151
|
Waespy M, Gbem TT, Elenschneider L, Jeck AP, Day CJ, Hartley-Tassell L, Bovin N, Tiralongo J, Haselhorst T, Kelm S. Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense. PLoS Negl Trop Dis 2015; 9:e0004120. [PMID: 26474304 PMCID: PMC4608562 DOI: 10.1371/journal.pntd.0004120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022] Open
Abstract
Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented.
Collapse
Affiliation(s)
- Mario Waespy
- Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, University Bremen, Bremen, Germany
| | - Thaddeus T. Gbem
- Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, University Bremen, Bremen, Germany
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Leroy Elenschneider
- Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, University Bremen, Bremen, Germany
| | - André-Philippe Jeck
- Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, University Bremen, Bremen, Germany
| | - Christopher J. Day
- Institute for Glycomics, Griffith University Gold Coast Campus, Queensland, Australia
| | | | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University Gold Coast Campus, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University Gold Coast Campus, Queensland, Australia
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Faculty for Biology and Chemistry, University Bremen, Bremen, Germany
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Institute for Glycomics, Griffith University Gold Coast Campus, Queensland, Australia
| |
Collapse
|
152
|
Ponedel'kina IY, Khaibrakhmanova EA, Tyumkina TV, Romadova IV, Odinokov VN. Stoichiometric C6-oxidation of hyaluronic acid by oxoammonium salt TEMPO⁺Cl⁻ in an aqueous alkaline medium. Carbohydr Polym 2015; 130:69-76. [PMID: 26076602 DOI: 10.1016/j.carbpol.2015.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
This paper reports the selective oxidation of hyaluronic acid (HA) by stoichiometric quantity of 2,2,6,6-tetramethylpiperidine-1-oxoammonium chloride (TEMPO(+)) in aqueous alkaline medium. High efficiency of the HA oxidation and quantitative yield of carboxy-HA per starting TEMPO(+), as well as unusual behavior of the oxidation system generating an oxygen upon alkali-induced oxoammonium chloride decomposition are demonstrated. The scheme for HA oxidation involving both TEMPO(+) and oxygen produced upon the TEMPO(+)Cl(-) decomposition and/or air oxygen is proposed. For comparison, the data on stoichiometric oxidation of such substrates as dermatan sulfate, water-soluble potato starch, methyl 2-acetamido-2-deoxy-β-d-glucopyranoside and ethanol are presented.
Collapse
Affiliation(s)
- Irina Yu Ponedel'kina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation.
| | - Elvira A Khaibrakhmanova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Tatyana V Tyumkina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Irina V Romadova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Victor N Odinokov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| |
Collapse
|
153
|
Pitoux D, Hu Z, Plainchont B, Merlet D, Farjon J, Bonnaffé D, Giraud N. Magnetic field dependence of spatial frequency encoding NMR as probed on an oligosaccharide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:836-844. [PMID: 26264777 DOI: 10.1002/mrc.4281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/06/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The magnetic field dependence of spatial frequency encoding NMR techniques is addressed through a detailed analysis of (1)H NMR spectra acquired under spatial frequency encoding on an oligomeric saccharide sample. In particular, the influence of the strength of the static magnetic field on spectral and spatial resolutions that are key features of this method is investigated. For this purpose, we report the acquisition of correlation experiments implementing broadband homodecoupling or J-edited spin evolutions, and we discuss the resolution enhancements that are provided by these techniques at two different magnetic fields. We show that performing these experiments at higher field improves the performance of high resolution NMR techniques based on a spatial frequency encoding. The significant resolution enhancements observed on the correlation spectra acquired at very high field make them valuable analytical tools that are suitable for the assignment of (1)H chemical shifts and scalar couplings in molecules with highly crowded spectrum such as carbohydrates.
Collapse
Affiliation(s)
- D Pitoux
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Orsay cedex, 91405, France
| | - Z Hu
- Equipe Méthodologies, Synthèses et Molécules Thérapeutiques, ICMMO, UMR 8182 (CNRS-UPS), LabEx LERMIT, Université Paris-Sud, Orsay Cedex, 91405, France
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR CNRS 3523, Paris cedex, 75724, France
| | - B Plainchont
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Orsay cedex, 91405, France
| | - D Merlet
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Orsay cedex, 91405, France
| | - J Farjon
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Orsay cedex, 91405, France
| | - D Bonnaffé
- Equipe Méthodologies, Synthèses et Molécules Thérapeutiques, ICMMO, UMR 8182 (CNRS-UPS), LabEx LERMIT, Université Paris-Sud, Orsay Cedex, 91405, France
| | - N Giraud
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Orsay cedex, 91405, France
| |
Collapse
|
154
|
Johnston CW, Skinnider MA, Wyatt MA, Li X, Ranieri MRM, Yang L, Zechel DL, Ma B, Magarvey NA. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat Commun 2015; 6:8421. [PMID: 26412281 PMCID: PMC4598715 DOI: 10.1038/ncomms9421] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 08/19/2015] [Indexed: 12/04/2022] Open
Abstract
Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC–MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products. Microbial natural products represent a large reservoir of potential pharmaceutical agents. Here, Johnston et al. describe a computer-automated programme for connecting genome sequences with identified and isolated natural products.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Michael A Skinnider
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Morgan A Wyatt
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Xiang Li
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Michael R M Ranieri
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Lian Yang
- The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - David L Zechel
- Department of Chemistry; Queens University, Kingston, Ontario, Canada K7L 3N6
| | - Bin Ma
- The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Nathan A Magarvey
