151
|
Kajiwara K, Osaki H, Greßies S, Kuwata K, Kim JH, Gensch T, Sato Y, Glorius F, Yamaguchi S, Taki M. A negative-solvatochromic fluorescent probe for visualizing intracellular distributions of fatty acid metabolites. Nat Commun 2022; 13:2533. [PMID: 35534485 PMCID: PMC9085894 DOI: 10.1038/s41467-022-30153-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Metabolic distribution of fatty acid to organelles is an essential biological process for energy homeostasis as well as for the maintenance of membrane integrity, and the metabolic pathways are strictly regulated in response to environmental stimuli. Herein, we report a fluorescent fatty acid probe, which bears an azapyrene dye that changes its absorption and emission features depending on the microenvironment polarity of the organelle into which it is transported. Owing to the environmental sensitivity of this dye, the distribution of the metabolically incorporated probe in non-polar lipid droplets, medium-polarity membranes, and the polar aqueous regions, can be visualized in different colors. Based on density scatter plots of the fluorophore, we demonstrate that the degradation of triacylglycerols in lipid droplets occurs predominantly via lipolysis rather than lipophagy in nutrition-starved hepatocytes. This tool can thus be expected to significantly advance our understanding of the lipid metabolism in living organisms. Metabolic distribution of fatty acids to organelles is an essential biological process for energy homeostasis. Here the authors report a fluorescent probe that allows multicolour visualisation of the intracellular distribution of exogenous fatty acids, metabolically incorporated as lipid components.
Collapse
|
152
|
Sun Z, Shi S, Guan P, Liu B. Construction of heteroaryl-bridged NIR AIEgens for specific imaging of lipid droplets and its application in photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120946. [PMID: 35149481 DOI: 10.1016/j.saa.2022.120946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
As a kind of subcellular organelle, lipid droplets (LDs) play a critical role in the body's normal metabolism. LDs have gained increasing attention as a fluorescent photodynamic target site. Near-infrared (NIR) organic light-emitting luminescent materials, with aggregation-induced emission (AIE)-active feature, preeminent LD-imaging ability, and effective reactive oxygen species (ROS) production property, have been widely used for photodynamic therapy (PDT) in diagnostic therapeutics, but its application remains challenging. In the present work, three novel NIR organic compounds with AIE-active feature, namely, TPET-Is, TPET-Fu, and TPEF-Is, were developed and synthesized. These heteroaryl-bridged molecules possess a donor-donor-π-acceptor structure and strong intramolecular charge transfer character. These AIEgens are capable of high-fidelity LD imaging in living cells (Pearson's coefficient values: 0.94, 0.96, 0.97) due to their biocompatibility, good photostability, and strong lipophilicity (LogP values: 9.39, 7.89, 8.03), respectively. Moreover, they can be also applied in bright imaging the LDs of oil-rich plant tissues, such as those of sunflower seeds. The respective AIEgens TPET-Fu of these compounds can also produce ROS in the condition of white light to effectively kill live Hela cells. The present study thus provides a potential strategy through heteroaryl-bridged molecular engineering for LD-targeted imaging and PDT application.
Collapse
Affiliation(s)
- Zhanguo Sun
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; Institute of Carbon Materials Science, Shanxi DaTong University, DaTong, Shanxi Province 037009, China
| | - Shuman Shi
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Pengli Guan
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Bin Liu
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
153
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
154
|
Ruan L, Bai J, Ji X, Zhao W, Dong X. A series of meso amide BODIPY based lysosome-targeting fluorescent probe with high photostability and sensitivity. Anal Chim Acta 2022; 1205:339771. [DOI: 10.1016/j.aca.2022.339771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|
155
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
156
|
Wang L, He M, Sun Y, Liu L, Ye Y, Liu L, Shen XC, Chen H. Rational engineering of biomimetic flavylium fluorophores for regulating the lysosomal and mitochondrial localization behavior by pH-induced structure switch and application to fluorescence imaging. J Mater Chem B 2022; 10:3841-3848. [PMID: 35470364 DOI: 10.1039/d2tb00181k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria and lysosomes, as the important subcellular organelles, play vital roles in cell metabolism and physiopathology. However, there is still no general method to precisely regulate the lysosomal and mitochondrial localization behavior of fluorescent probes except by selecting specific targeting groups. Herein, we proposed a pH-induced structure switch (pHISS) strategy to solve this tricky puzzle. For the proof-of-concept, we have rationally designed and synthesized a series of cationic flavylium derivatives FL-1-9 with tunable pH-induced structure switch through adjusting the electron-donating ability of the substituents. As expected, the co-localization imaging experiments revealed that the lysosomal and mitochondrial localization behavior of FL-1-9 dyes is closely related to their pHISS ability. It is noteworthy that FL cationic dyes with strong electron-donors are not prone to pHISS and can be well enriched in mitochondria, while FL cationic dyes with weak electron-donors are highly susceptible to pHISS and display an unusual lysosome-targeting capability. This also provided a feasible strategy for lysosomal localization without basic groups and presented new application options for some flavylium dyes previously thought to be less stable. Furthermore, FL cationic dyes with medium electron-donor exhibit certain localization abilities both in mitochondria and lysosomes. Finally, through a detailed study of pH-induced structure switch and exploiting the pH inertia brought by the strong electron-donors, a novel NIR ratiometric fluorescent probe with large wavelength-shift was constructed for monitoring mitochondrial H2S in living cells, tumor tissues and living mice, highlighting the value of the pHISS strategy in precisely regulating organelle targeting and constructing corresponding organelle targeting probes.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Mengye He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Yu Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Li Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Yuan Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Lingrong Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
157
|
Li L, Wang J, Xu S, Li C, Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front Chem 2022; 10:875241. [PMID: 35494640 PMCID: PMC9043490 DOI: 10.3389/fchem.2022.875241] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
All forms of life have absolute request for metal elements, because metal elements are instrumental in various fundamental processes. Fluorescent probes have been widely used due to their ease of operation, good selectivity, high spatial and temporal resolution, and high sensitivity. In this paper, the research progress of various metal ion (Fe3+,Fe2+,Cu2+,Zn2+,Hg2+,Pb2+,Cd2+) fluorescent probes in recent years has been reviewed, and the fluorescence probes prepared with different structures and materials in different environments are introduced. It is of great significance to improve the sensing performance on metal ions. This research has a wide prospect in the application fields of fluorescence sensing, quantitative analysis, biomedicine and so on. This paper discusses about the development and applications of metal fluorescent probes in future.
