822] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
Spheroid-based systems have been developed as alternatives to two-dimensional (2D) monolayer cultures for understanding 3D cell behavior and conducting in vitro drug screening tests. However, spheroids are easily disrupted while handling and do not mimic the presence of extracellular matrix (ECM) components. To address that, we have developed a cost-effective, polyethylene glycol diacrylate (PEGDA), and gelatin methacryloyl (GELMA) based semi-synthetic cryogel matrix system, which can be used to grow spheroids and conduct studies while providing architectural support and mimicking in vivo ECM components. These matrices are macroporous and support formation of tumor-like spheroids of breast tumor epithelial (MCF-7) cells in the absence of additional growth factors otherwise required for spheroid formation. Difference in morphology of cells as a function of matrix composition and increase in size and number of spheroids as a function of time was observed. Spheroids grown in cryogel matrices showed more drug resistance than their 2D counterparts, which can partially be explained by the epithelial to mesenchymal transition (EMT) observed in spheroids. We believe that spheroids formed through these PEGDA-GELMA cryogel matrices better represent in vivo pathological conditions and can help develop cost-effective in vitro assays for screening new pharmacological drug candidates and performing cell mechanistic studies.
Collapse
Affiliation(s)
- Archana Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
166
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
167
|
Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
168
|
Villard P, Rezaeeyazdi M, Colombani T, Joshi‐Navare K, Rana D, Memic A, Bencherif SA. Autoclavable and Injectable Cryogels for Biomedical Applications. Adv Healthc Mater 2019; 8:e1900679. [PMID: 31348620 DOI: 10.1002/adhm.201900679] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022]
Abstract
Prior to any clinical application, terminal sterilization of biomaterials is a critical process imposed by the Food and Drug Administration. Of all the methods available for sterilization, high-pressure steam sterilization such as autoclaving is the most widely used. While autoclave sterilization minimizes pathogen contamination, it can dramatically impact both structural and biological properties of biomaterials. It has recently been reported that injectable cryogels with shape memory properties hold great promises as 3D macroporous biomimetic scaffolds for biomedical applications including tissue engineering. In this study, the impact of autoclave sterilization on properties of a series of cryogels is measured. Unlike conventional hydrogels, cryogels made of natural polymers demonstrate a strong resilience to autoclave sterilization. This process does not alter either their macrostructural or unique physical properties including syringe injectability. The scaffolds' bioactive sites are preserved and autoclaved cryogels retain their excellent cytological compatibility post-autoclaving. Furthermore, autoclaved cryogels do not trigger a notable activation of primary murine bone marrow-derived dendritic cells suggesting a minimal risk for biomaterial-induced inflammation, which is further confirmed by an in vivo histologic analysis. In summary, these results further demonstrate the huge potential of cryogels in the biomedical field and their capacity to be translated into clinical applications.
Collapse
Affiliation(s)
- Pierre Villard
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | | | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | | | - Devyesh Rana
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | - Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
- Department of BioengineeringNortheastern University Boston MA 02215 USA
- John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Laboratory of Biomechanics & Bioengineering (BMBI)Sorbonne UniversityUniversity of Technology of Compiègne (UTC) 60200 Compiègne France
| |
Collapse
|
169
|
Uzunoğlu G, Çimen D, Bereli N, Çetin K, Denizli A. Cholesterol removal from human plasma with biologically modified cryogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1276-1290. [PMID: 31156065 DOI: 10.1080/09205063.2019.1627652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, low molecular weight heparin immobilized P(HEMA) cryogels were fabricated for the removal of LDL-C in hypercholesterolemic human plasma. After characterization studies for P(HEMA) cryogels, effects of the parameters including medium pH, CNBr concentration, heparin concentration and contact time on heparin immobilization were investigated. Blood compatibility and cell adhesion tests were also performed, and platelet and leucocyte loss for P(HEMA)-Hp cryogels were found to be 2.95% and 4.91%, respectively. Maximum adsorption capacity for LDL-C from hypercholesterolemic human plasma was found to be 26.7 mg/g for P(HEMA)-Hp cryogel while it was only 1.67 mg/g for bare P(HEMA) cryogel. The P(HEMA)-Hp cryogels exhibit high desorption ratios up to 96% after 10 adsorption-desorption cycles with no significant decrease in the adsorption capacity. The findings indicated that these reusable P(HEMA)-based cryogels proposed good alternative adsorbents for removal of LDL-C.
Collapse
Affiliation(s)
- Gizem Uzunoğlu
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Duygu Çimen
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Nilay Bereli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Kemal Çetin
- b Biochemistry Division, Department of Chemistry, Faculty of Science , Necmettin Erbakan University , Konya , Turkey
| | - Adil Denizli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
170
|
de Lima GG, Chee BS, Moritz VF, Cortese YJ, Magalhães WLE, Devine DM, Nugent MJD. The production of a novel poly(vinyl alcohol) hydrogel cryogenic spheres for immediate release using a droplet system. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab2547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
171
|
Saylan Y, Denizli A. Supermacroporous Composite Cryogels in Biomedical Applications. Gels 2019; 5:E20. [PMID: 30999704 PMCID: PMC6630583 DOI: 10.3390/gels5020020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023] Open
Abstract
Supermacroporous gels, called cryogels, are unique scaffolds that can be prepared by polymerization of monomer solution under sub-zero temperatures. They are widely used in many applications and have significant potential biomaterials, especially for biomedical applications due to their inherent interconnected supermacroporous structures and easy formation of composite polymers in comparison to other porous polymer synthesis techniques. This review highlights the fundamentals of supermacroporous cryogels and composite cryogels, and then comprehensively summarizes recent studies in preparation, functionalization, and utilization with mechanical, biological and physicochemical features, according to the biomedical applications. Furthermore, conclusions and outlooks are discussed for the use of these promising and durable supermacroporous composite cryogels.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|