- Department of Biochemistry &Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research; McMaster University, Hamilton, Ontario, Canada L8N 3Z5.,Department of Chemistry &Chemical Biology, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| |
Collapse
|
155
|
Munneke S, Painter GF, Gainsford GJ, Stocker BL, Timmer MS. Total synthesis of LewisX using a late-stage crystalline intermediate. Carbohydr Res 2015; 414:1-7. [DOI: 10.1016/j.carres.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022]
|
156
|
Tang J, Guo X, Zhu L, Hu C. Mechanistic Study of Glucose-to-Fructose Isomerization in Water Catalyzed by [Al(OH)2(aq)]+. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01237] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinqiang Tang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiawei Guo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
157
|
Abstract
N-acetylquinovosamine (2-acetamido-2,6-di-deoxy-d-glucose, QuiNAc) is a relatively rare amino sugar residue found in glycans of few pathogenic gram-negative bacteria where it can play a role in infection. However, little is known about QuiNAc-related polysaccharides in gram-positive bacteria. In a routine screen for bacillus glycan grown at defined medium, it was surprising to identify a QuiNAc residue in polysaccharides isolated from this gram-positive bacterium. To gain insight into the biosynthesis of these glycans, we report the identification of an operon in Bacillus cereus ATCC 14579 that contains two genes encoding activities not previously described in gram-positive bacteria. One gene encodes a UDP-N-acetylglucosamine C4,6-dehydratase, (abbreviated Pdeg) that converts UDP-GlcNAc to UDP-4-keto-4,6-d-deoxy-GlcNAc (UDP-2-acetamido-2,6-dideoxy-α-d-xylo-4-hexulose); and the second encodes a UDP-4-reductase (abbr. Preq) that converts UDP-4-keto-4,6-d-deoxy-GlcNAc to UDP-N-acetyl-quinovosamine in the presence of NADPH. Biochemical studies established that the sequential Pdeg and Preq reaction product is UDP-d-QuiNAc as determined by mass spectrometry and one- and two-dimensional NMR experiments. Also, unambiguous evidence for the conversions of the dehydratase product, UDP-α-d-4-keto-4,6-deoxy-GlcNAc, to UDP-α-d-QuiNAc was obtained using real-time 1H-NMR spectroscopy and mass spectrometry. The two genes overlap by 4 nucleotides and similar operon organization and identical gene sequences were also identified in a few other Bacillus species suggesting they may have similar roles in the lifecycle of this class of bacteria important to human health. Our results provide new information about the ability of Bacilli to form UDP-QuiNAc and will provide insight to evaluate their role in the biology of Bacillus.
Collapse
Affiliation(s)
- Soyoun Hwang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Avi Aronov
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Maor Bar-Peled
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America; Departments of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
158
|
Meshcheryakova EA, Mineev KS, Volynski PE, Andronova TM, Ivanov VT. GMDP: unusual physico-chemical and biological properties of the anomeriс forms. J Pept Sci 2015; 21:717-22. [PMID: 26153038 DOI: 10.1002/psc.2796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/11/2022]
Abstract
Disaccharide containing unit of peptidoglycan from bacterial cell wall, N-acetyl-d-glucosaminyl-N-acetylmuramyl-l-alanyl-d-glutaminamide (gluсosaminyl-muramyl-dipeptide) registered in Russia as an immunomodulatory drug, is shown to participate in slow equilibrium of α and β anomeric forms. Data of NMR spectra and molecular dynamics indicate that the α-anomer predominantly acquires a folded conformation stabilized by intramolecular hydrogen bond between the alanyl carbonyl and muramyl NH proton. The β-form displays a considerable fraction of extended, non-hydrogen bonded structures. In the standard immunoadjuvant test system, the α-form is practically inactive, and the activity of the equilibrium mixture with α : β = 68 : 32 ratio is due to the presence of β-anomer. Such unique α-β selectivity of biological action must be considered at the design of related immunoactive glycopeptides.
Collapse
Affiliation(s)
- Elena A Meshcheryakova
- M.M.Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin S Mineev
- M.M.Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel E Volynski
- M.M.Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana M Andronova
- M.M.Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim T Ivanov
- M.M.Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
159
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andryjaschenko PV, Dmitrenok PS, Yurchenko EA, Dolmatov IY, Kalinin VI. Structures and biological activities of cladolosides C3, E1, E2, F1, F2, G, H1 and H2, eight triterpene glycosides from the sea cucumber Cladolabes schmeltzii with one known and four new carbohydrate chains. Carbohydr Res 2015; 414:22-31. [PMID: 26163830 DOI: 10.1016/j.carres.2015.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Eight new nonsulfated triterpene glycosides, cladolosides C3(1), E1(2), E2(3), F1(4), F2(5), G(6), H1(7) and H2(8) have been isolated from the tropical Indo-West Pacific sea cucumber Cladolabes schmeltzii (Cladolabinae, Sclerodactylidae, Dendrochirotida) collected in the Vietnamese shallow waters. The structures of the glycosides were elucidated by 2D NMR spectroscopy and mass-spectrometry. Glycosides 2, 3, 4, and 5 have pentasaccharide branched carbohydrate moieties and differ from each other by monosaccharide compositions and aglycone structures. At that, glycosides 2 and 3 contain three xylose, one 3-O-methyl-glucose and one quinovose residues, while glycosides 4 and 5 have two quinovose, two xylose and one 3-O-methyl-glucose residues. Compounds 1 and 6-8 are hexaosides differing from each other by aglycone structures and by the fifth monosaccharide residue, which proved to be glucose in cladoloside C3(1), xylose in cladoloside G(6) and quinovose in cladolosides H1(7) and H2(8). The presence of quinovose residue in the fifth position, as in 4, 5, 7 and 8 has never been earlier found in carbohydrate chains of triterpene glycosides from sea cucumbers. The carbohydrate chains with xylose in the fifth position of pentaosides and hexaosides are also very unusual for holothurious glycosides. All the substances demonstrate strong or moderate cytotoxic and hemolytic effects with hexaosides being more active than the corresponding pentaosides. Peculiarities of the biosynthesis and biochemical evolution of glycosides of this type are discussed.