Collapse
Affiliation(s)
- Luanjing Li
- Sdu-Anu Joint Science College, Shandong University, Weihai, China
| | - Jiahe Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Shihan Xu
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Chunxia Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
158
|
Michelis S, Danglot L, Vauchelles R, Klymchenko AS, Collot M. Imaging and Measuring Vesicular Acidification with a Plasma Membrane-Targeted Ratiometric pH Probe. Anal Chem 2022; 94:5996-6003. [PMID: 35377610 DOI: 10.1021/acs.analchem.2c00574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tracking the pH variation of intracellular vesicles throughout the endocytosis pathway is of prior importance to better assess the cell trafficking and metabolism of cells. Small molecular fluorescent pH probes are valuable tools in bioimaging but are generally not targeted to intracellular vesicles or are directly targeted to acidic lysosomes, thus not allowing the dynamic observation of the vesicular acidification. Herein, we designed Mem-pH, a fluorogenic ratiometric pH probe based on chromenoquinoline with appealing photophysical properties, which targets the plasma membrane (PM) of cells and further accumulates in the intracellular vesicles by endocytosis. The exposition of Mem-pH toward the vesicle's lumen allowed to monitor the acidification of the vesicles throughout the endocytic pathway and enabled the measurement of their pH via ratiometric imaging.
Collapse
Affiliation(s)
- Sophie Michelis
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Romain Vauchelles
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
159
|
Wang KN, Liu LY, Mao D, Hou MX, Tan CP, Mao ZW, Liu B. A Nuclear-Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022; 61:e202114600. [PMID: 35132748 DOI: 10.1002/anie.202114600] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
160
|
Qiu K, Seino R, Han G, Ishiyama M, Ueno Y, Tian Z, Sun Y, Diao J. De Novo Design of A Membrane-Anchored Probe for Multidimensional Quantification of Endocytic Dynamics. Adv Healthc Mater 2022; 11:e2102185. [PMID: 35032365 PMCID: PMC9035050 DOI: 10.1002/adhm.202102185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Indexed: 11/10/2022]
Abstract
As a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane-anchored pH probe, ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super-resolution technology. Being sensitive to acidity with increasing fluorescence at low pH, ECGreen can differentiate early and late endosomes as well as endolysosomes. Meanwhile, membrane anchoring not only improves the durability of ECGreen, but also provides an excellent anti-photobleaching property for long-time imaging with SIM. Moreover, by taking these advantages of ECGreen, a multidimensional analysis model containing spatial, temporal, and pH information is successfully developed for elucidating the dynamics of endocytic vesicles and their interactions with mitochondria during autophagy, and reveals a fast conversion of endosomes near the plasma membrane.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology College of Medicine University of Cincinnati Cincinnati OH 45267 USA
| | - Ryo Seino
- Dojindo Laboratories Kumamoto 861‐2202 Japan
| | - Guanqun Han
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | | | | | - Zhiqi Tian
- Department of Cancer Biology College of Medicine University of Cincinnati Cincinnati OH 45267 USA
| | - Yujie Sun
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Jiajie Diao
- Department of Cancer Biology College of Medicine University of Cincinnati Cincinnati OH 45267 USA
| |
Collapse
|
161
|
Organelle-targeted imaging based on fluorogen-activating RNA aptamers in living cells. Anal Chim Acta 2022; 1209:339816. [DOI: 10.1016/j.aca.2022.339816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
162
|
Halder B, Dewangan S, Barik T, Mishra A, Dhiman R, Chatterjee S. Solid supported synthesis of unsymmetrical bi-functionalized ferrocenyl-rhodaminyl molecular system to explore phosgene, heavy metal ion sensing, and cell imaging properties. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
163
|
Xiao Y, Yin X, Sun P, Sun Y, Qu L, Li Z. Dual microenvironmental parameter-responsive lysosome-targeting carbon dots for the high contrast discrimination of a broad spectrum of cancer cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
164
|
Liu F, Danylchuk DI, Andreiuk B, Klymchenko AS. Dynamic covalent chemistry in live cells for organelle targeting and enhanced photodynamic action. Chem Sci 2022; 13:3652-3660. [PMID: 35432899 PMCID: PMC8966643 DOI: 10.1039/d1sc04770a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/03/2022] [Indexed: 12/22/2022] Open
Abstract
Organelle-specific targeting enables increasing the therapeutic index of drugs and localizing probes for better visualization of cellular processes. Current targeting strategies require conjugation of a molecule of interest with organelle-targeting ligands. Here, we propose a concept of dynamic covalent targeting of organelles where the molecule is conjugated with its ligand directly inside live cells through a dynamic covalent bond. For this purpose, we prepared a series of organelle-targeting ligands with a hydrazide residue for reacting with dyes and drugs bearing a ketone group. We show that dynamic hydrazone bond can be formed between these hydrazide ligands and a ketone-functionalized Nile Red dye (NRK) in situ in model lipid membranes or nanoemulsion droplets. Fluorescence imaging in live cells reveals that the targeting hydrazide ligands can induce preferential localization of NRK dye and an anti-cancer drug doxorubicin in plasma membranes, mitochondria and lipid droplets. Thus, with help of the dynamic covalent targeting, it becomes possible to direct a given bioactive molecule to any desired organelle inside the cell without its initial functionalization by the targeting ligand. Localizing the same NRK dye in different organelles by the hydrazide ligands is found to affect drastically its photodynamic activity, with the most pronounced phototoxic effects in mitochondria and plasma membranes. The capacity of this approach to tune biological activity of molecules can improve efficacy of drugs and help to understand better their intracellular mechanisms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| | - Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| | - Bohdan Andreiuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| |
Collapse
|
165
|
Wang K, Liu L, Mao D, Hou M, Tan C, Mao Z, Liu B. A Nuclear‐Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming‐Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
166
|
Singh D, Rajput D, Kanvah S. Fluorescent probes for targeting endoplasmic reticulum: design strategies and their applications. Chem Commun (Camb) 2022; 58:2413-2429. [PMID: 35089303 DOI: 10.1039/d1cc06944f] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in developing organic fluorescent probes and fluorescence imaging techniques have enhanced our understanding of cell biology. The endoplasmic reticulum (ER) is a dynamic structure that plays a crucial role in protein synthesis, post-translational modifications, and lipid metabolism. The malfunction of ER contributes to several physiological and pathological conditions. Therefore, the investigations on the imaging and role of ER have attracted a lot of attention. Due to their simplicity, synthetic tunability, photostability, high quantum yields, easier cellular uptake, and lower cytotoxicity, organic fluorophores offer invaluable tools for the precision targeting of various cellular organelles and probe ER dynamics. The precision staining is made possible by incorporating specific functional groups having preferential and local organelle biomolecular interactions. For instance, functional moieties such as methyl sulfonamide, sulfonylurea, and pentafluorophenyl assist in ER targeting and thus have become essential tools to probe a deeper understanding of their dynamics. Furthermore, dual-function fluorescent probes that simultaneously image ER and detect specific physiological parameters or biological analytes were achieved by introducing special recognition or chemically reactive sites. This article attempts to comprehensively capture various design strategies currently employed by researchers utilizing small organic molecules to target the ER and detect specific analytes.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, Gujarat-382055, India.
| | - Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
167
|
Kung KKY, Xu CF, O WY, Yu Q, Chung SF, Tam SY, Leung YC, Wong MK. Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins. RSC Adv 2022; 12:6248-6254. [PMID: 35424586 PMCID: PMC8981741 DOI: 10.1039/d1ra08329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.
Collapse
Affiliation(s)
- Karen Ka-Yan Kung
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Cai-Fung Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Wa-Yi O
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Suet-Ying Tam
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
168
|
Liang D, Yu C, Qin X, Yang X, Dong X, Hu M, Du L, Li M. Discovery of small-molecule fluorescent probes for C-Met. Eur J Med Chem 2022; 230:114114. [PMID: 35051746 DOI: 10.1016/j.ejmech.2022.114114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 11/17/2022]
Abstract
C-mesenchymal-epithelia transition factor (c-Met) is highly expressed in various solid tumors such as gastric cancer, liver cancer, and lung cancer, playing a pivotal role in the growth, maintenance, and development of different tumor cells. In this study, three small-molecule fluorescent probes (5, 11, 16) targeting c-Met were developed, and their design strategies were also initially explored. In general, the fluorescence properties of the probes themselves could meet the imaging requirements, and they have shown sufficient inhibitory activities against c-Met, especially probe 16, reflecting the targeting and acceptance. Also, fluorescence polarization assays and flow cytometry analysis verified the binding between the probes and c-Met. Cell imaging confirmed that these probes could be used to label c-Met on living cells. It is of positive significance for the development of c-Met kinase inhibitors and tumor pathology research.