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pelageya V Andryjaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russian Federation; Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russian Federation
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation.
| |
Collapse
|
160
|
Pitoux D, Plainchont B, Merlet D, Hu Z, Bonnaffé D, Farjon J, Giraud N. Fully Resolved NMR Correlation Spectroscopy. Chemistry 2015; 21:9044-7. [DOI: 10.1002/chem.201501182] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 11/07/2022]
|
161
|
Kinfe HH, Mebrahtu FM, Manana MM, Madumo K, Sokamisa MS. Synthesis of 1,2-cis-2-C-branched aryl-C-glucosides via desulfurization of carbohydrate based hemithioacetals. Beilstein J Org Chem 2015; 11:583-8. [PMID: 26124859 PMCID: PMC4464409 DOI: 10.3762/bjoc.11.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/15/2015] [Indexed: 11/23/2022] Open
Abstract
1-C and 2-C-branched carbohydrates are present as substructures in a number of biologically important compounds. Although the synthesis of such carbohydrate derivatives is extensively studied, the synthesis of 1,2-cis-2-C-branched C-, S-, and N-glycosides is less explored. In this article a synthetic strategy for the synthesis of 1,2-cis-2-C-branched-aryl-C-glucosides is reported via a hydrogenolytic desulfurization of suitably orientated carbohydrate based hemithioacetals. 1,2-cis-2-Hydroxymethyl and 2-carbaldehyde of aryl-C-glucosides have been synthesized using the current strategy in very good yields. The 2-carbaldehyde-aryl-C-glucosides have been identified as suitable substrates for the stereospecific preparation of 2,3-unsaturated-aryl-C-glycosides (Ferrier products).
Collapse
Affiliation(s)
- Henok H Kinfe
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Fanuel M Mebrahtu
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Mandlenkosi M Manana
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Kagiso Madumo
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Mokela S Sokamisa
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
162
|
Li W, Xia X, Tang W, Ji J, Rui X, Chen X, Jiang M, Zhou J, Zhang Q, Dong M. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3454-3463. [PMID: 25798529 DOI: 10.1021/acs.jafc.5b01086] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel cell-bound exopolysaccharide (c-EPS) was isolated from Lactobacillus helveticus MB2-1 by ultrasonic extraction, anion exchange, and gel filtration chromatography before being structurally characterized. The c-EPS is a heteropolysaccharide with an average molecular weight of 1.83 × 10(5) Da and is composed of glucose, mannose, galactose, rhamnose, and arabinose at a molar ratio of 3.12:1.01:1.00:0.18:0.16. Methylation analysis and nuclear magnetic resonance analysis revealed that the c-EPS is a linear glucomannogalactan containing repeating units of → 6)-β-D-Manp-(1 → 3)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → 4)-α-D-Galp-(1 → and trace amounts of Rhap-(1 → and (1 → 4)-Arap residues. Complex formation with Congo red demonstrated a triple-strand helical conformation for the c-EPS. Scanning electron microscopy of the c-EPS revealed many regular feather-like structural units. Topographical examination of c-EPS by atomic force microscopy revealed that the c-EPS formed rounded-to-spherical lumps with different sizes and chain formations. Furthermore, preliminary in vitro tests revealed that c-EPS significantly inhibited the proliferation of HepG-2, BGC-823, and especially HT-29 cancer cells.
Collapse
Affiliation(s)
- Wei Li
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiudong Xia
- ‡Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, P. R. China
| | - Weizhi Tang
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Juan Ji
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Rui
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiaohong Chen
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Mei Jiang
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Jianzhong Zhou
- ‡Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, P. R. China
| | - Qiuqin Zhang
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Mingsheng Dong
- †College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
163
|
NMR analysis of carbohydrate-binding interactions in solution: an approach using analysis of saturation transfer difference NMR spectroscopy. Methods Mol Biol 2015; 1200:501-9. [PMID: 25117260 DOI: 10.1007/978-1-4939-1292-6_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
One of the most commonly used ligand-based NMR methods for detecting ligand binding is saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. The STD NMR method is an invaluable technique for assessing carbohydrate-lectin interactions in solution, because STD NMR can be used to detect weak ligand binding (Kd ca. 10(-3)-10(-8) M). STD NMR spectra identify the binding epitope of a carbohydrate ligand when bound to lectin. Further, the STD NMR method uses 1H-detected NMR spectra of only the carbohydrate, and so only small quantities of non-labeled lectin are required. In this chapter, I describe a protocol for the STD NMR method, including the experimental procedures used to acquire, process, and analyze STD NMR data, using STD NMR studies for methyl-β-D-galactopyranoside (β-Me-Gal) binding to the C-terminal domain of an R-type lectin from earthworm (EW29Ch) as an example.