Collapse
Affiliation(s)
- Dong Liang
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chen Yu
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Qin
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xingye Yang
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuhui Dong
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mingzhao Hu
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
169
|
Roy B, Mengji R, Roy S, Pal B, Jana A, Singh NDP. NIR-Responsive Lysosomotropic Phototrigger: An "AIE + ESIPT" Active Naphthalene-Based Single-Component Photoresponsive Nanocarrier with Two-Photon Uncaging and Real-Time Monitoring Ability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4862-4870. [PMID: 35049266 DOI: 10.1021/acsami.1c19022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent times, organelle-targeted drug delivery systems have gained tremendous attention due to the site-specific delivery of active drug molecules, resulting in enhanced bioefficacy. In this context, a phototriggered drug delivery system (DDS) for releasing an active molecule is superior, as it provides spatial and temporal control over the release. So far, a near-infrared (NIR) light-responsive organelle-targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR light-responsive lysosome-targeted "AIE + ESIPT" active single-component DDS based on the naphthalene chromophore. The two-photon absorption cross section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single-component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of drug release.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rakesh Mengji
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samrat Roy
- Department of Physics, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Bipul Pal
- Department of Physics, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Avijit Jana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
170
|
A water-soluble near-infrared fluorescent probe for monitoring change of hydrogen sulfide during cell damage and repair process. Anal Chim Acta 2022; 1195:339457. [DOI: 10.1016/j.aca.2022.339457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
|
171
|
Zou G, Chen S, Liu N, Yu Y. A ratiometric fluorescent probe based on carbon dots assembly for intracellular lysosomal polarity imaging with wide range response. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
172
|
Hesperine, a new imidazole alkaloid and α-synuclein binding activity of 1-methyl-1,2,7,8-tetrahydro-2,8-dioxoadenosine from the marine sponge Clathria (Thalysias) cf. hesperia. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
173
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
174
|
Ma H, Lu Y, Huang Z, Long S, Cao J, Zhang Z, Zhou X, Shi C, Sun W, Du J, Fan J, Peng X. ER-Targeting Cyanine Dye as an NIR Photoinducer to Efficiently Trigger Photoimmunogenic Cancer Cell Death. J Am Chem Soc 2022; 144:3477-3486. [DOI: 10.1021/jacs.1c11886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhibin Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
175
|
Pei S, Li J, Kang N, Zhang G, Zhang B, Zhang C, Shuang S. Synthesis of a new environment-sensitive fluorescent probe based on TICT and application for detection of human serum albumin and specific lipid droplets imaging. Anal Chim Acta 2022; 1190:339267. [PMID: 34857148 DOI: 10.1016/j.aca.2021.339267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Environment-sensitive fluorescent probes have always been as forceful tools to understand the pathophysiological processes of relevant diseases. In this work, a new fluorescent probe with typical D-π-A structure was designed and showed high sensitivity to polarity and viscosity changes. DPAR could selectively detect human serum albumin (HSA) with turn-on orange emission in aqueous PBS buffer (pH 7.4), which showed advantages such as rapid response (4 min), high sensitivity (LOD 0.98 μg/mL). Therefore, it was successfully used for achieving HSA levels in urine samples and HSA imaging in HeLa cells. DPAR also exhibited the capability to recognize the cancer cells over the normal cells by lower polarity guided lipid droplets (LDs) imaging (in green emission channel). The detection mechanism for HSA and cancer diagnosis was convinced that DPAR encountered the lower-polarity and higher-viscosity microenvironment, resulting in the confinement of the TICT process and intramolecular rotation. These facts showed that DPAR had good application prospects in environment-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Shizeng Pei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jiale Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Na Kang
- School of Engineering, Yanching Institute of Technology, Sanhe, 065200, China.
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Bo Zhang
- Huayang New Material Technology Group Co., Ltd., Yangquan, 045000, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
176
|
Mu YL, Pan L, Lu Q, Xing S, Liu KY, Zhang X. A bifunctional sensitive fluorescence probe based on pyrene for the detection of pH and viscosity in lysosome. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120228. [PMID: 34388430 DOI: 10.1016/j.saa.2021.120228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Lysosome is one of the important organelles in intracellular transport. It plays a significant role in the physiological process. The lysosomal microenvironment affects the functions of lysosome. When the original acidic environment of lysozyme is destroyed or the fluid viscosity increases gradually, various diseases are easily induced. However, most fluorescent probes can only locate in cells. The fewer probes of subcellular organelles were found and their functions are often single. So, it is of great importance to design multifunctional fluorescent probes with the capable of localizing in lysosome. In this study, a novel lysosome probe, 4-(4-Pyren-1-yl-but-3-enyl)-morpholine (PIM), was synthesized using pyrene as a fluorescent group and morpholine as a target group. The introduction of morpholine group made PIM localize in lysosome with high selectivity. The fluorescence will be enhanced with the increased viscosity because of restricting the rotation of CC bond and CN in PIM, and the detecting linear range is from 4.05 cP to 393.48 cP, which qualified the requirement of the viscosity monitoring in body. Meanwhile, the fluorescence intensity of PIM declines with the decrease of pH because the Schiff base of PIM is hydrolyzed, which was affirmed by 1H NMR, LC-MS and fluorescence spectra. Moreover, cell imaging and MTT experiments confirmed that PIM as a novel bifunctional probe can be used to detect pH and endogenous viscosity in lysosome.
Collapse
Affiliation(s)
- Yi-Lin Mu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Li Pan
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qian Lu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ke-Yin Liu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xian Zhang
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
177
|
Zheng Y, Zhang XX, Shi L, Ren TB, Yuan L, Zhang XB. Reversal of Solvatochromism: A New Strategy to Construct Activatable Two-photon Fluorescent Probes for Sensing. Chem Asian J 2022; 17:e202101197. [PMID: 34751508 DOI: 10.1002/asia.202101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Indexed: 11/06/2022]
Abstract
Two-photon (TP) imaging with a donor-acceptor (D-A) type fluorophore is an emerging tool for bioimaging and sensing. However, current TP probes suffer from serious solvatochromic quenching in aqueous solution due to their strong intramolecular charge transfer (ICT) in excited states. In this work, based on solvatochromism reversal, we report a novel strategy to develop TP probes for bioimaging. Specifically, compared with the normal two-photon probes that showed a fluorescence off with ICT suppressed, the novel probes exhibited strong fluorescence in the aqueous solution when their ICT was inhibited. This strategy not only provides a new way for the design of high-performance TP probes, but also expands the biological analysis toolbox for use in living systems.
Collapse
Affiliation(s)
- Yingxin Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
178
|
Meng F, He J, Niu J, Li Y, Gao P, Yu X. A dual-targeting fluorescent probe for simultaneous and discriminative visualization of lipid droplets and endoplasmic reticulum. J Mater Chem B 2022; 10:8875-8882. [DOI: 10.1039/d2tb01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A single fluorescent probe (SF-probe) that can simultaneously and discriminatively visualize two organelles is a powerful tool to investigate their interaction in cellular processes.