Collapse
|
164
|
Pediculicidal treatment using ethanol and Melia azedarach L. Parasitol Res 2015; 114:2085-91. [DOI: 10.1007/s00436-015-4394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
165
|
Ruthes AC, Smiderle FR, Iacomini M. d-Glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches. Carbohydr Polym 2015; 117:753-761. [DOI: 10.1016/j.carbpol.2014.10.051] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/29/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
|
166
|
Meyerhoefer TJ, Kershaw S, Caliendo N, Eltayeb S, Hanawa-Romero E, Bykovskaya P, Huang V, Marzabadi CH, De Castro M. A Practical Synthesis of Various 2-Deoxy-N-glycosides by UsingD-Glucal. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
167
|
Saravanan C, Shetty PKH. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int J Biol Macromol 2015; 90:100-6. [PMID: 25687478 DOI: 10.1016/j.ijbiomac.2015.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/08/2015] [Accepted: 02/08/2015] [Indexed: 02/06/2023]
Abstract
Diverse exopolysaccharide (EPS)-producing isolates were isolated from an Indian acidic fermented food (Idli) based on the colony morphology. One of the EPS-producing microflora (Leuconostoc lactis KC117496) was selected for further characterization using FT-IR, HPTLC, AFM, SEM, TGA and XRD analysis. FT-IR spectroscopy revealed the α-d-glucose nature of the EPS. HPTLC analysis confirmed the presence of only glucose monomers, indicating the glucan nature of EPS. NMR spectra revealed the presence of 95% α-(1→6) and 5% branching α-(1→3) linkages. The SEM and AFM showed smooth surfaces and compact structure. TGA results showed higher degradation temperature of 272.01°C. XRD analysis proved the 33.4% crystalline nature of the EPS. Water solubility index and water-holding capacity of EPS are 14.2±0.208% and 117±7.5%. All the above characteristics of the EPS produced by L. lactis showed that the EPS is of a good-quality polysaccharide with potential applications in the food industry.
Collapse
Affiliation(s)
| | - Prathap Kumar H Shetty
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India.
| |
Collapse
|
168
|
Abstract
Physicochemical techniques are a powerful tool for the structural characterization of carbohydrate-based vaccines. High-field Nuclear Magnetic Resonance (NMR) spectroscopy has been established as an extremely useful and robust method for tracking the industrial manufacturing process of these vaccines from polysaccharide bulk antigen through to the final formulation. Here, we describe the use of proton NMR for structural identity and conformity testing of carbohydrate-based vaccines.
Collapse
|
169
|
Lundborg M, Widmalm G. NMR chemical shift prediction of glycans: application of the computer program CASPER in structural analysis. Methods Mol Biol 2015; 1273:29-40. [PMID: 25753701 DOI: 10.1007/978-1-4939-2343-4_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbohydrate molecules have highly complex structures and the constituent monosaccharides and substituents are linked to each other in a large number of ways. NMR spectroscopy can be used to unravel these structures, but the process may be tedious and time-consuming. The computerized approach based on the CASPER program can facilitate rapid structural determination of glycans with little user intervention, which results in the most probable primary structure of the investigated carbohydrate material. Additionally, (1)H and (13)C NMR chemical shifts of a user-defined structure can be predicted, and this tool may thus be employed in many aspects where NMR spectroscopy plays an important part of a study.
Collapse
Affiliation(s)
- Magnus Lundborg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, 171 21, Sweden
| | | |
Collapse
|
170
|
Emwas AH, Luchinat C, Turano P, Tenori L, Roy R, Salek RM, Ryan D, Merzaban JS, Kaddurah-Daouk R, Zeri AC, Nagana Gowda GA, Raftery D, Wang Y, Brennan L, Wishart DS. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 2015; 11:872-894. [PMID: 26109927 PMCID: PMC4475544 DOI: 10.1007/s11306-014-0746-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/27/2014] [Indexed: 02/08/2023]
Abstract
The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, KSA, Thuwal, Saudi Arabia
| | - Claudio Luchinat
- Centro Risonanze Magnetiche – CERM, University of Florence, Florence, Italy
| | - Paola Turano
- Centro Risonanze Magnetiche – CERM, University of Florence, Florence, Italy
| | | | - Raja Roy
- Centre of Biomedical Research, Formerly known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, India
| | - Reza M. Salek
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, CB10 1SD UK
| | - Danielle Ryan
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Jasmeen S. Merzaban
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, KSA, Thuwal, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Pharmacometabolomics Center, School of Medicine, Duke University, Durham, USA
| | - Ana Carolina Zeri
- Brazilian Biosciences National Laboratory, LNBio, Campinas, SP Brazil
| | - G. A. Nagana Gowda
- Department of Anethesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, 850 Republican St., Seattle, WA 98109 USA
| | - Daniel Raftery
- Department of Anethesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, 850 Republican St., Seattle, WA 98109 USA
| | - Yulan Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Beijing, China
| | - Lorraine Brennan
- Institute of Food and Health and Conway Institute, School of Agriculture & Food Science, Dublin 4, Ireland
| | - David S. Wishart
- Department of Computing Science, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
171
|
Hwang S, Li Z, Bar-Peled Y, Aronov A, Ericson J, Bar-Peled M. The biosynthesis of UDP-d-FucNAc-4N-(2)-oxoglutarate (UDP-Yelosamine) in Bacillus cereus ATCC 14579: Pat and Pyl, an aminotransferase and an ATP-dependent Grasp protein that ligates 2-oxoglutarate to UDP-4-amino-sugars. J Biol Chem 2014; 289:35620-32. [PMID: 25368324 DOI: 10.1074/jbc.m114.614917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface glycan switching is often observed when micro-organisms transition between different biotic and abiotic niches, including biofilms, although the advantages of this switching to the organism are not well understood. Bacillus cereus grown in a biofilm-inducing medium has been shown to synthesize an unusual cell wall polysaccharide composed of the repeating subunit →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, where galactose is linked to the hydroxyglutarate moiety of FucNAc-4-amido-(2)-hydroxyglutarate. The molecular mechanism involved in attaching 2-hydroxyglutarate to 4-amino-FucNAc has not been determined. Here, we show two genes in B. cereus ATCC 14579 encoding enzymes involved in the synthesis of UDP-FucNAc-4-amido-(2)-oxoglutarate (UDP-Yelosamine), a modified UDP-sugar not previously reported to exist. Using mass spectrometry and real time NMR spectroscopy, we show that Bc5273 encodes a C4″-aminotransferase (herein referred to as Pat) that, in the presence of pyridoxal phosphate, transfers the primary amino group of l-Glu to C-4″ of UDP-4-keto-6-deoxy-d-GlcNAc to form UDP-4-amino-FucNAc and 2-oxoglutarate. Pat also converts 4-keto-xylose, 4-keto-glucose, and 4-keto-2-acetamido-altrose to their corresponding UDP-4-amino-sugars. Bc5272 encodes a carboxylate-amine ligase (herein referred as Pyl) that, in the presence of ATP and Mg(II), adds 2-oxoglutarate to the 4-amino moiety of UDP-4-amino-FucNAc to form UDP-Yelosamine and ADP. Pyl is also able to ligate 2-oxoglutarate to other 4-amino-sugar derivatives to form UDP-Yelose, UDP-Solosamine, and UDP-Aravonose. Characterizing the metabolic pathways involved in the formation of modified nucleotide sugars provides a basis for understanding some of the mechanisms used by bacteria to modify or alter their cell surface polysaccharides in response to changing growth and environmental challenges.
Collapse
Affiliation(s)
- Soyoun Hwang
- From the Complex Carbohydrate Research Center and
| | - Zi Li
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | - Avi Aronov
- From the Complex Carbohydrate Research Center and
| | | | - Maor Bar-Peled
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
172
|
Qu Y, Feng J, Deng S, Cao L, Zhang Q, Zhao R, Zhang Z, Jiang Y, Zink EM, Baker SE, Lipton MS, Paša-Tolić L, Hu JZ, Wu S. Structural analysis of N- and O-glycans using ZIC-HILIC/dialysis coupled to NMR detection. Fungal Genet Biol 2014; 72:207-215. [PMID: 25117693 PMCID: PMC5175459 DOI: 10.1016/j.fgb.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/15/2014] [Accepted: 08/02/2014] [Indexed: 11/21/2022]
Abstract
Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes, including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we developed a glycan enrichment strategy that couples Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) with dialysis to enrich the glycans from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is a simple, fast, and efficient sample preparation approach. The approach was thus applied to analysis of a biological complex sample, the pronase E digest of the secreted proteins from the fungus Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core similar to the structure of the glycan from RNase B, and O-linked glycans bearing mannose and glucose with 1→3 and 1→6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled with dialysis is very effective and accessible in preparing glycans for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.
Collapse
Affiliation(s)
- Yi Qu
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Ju Feng
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Shuang Deng
- Energy and Environment Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Li Cao
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Qibin Zhang
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zhaorui Zhang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Yuxuan Jiang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Erika M Zink
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Mary S Lipton
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Jian Zhi Hu
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
| |
Collapse
|
173
|
Nagy PI. Competing intramolecular vs. intermolecular hydrogen bonds in solution. Int J Mol Sci 2014; 15:19562-633. [PMID: 25353178 PMCID: PMC4264129 DOI: 10.3390/ijms151119562] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed.
Collapse
Affiliation(s)
- Peter I Nagy
- Center for Drug Design and Development, the University of Toledo, Toledo, OH 43606-3390, USA.
| |
Collapse
|
174
|
Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Müller R. Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angew Chem Int Ed Engl 2014; 53:13588-91. [PMID: 25294799 DOI: 10.1002/anie.201406973] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 02/01/2023]
Abstract
Two macrolide glycosides with a unique scaffold were isolated from cultures of the myxobacterium Pyxidicoccus fallax. Their structures, including absolute configurations, were elucidated by a combination of NMR, MS, degradation, and molecular modeling techniques. Analysis of the proposed biosynthetic gene cluster led to insights into the biosynthesis of the polyketide and confirmed the structure assignment. The more active compound, disciformycin B, potently inhibits methicillin- and vancomycin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Frank Surup
- Helmholtz Center for Infection Research (HZI), Department Microbial Drugs, Inhoffenstrasse 7, 38124 Braunschweig (Germany); German Center for Infection Research (DZIF), Location: Braunschweig (Germany)
| | | | | | | | | | | |
Collapse
|
175
|
Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Müller R. Disciformycine A und B: zwölfgliedrige Macrolid-Glycosid-Antibiotika aus dem MyxobakteriumPyxidicoccus fallaxmit Aktivität gegen multiresistente Staphylokokken. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
176
|
Chen X, He Y, Zhang Y, Liu M, Liu Y, Li J. Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor. NANOSCALE 2014; 6:11196-11203. [PMID: 25123148 DOI: 10.1039/c4nr03053b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)3(2+) on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | |
Collapse
|
177
|
Adanitsch F, Ittig S, Stöckl J, Oblak A, Haegman M, Jerala R, Beyaert R, Kosma P, Zamyatina A. Development of αGlcN(1↔1)αMan-based lipid A mimetics as a novel class of potent Toll-like receptor 4 agonists. J Med Chem 2014; 57:8056-71. [PMID: 25252784 PMCID: PMC4191062 DOI: 10.1021/jm500946r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The endotoxic portion of lipopolysaccharide
(LPS), a glycophospholipid
Lipid A, initiates the activation of the Toll-like Receptor 4 (TLR4)–myeloid
differentiation factor 2 (MD-2) complex, which results in pro-inflammatory
immune signaling. To unveil the structural requirements for TLR4·MD-2-specific
ligands, we have developed conformationally restricted Lipid A mimetics
wherein the flexible βGlcN(1→6)GlcN backbone of Lipid
A is exchanged for a rigid trehalose-like αGlcN(1↔1)αMan scaffold
resembling the molecular shape of TLR4·MD-2-bound E.
coli Lipid A disclosed in the X-ray structure. A convergent
synthetic route toward orthogonally protected αGlcN(1↔1)αMan
disaccharide has been elaborated. The α,α-(1↔1)
linkage was attained by the glycosylation of 2-N-carbamate-protected
α-GlcN-lactol with N-phenyl-trifluoroacetimidate
of 2-O-methylated mannose. Regioselective acylation
with (R)-3-acyloxyacyl fatty acids and successive
phosphorylation followed by global deprotection afforded bis- and
monophosphorylated hexaacylated Lipid A mimetics. αGlcN(1↔1)αMan-based
Lipid A mimetics (α,α-GM-LAM) induced potent activation
of NF-κB signaling in hTLR4/hMD-2/CD14-transfected HEK293 cells
and robust LPS-like cytokines expression in macrophages and dendritic
cells. Thus, restricting the conformational flexibility of Lipid A
by fixing the molecular shape of its carbohydrate backbone in the
“agonistic” conformation attained by a rigid αGlcN(1↔1)αMan scaffold
represents
an efficient approach toward powerful and adjustable TLR4 activation.