Collapse
Affiliation(s)
- Fangfang Meng
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junyi He
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Niu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Yawen Li
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiaoqiang Yu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| |
Collapse
|
179
|
Sun W, Gu X, Dong P, Chu L, Zhang Z, Cheng Z, Yang F. Cell-membrane-targeted near-infrared fluorescent probe for detecting extracellular ATP. Analyst 2022; 147:4167-4173. [DOI: 10.1039/d2an00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe for detecting extracellular ATP.
Collapse
Affiliation(s)
- Wan Sun
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xiangling Gu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Lianjun Chu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhongyu Zhang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhenyuan Cheng
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Fan Yang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, China
| |
Collapse
|
180
|
Ma K, Yang H, Shen T, Yue Y, Zhao L, Liu X, Huo F, Yin C. Unique assemble of carbonylpyridinium and chromene reveal mitochondrial thiol starvation under ferroptosis and novel ferroptosis inducer. Chem Sci 2022; 13:3706-3712. [PMID: 35432896 PMCID: PMC8966632 DOI: 10.1039/d2sc00328g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
To reveal the delicate function of mitochondrial, precise detection tools in spatiotemporal manner remains highly desirable. However, current probes with positive charge warheads for targeting mitochondria diffuse out of the...
Collapse
Affiliation(s)
- Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Tianruo Shen
- University of Technology and Design 487372 Singapore
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Lingling Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Xiaogang Liu
- University of Technology and Design 487372 Singapore
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 PR China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
181
|
Wang Y, Lei T, Zhang J, Gong L, Yang Y, Ma X, Wen Y, Du H, Qi D, Bian Y, Liu Z, Jiang J. A porphyrin-triazatruxene dyad for ratiometric two-photon fluorescent sensing of intracellular viscosity. J Mater Chem B 2022; 10:5487-5492. [DOI: 10.1039/d2tb00384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By combining an electron-rich triazatruxene unit (TAT) to an electron-deficient zinc porphyrin fluorophore (ZnPor) via an ethynyl bridge, a new two-photon fluorescent viscosity rotor (TAT-ZnPor) with typical donor-π-acceptor (D-π-A) electronic...
Collapse
|
182
|
Usama SM, Marker SC, Caldwell DR, Patel NL, Feng Y, Kalen JD, St Croix B, Schnermann MJ. Targeted Fluorogenic Cyanine Carbamates Enable In Vivo Analysis of Antibody-Drug Conjugate Linker Chemistry. J Am Chem Soc 2021; 143:21667-21675. [PMID: 34928588 DOI: 10.1021/jacs.1c10482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the antibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitatively assess the cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits a dramatically increased cellular signal due to an improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are ∼50× brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers provide dramatically higher tumor activation relative to hindered or nonhindered disulfides, an observation that is only apparent with in vivo imaging. This strategy enables quantitative comparisons of cleavable linker chemistries in complex tissue settings with implications across the drug delivery landscape.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
183
|
Karak P, Rana SS, Choudhury J. Cationic π-extended heteroaromatics via a catalytic C-H activation annulative alkyne-insertion sequence. Chem Commun (Camb) 2021; 58:133-154. [PMID: 34849515 DOI: 10.1039/d1cc05590a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cationic π-conjugated organic molecules have broad applications in materials science as next-generation organic materials. The annulative alkyne-insertion π-extension (AAIPEX) strategy has emerged as a promising synthetic approach for the rapid synthesis of cationic polycyclic heteroaromatic compounds (cPHACs) in a single step. The AAIPEX reaction provides a synthetic shortcut to achieve complex organic molecules from simple (hetero)arene templates and alkynes as π-extending partners, which would otherwise be difficult to achieve using traditional methods. In general, a step-economic AAIPEX protocol proceeds via C-H activation of unfunctionalized heteroarene templates, followed by alkyne insertion-annulation to furnish cPHACs. In this Feature Article, recent progress in the AAIPEX strategy to construct cPHACs is described along with brief illustrations of the resulting cPHACs in luminescence-related applications.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| |
Collapse
|
184
|
Li K, Ren TB, Huan S, Yuan L, Zhang XB. Progress and Perspective of Solid-State Organic Fluorophores for Biomedical Applications. J Am Chem Soc 2021; 143:21143-21160. [PMID: 34878771 DOI: 10.1021/jacs.1c10925] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent organic dyes have been extensively used as raw materials for the development of versatile imaging tools in the field of biomedicine. Particularly, the development of solid-state organic fluorophores (SSOFs) in the past 20 years has exhibited an upward trend. In recent years, studies on SSOFs have focused on the development of advanced tools, such as optical contrast agents and phototherapy agents, for biomedical applications. However, the practical application of these tools has been hindered owing to several limitations. Thus, in this Perspective, we have provided insights that could aid researchers to further develop these tools and overcome the limitations such as limited aqueous dispersibility, low biocompatibility, and uncontrolled emission. First, we described the inherent photophysical properties and fluorescence mechanisms of conventional, aggregation-induced emissive, and precipitating SSOFs with respect to their biomedical applications. Subsequently, we highlighted the recent development of functionalized SSOFs for bioimaging, biosensing, and theranostics. Finally, we elucidated the potential prospects and limitations of current SSOF-based tools associated with biomedical applications.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
185
|
Hong J, Li Q, Xia Q, Feng G. Real-Time and High-Fidelity Tracking of Lysosomal Dynamics with a Dicyanoisophorone-Based Fluorescent Probe. Anal Chem 2021; 93:16956-16964. [PMID: 34874697 DOI: 10.1021/acs.analchem.1c04341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of high-performance probes that can visualize and track the dynamic changes of lysosomes is very important for the in-depth study of lysosomes. Herein, we report that a dicyanoisophorone-based probe (named DCIP) can be used for high-fidelity imaging of lysosomes and lysosomal dynamics. DCIP can be easily prepared and shows strong far-red to near-infrared emissions centered at 653 nm in water with a huge Stokes shift (224 nm), high quantum yield (Φ = 0.15), high pKa value (∼8.79), and good biocompatibility. DCIP also shows good cell permeability and can label lysosomes rapidly with bright fluorescence without a time-consuming washing process before imaging. DCIP also possesses good photostability and negligible background, making it effective for long-term and high spatiotemporal resolution (0.44 s of exposure) imaging of lysosomes. Moreover, DCIP achieved high-fidelity tracking of lysosomal dynamics at an extremely low concentration (1 nM). Finally, we also demonstrated that DCIP could real-time track the interactions of lysosomes with other organelles (damaged mitochondria as a model) and image the drug-escape processes from lysosomes. All of the results show that DCIP holds broad prospects in lysosome-related research.