Collapse
Affiliation(s)
- Florian Adanitsch
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Xing X, Cui SW, Nie S, Phillips GO, Goff HD, Wang Q. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues. Carbohydr Polym 2014; 117:422-433. [PMID: 25498655 DOI: 10.1016/j.carbpol.2014.08.121] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
Abstract
Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-β-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: β-D-mannopyranose; G: β-D-glucopyranose; a: O-acetyl group.
Collapse
Affiliation(s)
- Xiaohui Xing
- Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1; Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9
| | - Steve W Cui
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Glyn O Phillips
- Glyn O. Phillips Hydrocolloid Research Centre, Glyndŵr University, Wrexham LL11 2AW, UK; Phillips Hydrocolloids Research Ltd., 45 Old Bond Street, London W1S 4QT, UK
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9
| |
Collapse
|
179
|
Kapaev RR, Egorova KS, Toukach PV. Carbohydrate Structure Generalization Scheme for Database-Driven Simulation of Experimental Observables, Such as NMR Chemical Shifts. J Chem Inf Model 2014; 54:2594-611. [DOI: 10.1021/ci500267u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roman R. Kapaev
- Higher
Chemical College of the Russian Academy of Sciences, Miusskaya
sq. 9, Moscow 125047, Russia
| | - Ksenia S. Egorova
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Philip V. Toukach
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
180
|
Kalynych S, Morona R, Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev 2014; 38:1048-65. [DOI: 10.1111/1574-6976.12070] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 12/20/2022] Open
|
181
|
Chalbot MCG, Kavouras IG. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:232-249. [PMID: 24861958 DOI: 10.1016/j.envpol.2014.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole.
Collapse
Affiliation(s)
- Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, USA
| |
Collapse
|
182
|
Marennine, promising blue pigments from a widespread Haslea diatom species complex. Mar Drugs 2014; 12:3161-89. [PMID: 24879542 PMCID: PMC4071570 DOI: 10.3390/md12063161] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 11/21/2022] Open
Abstract
In diatoms, the main photosynthetic pigments are chlorophylls a and c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom Haslea ostrearia has long been known for producing, in addition to these generic pigments, a water-soluble blue pigment, marennine. This pigment, responsible for the greening of oysters in western France, presents different biological activities: allelopathic, antioxidant, antibacterial, antiviral, and growth-inhibiting. A method to extract and purify marennine has been developed, but its chemical structure could hitherto not be resolved. For decades, H. ostrearia was the only organism known to produce marennine, and can be found worldwide. Our knowledge about H. ostrearia-like diatom biodiversity has recently been extended with the discovery of several new species of blue diatoms, the recently described H. karadagensis, H. silbo sp. inedit. and H. provincialis sp. inedit. These blue diatoms produce different marennine-like pigments, which belong to the same chemical family and present similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms thus present a commercial potential for aquaculture, cosmetics, food and health industries.
Collapse
|
183
|
Chen X, Wang Y, Zhang Y, Chen Z, Liu Y, Li Z, Li J. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal Chem 2014; 86:4278-86. [PMID: 24684138 DOI: 10.1021/ac404070m] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We demonstrate a multivalent recognition and highly selective aptamer signal amplification strategy for electrochemical cytosensing and dynamic cell surface N-glycan expression evaluation by the combination of concanavalin A (Con A), a mannose binding protein, as a model, conjugated poly(amidoamine) dendrimer on a chemically reduced graphene oxide (rGO-DEN) interface, and aptamer- and horseradish peroxidase-modified gold nanoparticles (HRP-aptamer-AuNPs) as nanoprobes. In this strategy, the rGO-DEN can not only enhance the electron transfer ability but also provide a multivalent recognition interface for the conjugation of Con A that avoids the weak carbohydrate-protein interaction and dramatically improves the cell capture efficiency and the sensitivity of the biosensor for cell surface glycan. The high-affinity aptamer- and HRP-modified gold nanoparticles provide an ultrasensitive electrochemical probe with excellent specificity. As proof-of-concept, the detection of CCRF-CEM cell (human acute lymphoblastic leukemia) and its surface N-glycan was developed. It has demonstrated that the as-designed biosensor can be used for highly sensitive and selective cell detection and dynamic evaluation of cell surface N-glycan expression. A detection limit as low as 10 cells mL(-1) was obtained with excellent selectivity. Moreover, this strategy was also successfully applied for N-glycan expression inhibitor screening. These results imply that this biosensor has potential in clinical diagnostic and drug screening applications and endows a feasibility tool for insight into the N-glycan function in biological processes and related diseases.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | | | | | | | | | | | | |
Collapse
|
184
|
Jansen R, Sood S, Huch V, Kunze B, Stadler M, Müller R. Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles. JOURNAL OF NATURAL PRODUCTS 2014; 77:320-326. [PMID: 24460410 DOI: 10.1021/np400877r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The chlorinated pyrrole-oxazole-pyrones pyrronazol A (1), pyrronazol A2 (2), and pyrronazol B (3) were isolated from Nannocystis pusilla strain Ari7, and two chlorinated pyrrole-oxazole isomers, pyrronazols C1 (4) and C2 (5), were isolated from N. pusilla strain Na a174. HRESIMS, NMR, and X-ray crystallographic analysis was used in the structure elucidation including the absolute configuration of pyrronazol A (1). In addition to pyrronazols, 1,6-phenazine-diol (6) and its glycosyl derivative, 1-hydroxyphenazin-6-yl-α-d-arabinofuranoside (7), were isolated and identified from the culture broth of N. pusilla strain Ari7. When tested for biological activity against bacteria, fungi, and yeasts, 1 showed weak antifungal activity against Mucor hiemalis (MIC 33.3 μg/mL) but no antibacterial activity, while 6 showed weak antibacterial and antifungal activity (MIC 33.3 μg/mL) against some of the strains tested. In cell culture experiments 1 showed no significant cytotoxicity, while 6 was active against several cell lines, especially the human ovarian carcinoma cells SK-OV-3 (LD50 2.59 μM).
Collapse
Affiliation(s)
- Rolf Jansen
- Department Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
185
|
Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr Polym 2014; 104:204-12. [PMID: 24607179 DOI: 10.1016/j.carbpol.2014.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/03/2014] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
Abstract
The present investigation is on a newly isolated psychrophilic Antarctic filamentous Ascomycetous fungus that has been identified as Thelebolus sp. and given the designation of Thelebolus sp. IITKGP-BT12. The culture was primarily identified through morphological studies, and was further confirmed by 18S rRNA sequencing (GenBank Accession No. KC191572), which revealed its close relatedness with Thelebolus microsporus. The exopolysaccharide (EPS) produced (1.94 g L(-1)) by the fungus was isolated, purified and characterized as glucan having an average molecular mass of 5×10(5)Da. The structure of EPS was determined by gas chromatography with tandem mass spectrometry (GC-MS/MS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) studies ((1)H, (13)C and HSQC). NMR analysis indicated the presence of (1→3)-linked β-d-glucan backbone with (1→6)-linked branches of β-d-glucopyranosyl units. Antiproliferative activity of EPS was demonstrated in B16-F0 cells, with IC50 of 275.42 μg m L(-1). Flow cytometry analysis and DNA fragmentation studies revealed that the cytotoxic action of the EPS mediated apoptosis in cancer cells. This is the first ever report on bioactive EPS thelebolan from Thelebolus sp.
Collapse
|
186
|
Isolation, Characterization, and Biological Activities of Polysaccharides from Medicinal Plants and Mushrooms. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63281-4.00005-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
187
|
Chiu CH, Peng CC, Ker YB, Chen CC, Lee A, Chang WL, Chyau CC, Peng RY. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia. Molecules 2013; 19:22-40. [PMID: 24451244 PMCID: PMC6271056 DOI: 10.3390/molecules19010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 01/19/2023] Open
Abstract
Antrodia cinnamomea (AC) is a unique fungus found inhabiting the rotten wood of Cinnamomum kanehirai. A submerged liquid culture of AC has been developed and its bioproducts have been used to meet the market demand for natural fruiting bodies. AC exhibits anti-inflammatory, antitumor, antioxidant, and immunomodulatory effects. Previously, we isolated polysaccharide AC-2 from AC mycelia by means of alkali extraction with subsequent acid precipitation and found it had a pronounced anti-inflammatory effect. In this study, a novel polysaccharide named “antrodan” was obtained by further purification of AC-2 using Sepharose CL-6B column chromatography. Antrodan exhibited a molecular weight of 442 kD and contained a particularly high content of uronic acid (152.6 ± 0.8 mg/g). The protein content was 71.0%, apparently, higher than the carbohydrate content (14.1%), and thus antrodan was characterized as a glycoprotein. Its total glucan content was 15.65%, in which β-glucan (14.20%) was prominently higher than α-glucan (1.45%). Its FTIR confirmed the presence of β-linkages between sugars, and intramolecular amide bonds between sugars and amino acids. Its 1H-NMR spectrum showed that antrodan was a complex union of α- and β-glucans, which had (1→4)-linked α-Glcp and (1→3)-linked β-Glcp linkages to the carbohydrate chains via asparagine linked to protein site. Biologically, antrodan was confirmed to be totally non-detrimental to RAW 264.7 cell line even at dose as high as 400 μg/mL. It showed potent suppressing effect on the lipopolysaccharide-induced inflammatory responses in RAW 264.7 cell line. Moreover, antrodan significantly reduced the nitrogen oxide production at doses as low as 18.75 μg/mL.
Collapse
Affiliation(s)
- Chun-Hung Chiu
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu District, Taichung 433, Taiwan
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Yaw-Bee Ker
- Department of Applied Food Technology, Hungkuang University, 34 Chung-Chie Road, Shalu District, Taichung 433, Taiwan
| | - Chin-Chu Chen
- Grape King Biotechnology Inc., Zhongli City, Taoyuan County 320, Taiwan
| | - Arwen Lee
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu District, Taichung 433, Taiwan
| | - Wan-Lin Chang
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu District, Taichung 433, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu District, Taichung 433, Taiwan.
| | - Robert Y Peng
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu District, Taichung 433, Taiwan.