Collapse
Affiliation(s)
- Jiaxin Hong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qianhua Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qingfeng Xia
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
186
|
Muñoz Resta I, Bedrina B, Martínez-Planes E, Minguela A, Galindo F. Detection of subcellular nitric oxide in mitochondria using a pyrylium probe: assays in cell cultures and peripheral blood. J Mater Chem B 2021; 9:9885-9892. [PMID: 34821904 DOI: 10.1039/d1tb02326h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent probes for the detection of intracellular nitric oxide (NO) are abundant, but those targeted to the mitochondria are scarce. Among those molecules targeting mitochondrial NO (mNO), the majority use a triphenylphosphonium (TPP) cation as a vector to reach such organelles. Here we describe a simple molecule (mtNOpy) based on the pyrylium structure, made in a few synthetic steps, capable of detecting selectively NO (aerated medium) over other reactive species. The calculated detection limit for mtNOpy is 88 nM. The main novelty of this probe is that it has a simple molecular architecture and can act both as a fluorogenic and as a mitochondriotropic agent, without using TPP. mtNOpy has been tested in two different scenarios: (a) in a controlled environment of cell line cultures (human colon carcinoma HT-29 cells and mouse macrophage RAW 264.7 cells), using confocal laser scanning microscopy, and (b) on a much more complex sample of peripheral blood, using flow cytometry. In the first context, mtNOpy has been found to be responsive (turn-on fluorescence) to exogenous and endogenous NO stimuli (via SNAP donor and LPS stimulation, respectively). In the second area, mtNOpy has been able to discriminate between NO-generating phagocytes (neutrophils and monocytes) from other leukocytes (NK, B and T cells).
Collapse
Affiliation(s)
- Ignacio Muñoz Resta
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Begoña Bedrina
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Elena Martínez-Planes
- Servicio de Inmunología, Hospital Universitario Virgen de la Arrixaca, El Palmar, 30120, Murcia, Spain
| | - Alfredo Minguela
- Servicio de Inmunología, Hospital Universitario Virgen de la Arrixaca, El Palmar, 30120, Murcia, Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
187
|
Liu H, Guo J, Aryee AA, Hua L, Sun Y, Li Z, Liu J, Tang W. Lighting up Individual Organelles With Fluorescent Carbon Dots. Front Chem 2021; 9:784851. [PMID: 34900943 PMCID: PMC8660688 DOI: 10.3389/fchem.2021.784851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cell organelles play crucial roles in the normal functioning of an organism, therefore the disruption of their operation is associated with diseases and in some cases death. Thus, the detection and monitoring of the activities within these organelles are of great importance. Several probes based on graphene oxide, small molecules, and other nanomaterials have been developed for targeting specific organelles. Among these materials, organelle-targeted fluorescent probes based on carbon dots have attracted substantial attention in recent years owing to their superior characteristics, which include facile synthesis, good photostability, low cytotoxicity, and high selectivity. The ability of these probes to target specific organelles enables researchers to obtain valuable information for understanding the processes involved in their functions and/or malfunctions and may also aid in effective targeted drug delivery. This review highlights recently reported organelle-specific fluorescent probes based on carbon dots. The precursors of these carbon dots are also discussed because studies have shown that many of the intrinsic properties of these probes originate from the precursor used. An overview of the functions of the discussed organelles, the types of probes used, and their advantages and limitations are also provided. Organelles such as the mitochondria, nucleus, lysosomes, and endoplasmic reticulum have been the central focus of research to date, whereas the Golgi body, centrosome, vesicles, and others have received comparatively little attention. It is therefore the hope of the authors that further studies will be conducted in an effort to design probes with the ability to localize within these less studied organelles so as to fully elucidate the mechanisms underlying their function.
Collapse
Affiliation(s)
- Haifang Liu
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Linlin Hua
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Li
- College of Chemistry of Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
188
|
Ortega-Forte E, Rovira A, Gandioso A, Bonelli J, Bosch M, Ruiz J, Marchán V. COUPY Coumarins as Novel Mitochondria-Targeted Photodynamic Therapy Anticancer Agents. J Med Chem 2021; 64:17209-17220. [PMID: 34797672 PMCID: PMC8667040 DOI: 10.1021/acs.jmedchem.1c01254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) for cancer treatment has drawn increased attention over the last decades. Herein, we introduce a novel family of low-molecular-weight coumarins as potential PDT anticancer tools. Through a systematic study with a library of 15 compounds, we have established a detailed structure-activity relationship rationale, which allowed the selection of three lead compounds exhibiting effective in vitro anticancer activities upon visible-light irradiation in both normoxia and hypoxia (phototherapeutic indexes up to 71) and minimal toxicity toward normal cells. Acting as excellent theranostic agents targeting mitochondria, the mechanism of action of the photosensitizers has been investigated in detail in HeLa cells. The generation of cytotoxic reactive oxygen species, which has been found to be a major contributor of the coumarins' phototoxicity, and the induction of apoptosis and/or autophagy have been identified as the cell death modes triggered after irradiation with low doses of visible light.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento
de Química Inorgánica, Universidad
de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Campus de Espinardo, Murcia E-30071, Spain
| | - Anna Rovira
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| | - Albert Gandioso
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| | - Joaquín Bonelli
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| | - Manel Bosch
- Unitat
de Microscòpia Òptica Avançada, Centres Científics
i Tecnològics, Universitat de Barcelona, Av. Diagonal 643, Barcelona E-08028, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Campus de Espinardo, Murcia E-30071, Spain
| | - Vicente Marchán
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franqués 1−11, Barcelona E-08028, Spain
| |
Collapse
|
189
|
Pei S, Li J, Zhang C, Zhang G, Zhou Y, Fan L, Wang W, Shuang S, Dong C. TICT-Based Microenvironment-Sensitive Probe with Turn-on Red Emission for Human Serum Albumin Detection and for Targeting Lipid Droplet Imaging. ACS Biomater Sci Eng 2021; 8:253-260. [PMID: 34866386 DOI: 10.1021/acsbiomaterials.1c01348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorescent probes sensitive to microenvironment have always been fascinating due to their tremendous advantages in tracking changes in the pathophysiological microenvironment and potential application in the early diagnosis of related diseases. In this study, a fluorescent luminogen, triphenylamine-thiophene-rhodanine (TPA-TRDN), with high sensitivity to changes in polarity and viscosity was designed and could be applied to detecting human serum albumin (HSA) in actual urine, as well as lipid droplets (LDs) in cells and in vivo with turn-on red emission. TPA-TRDN could selectively detect HSA with fast response (10 min), superior sensitivity (LOD 0.34 μg/mL, about 60-fold fluorescence enhancement), and wide detection range (0.00-0.30 mg/mL). The detection mechanism was demonstrated: TPA-TRDN encountered the hydrophobic IB domain of HSA, leading to the inhibition of the twisted intramolecular charge transfer (TICT) phenomenon and intramolecular rotation. Moreover, TPA-TRDN demonstrated satisfactory ability to identify cancer cells and noncancer cells by microenvironment-guided specific LD bioimaging. This evidence indicated that TPA-TRDN has promising application in the microenvironment-related biomedical field and clinical diagnosis.
Collapse
Affiliation(s)
- Shizeng Pei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wen Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
190
|
Zhang X, Ren T, Yang F, Yuan L. Rational design of far red to near-infrared rhodamine analogues with huge Stokes shifts for single-laser excitation multicolor imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
191
|
Hao Y, Zhang Y, Sun Q, Chen S, Tang Z, Zeng R, Xu M. Phenothiazine-coumarin-pyridine hybrid as an efficient fluorescent probe for ratiometric sensing hypochlorous acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
192
|
NCL-based mitochondrial-targeting fluorescent probe for the detection of Glutathione in living cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
193
|
Wei X, Li J, Yang X, Dong B, Geng B, Li Z, Hu X, Ding B, Zhang J, Yan M. An enzyme-activated two-photon ratiometric fluorescent probe with lysosome targetability for imaging β-glucuronidase in colon cancer cells and tissue. Anal Chim Acta 2021; 1192:339354. [DOI: 10.1016/j.aca.2021.339354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/22/2023]
|
194
|
Wang W, Ji M, Chen J, Wang P. A novel turn-on type AIE fluorescent probe for highly selective detection of cysteine/homocysteine and its application in living cells. Talanta 2021; 239:123091. [PMID: 34861486 DOI: 10.1016/j.talanta.2021.123091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Biothiols, associated with multiple physiological and pathological processes, have structural similarities. Monitoring Biothiols selectively in organisms is of great significance. Burdened by the aggregation-caused quenching (ACQ) effect, the applications of conventional biothiols fluorescent probes are extremely limited. Herein, we developed a "turn-on" type aggregation-induced emission (AIE) fluorescent probe BQM-NBD, which was composed of a BQM-OH fluorophore molecule with AIE effect and the recognition group 7-nitro-1,2,3-benzoxadiazole (NBD). Non-fluorescent BQM-NBD produces strong fluorescence after the addition of cysteine (Cys) or homocysteine (Hcy). BQM-NBD exhibited excellent linearity for selective detection of Cys (0-100 Μm) and Hcy (0-50 μM) with detection limits of 6.0 × 10-8 M and 8.4 × 10-8 M, respectively. Simultaneously, after treatment with glutathione (GSH), it appeared no fluorescence. The results demonstrated BQM-NBD exhibited good selectivity to Cys/Hcy. Furthermore, BQM-NBD was successfully performed in the imaging of Cys in living cells with low cytotoxicity, which provides a feasible strategy for the selective detection of Cys in the living system.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, PR China
| | - Junqing Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
| | - Peng Wang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
195
|
Gao J, Guo L, Wu Y, Cheng Y, Hu X, Liu J, Liu Z. 16-Electron Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes as Lysosome-Targeted Anticancer Agents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yihan Cheng
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
196
|
Ma Q, Zhuo W, Zhai Z, Gong G, Zhang T, Xiao H, Zhou Z, Liu Y. A new fluorescent probe for neutral to alkaline pH and imaging application in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120031. [PMID: 34119767 DOI: 10.1016/j.saa.2021.120031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
A new pH-sensitive fluorescent probe NAP-MDA was designed and synthesized. NAP-MDA consists of 1,8-naphthalimide as fluorophore, morpholine and N,N-dimethylethylenediamine as pH-responsive groups. Due to the photoinduced electron transfer (PET) mechanism, the fluorescence of 1, 8-naphthalimide was thoroughly quenched under alkaline condition (pH > 10.0), however, NAP-MDA displayed increasing fluorescence as the rise of acidity. Notably, NAP-MDA possessed an excellent linear dependence with neutral to alkaline pH (7.2-9.4), with a pKa of 8.38. NAP-MDA had good photostability and reversibility. Meanwhile, the probe was selective to pH without interference from common reactive species, temperature and viscosity. Fluorescent testing strips were fabricated with NAP-MDA and were successfully utilized to visualize the different pH with a handhold UV lamp. Confocal fluorescence imaging in live cells demonstrated that NAP-MDA mainly fluoresced in lysosomes, and could be applied for quantification of the pH within live cells.