| |
Collapse
|
188
|
|
189
|
Kono H, Onishi K, Nakamura T. Characterization and bisphenol A adsorption capacity of β-cyclodextrin–carboxymethylcellulose-based hydrogels. Carbohydr Polym 2013; 98:784-92. [DOI: 10.1016/j.carbpol.2013.06.065] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
190
|
Huang Y, Dodds ED. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal Chem 2013; 85:9728-35. [PMID: 24033309 DOI: 10.1021/ac402133f] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | | |
Collapse
|
191
|
Kono H. 1H and 13C chemical shift assignment of the monomers that comprise carboxymethyl cellulose. Carbohydr Polym 2013; 97:384-90. [DOI: 10.1016/j.carbpol.2013.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/19/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
192
|
Affiliation(s)
- Vitor H. Pomin
- Program of
Glycobiology, Institute of Medical Biochemistry,
and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913,
Brazil
| |
Collapse
|
193
|
Lin FL, Vinogradov E, Deng C, Zeller S, Green BA, Jansen KU, Pavliak V. Identification of the common antigenic determinant shared by Streptococcus pneumoniae serotypes 33A, 35A, and 20 capsular polysaccharides. Carbohydr Res 2013; 380:101-7. [PMID: 23981856 DOI: 10.1016/j.carres.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
In order to better understand cross-reactions of serogroup 33 polysaccharides and the typing sera, the structure of pneumococcal capsular polysaccharide serotype 33A was elucidated. Serotype 33A has been shown to have an identical polysaccharide backbone as that of serotype 33F, with two additional sites of O-acetylation at C5, and C6 of the 3-β-Galf residue in serotype 33A. This finding is consistent with the presence of an additional functional acetyltransferase gene (wcjE) in the cps biosynthetic locus of serotype 33A compared to 33F. The identical polysaccharide backbone with at least one common O-acetylation site (C2 of 5-β-Galf) shared by serotype 33A and 33F polysaccharides is proposed to be the epitope recognized by typing serum 33b. In addition, a 5,6-di-O-acetylated →3)-β-d-Galf5,6Ac-(1→3)-β-d-Glcp-(1→ disaccharide unit, a common structural motif present in serotypes 33A, 20, and 35A polysaccharides, is proposed to be the antigenic determinant recognized by typing serum 20b.
Collapse
Affiliation(s)
- Fiona L Lin
- Pfizer Vaccine Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | |
Collapse
|
194
|
Kono H, Nakamura T. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
195
|
Enjalbert Q, Brunet C, Vernier A, Allouche AR, Antoine R, Dugourd P, Lemoine J, Giuliani A, Nahon L. Vacuum ultraviolet action spectroscopy of polysaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1271-1279. [PMID: 23722725 DOI: 10.1007/s13361-013-0657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.
Collapse
Affiliation(s)
- Quentin Enjalbert
- Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF. Toward Functional Polyester Building Blocks from Renewable Glycolaldehyde with Sn Cascade Catalysis. ACS Catal 2013. [DOI: 10.1021/cs400298n] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michiel Dusselier
- Center for Surface Chemistry
and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Pieter Van Wouwe
- Center for Surface Chemistry
and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Sanne De Smet
- Department of Organic Chemistry,
Polymer Chemistry Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Rik De Clercq
- Center for Surface Chemistry
and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Leander Verbelen
- Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan
46, 3001 Leuven, Belgium
| | - Peter Van Puyvelde
- Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan
46, 3001 Leuven, Belgium
| | - Filip E. Du Prez
- Department of Organic Chemistry,
Polymer Chemistry Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Bert F. Sels
- Center for Surface Chemistry
and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| |
Collapse
|
197
|
Kim PD, Šašek V, Burketová L, Čopíková J, Synytsya A, Jindřichová B, Valentová O. Cell wall components of Leptosphaeria maculans enhance resistance of Brassica napus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5207-5214. [PMID: 23638999 DOI: 10.1021/jf401221v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Preparations with elicitation activity were obtained from the mycelium of Leptosphaeria maculans , a fungal pathogen of oilseed rape (Brassica napus). Crude delipidated and deproteinized extract from fungal cell walls induced expression of pathogenesis related gene 1 (PR1), hydrogen peroxide accumulation, and enhanced resistance of B. napus plants toward infection by L. maculans. Elicitation activity significantly decreased after treatment of a crude extract with α- or β-glucanase. Monosaccharide composition analysis of a crude extract purified by ion-exchange chromatography revealed glucose (∼58 mol %), mannose (∼22 mol %), and galactose (∼18 mol %) as the major sugars. FT-IR and NMR spectra confirmed the presence of both carbohydrate and polypeptide components in the purified product. Correlation NMR experiments defined trisaccharide bound to O-3 of serine residue α-D-Glcp-(1→2)-β-D-Galf-(1→6)-α-D-Manp-(1→3)-L-Ser. Terminal α-D-Glcp and (1→6)-β-D-glucan were also detected. The obtained results strongly support the conclusion that these carbohydrates induce defense response in B. napus plants.
Collapse
Affiliation(s)
- Phuong Dinh Kim
- Department of Biochemistry and Microbiology and ‡Department of Carbohydrates and Cereals, Institute of Chemical Technology Prague , Technická 3, 166 28 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
198
|
Kono H. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy. Carbohydr Res 2013; 375:136-44. [DOI: 10.1016/j.carres.2013.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
199
|
Chen Z, Liu Y, Wang Y, Zhao X, Li J. Dynamic Evaluation of Cell Surface N-Glycan Expression via an Electrogenerated Chemiluminescence Biosensor Based on Concanavalin A-Integrating Gold-Nanoparticle-Modified Ru(bpy)32+-Doped Silica Nanoprobe. Anal Chem 2013; 85:4431-8. [DOI: 10.1021/ac303572g] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhuhai Chen
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Yang Liu
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Yangzhong Wang
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Xin Zhao
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Jinghong Li
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| |
Collapse
|
200
|
Battistel MD, Pendrill R, Widmalm G, Freedberg DI. Direct Evidence for Hydrogen Bonding in Glycans: A Combined NMR and Molecular Dynamics Study. J Phys Chem B 2013; 117:4860-9. [DOI: 10.1021/jp400402b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcos D. Battistel
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, Maryland 20852-1448, United States
| | - Robert Pendrill
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, Maryland 20852-1448, United States
| |
Collapse
|