Collapse
Affiliation(s)
- Qingqing Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Wenfeng Zhuo
- Jiangsu Xinhe Agricultural and Chemical Company Limited, Xinyi 221400, PR China
| | - Zhaodong Zhai
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Guangshuai Gong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Ziyan Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
197
|
Liu H, Liu S, Xiao Y, Song W, Li H, Ho LWC, Shen Z, Choi CHJ. A pH-Reversible Fluorescent Probe for in Situ Imaging of Extracellular Vesicles and Their Secretion from Living Cells. NANO LETTERS 2021; 21:9224-9232. [PMID: 34724785 DOI: 10.1021/acs.nanolett.1c03110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Our knowledge in how extracellular vesicles (EVs) are secreted from cells remains inadequate due to the limited technologies available for visualizing them in situ. We report a pH-reversible boron dipyrromethene (BODIPY) fluorescent probe for confocal imaging of EVs secreted from living cells without inducing severe cytotoxicity. This probe predominantly assumes a non-fluorescent leuco-BODIPY form under basic conditions, but it gradually switches to its fluorescent parent BODIPY form upon acidification; such pH transition empowers the imaging of acidic EVs (such as CD81-enriched exosomes and extracellular multivesicular bodies) in weakly basic culture medium and intracellular acidic precursor EVs in weakly basic cytoplasm, with minimal false positive signals frequently encountered for "always-on" dyes. Joint application of this probe with plasmid transfection reveals the secretion of some EVs from cellular pseudopodia via microtubule trackways. This probe may provide mechanistic insights into the extracellular transport of EVs and support the development of EV-based nanomedicines.
Collapse
Affiliation(s)
- Hanzhuang Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Shaorui Liu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Yu Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Wenting Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huize Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Lok Wai Cola Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
198
|
Wang X, Tang H, Huang X. Water-soluble fluorescent probes for bisulfite and viscosity imaging in living cells: Pyrene vs. anthracene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119902. [PMID: 33993021 DOI: 10.1016/j.saa.2021.119902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
We have designed two mitochondria targetable probes P-Py and P-An by the π-conjugation of polyaromatic hydrocarbons (pyrene vs. anthracene) with 4-dimethylamino pyridinium. They present an amphiphilic property with excellent solubility in the common polar and non-polar solvents. Both of them demonstrated a significant fluorescence response to bisulfite in Tris-HCl buffer solutions (5 mM, pH = 7.4). By a combination of fluorescence, UV-vis, time-resolved emission, 1H NMR, and ESI-MS, their sensing mechanisms have been elaborated to be a Michael addition. Notably, P-Py also exhibits a sensitivity to the viscosity change with a Stokes shift of 140 nm, due to the restriction of C-C bond rotation. By taking advantages of its good water solubility, low toxicity, and high mitochondrial target, the dual responses of P-Py to exogenous SO2 derivatives and viscosity change in mitochondria were explored by confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Xu Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hong Tang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
199
|
Zhao M, Shi D, Hu W, Ma T, He L, Lu D, Hu Y, Zhou L. A two-photon "turn-on" fluorescent probe for both exogenous and endogenous selenocysteine detection and imaging in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119983. [PMID: 34052765 DOI: 10.1016/j.saa.2021.119983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Selenocysteine (Sec) is recognized as the 21st amino acid employing as an essential building block for selenoproteins (SePs), which plays a significant role in various physiological processes. Therefore, there is an urgent need to reasonably develop some reliable and rapid methods for Sec detection in biological systems. In this work, we reported a new two-photon (TP) fluorescent probe BNT-Sec for Sec detection and imaging in living cells and zebrafish with two part: (1) a D-π-A-structured naphthalene derivative as a TP fluorophore; (2) a well-know Sec responsive site with strong intromolecular charge transfer effect (ICT) to selectively detect endogenous and exogenous. In the presence of Sec, probe BNT-Sec can initiate a Se-dependent specific aromatic nucleophilic substitution reaction, which exhibited BNT-Sec had a large fluorescence intensity enhancement with ~18.9-fold at 510 nm, a high sensitivity low LOD value' 10.6 nM, good light stability, strong specificity, pH stability and low cytotoxicity. In addition, BNT-Sec can be conveniently used to detect Sec in living cells and zebrafish for TP imaging due to the great TP measurement properties of fluorophore, exhibiting it has the potential to reveal the role of selenocysteine in physiological and pathological processes in further biological applications.
Collapse
Affiliation(s)
- Mei Zhao
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Di Shi
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Wandi Hu
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Tao Ma
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Lei He
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Danqing Lu
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Yunchu Hu
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Liyi Zhou
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
200
|
Kowada T, Mizukami S. Fluorescent Probes for the Quantification of Labile Metal Ions in Living Cells. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|