151
|
Profiling, clinicopathological correlation and functional validation of specific long non-coding RNAs for hepatocellular carcinoma. Mol Cancer 2017; 16:164. [PMID: 29061191 PMCID: PMC5651594 DOI: 10.1186/s12943-017-0733-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive malignancies worldwide. Studies seeking to advance the overall understanding of lncRNA profiling in HCC remain rare. Methods The transcriptomic profiling of 12 HCC tissues and paired adjacent normal tissues was determined using high-throughput RNA sequencing. Fifty differentially expressed mRNAs (DEGs) and lncRNAs (DELs) were validated in 21 paired HCC tissues via quantitative real-time PCR. The correlation between the expression of DELs and various clinicopathological characteristics was analyzed using Student’s t-test or linear regression. Co-expression networks between DEGs and DELs were constructed through Pearson correlation co-efficient and enrichment analysis. Validation of DELs’ functions including proliferation and migration was performed via loss-of-function RNAi assays. Results In this study, we identified 439 DEGs and 214 DELs, respectively, in HCC. Furthermore, we revealed that multiple DELs, including NONHSAT003823, NONHSAT056213, NONHSAT015386 and especially NONHSAT122051, were remarkably correlated with tumor cell differentiation, portal vein tumor thrombosis, and serum or tissue alpha fetoprotein levels. In addition, the co-expression network analysis between DEGs and DELs showed that DELs were involved with metabolic, cell cycle, chemical carcinogenesis, and complement and coagulation cascade-related pathways. The silencing of the endogenous level of NONHSAT122051 or NONHSAT003826 could significantly attenuate the mobility of both SK-HEP-1 and SMMC-7721 HCC cells. Conclusion These findings not only add knowledge to the understanding of genome-wide transcriptional evaluation of HCC but also provide promising targets for the future diagnosis and treatment of HCC.
Collapse
|
152
|
Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer 2017; 1868:564-570. [PMID: 29054475 DOI: 10.1016/j.bbcan.2017.10.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023]
Abstract
It is disappointing that only a few patients with hepatocellular carcinoma (HCC) obtain a significant survival benefit from the sorafenib treatment, which is currently regarded as a first-line chemotherapeutic therapy in patients with advanced HCC. Most patients are highly refractory to this therapy. Therefore, it is necessary to identify resistant factors and explore potential protocols that can be used to overcome the resistance or substitute sorafenib once the resistance is formed. In fact, a growing body of studies has been focusing on the resistance mechanisms or the method to overcome it. The limitation of sorafenib efficacy has been partially but not fully elucidated. Moreover, some protocols have shown encouraging outcomes but still need to be further verified in clinical trials. In this review, we summarize the recent findings on the potential mechanisms that contribute to sorafenib resistance and discuss strategies that can be used to improve the treatment outcome.
Collapse
Affiliation(s)
- Leilei Niu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong Province, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianwei Ren
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Paul B S Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China.
| | - George G Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
153
|
Zheng H, Jiang WH, Tian T, Tan HS, Chen Y, Qiao GL, Han J, Huang SY, Yang Y, Li S, Wang ZG, Gao R, Ren H, Xing H, Ni JS, Wang LH, Ma LJ, Zhou WP. CBX6 overexpression contributes to tumor progression and is predictive of a poor prognosis in hepatocellular carcinoma. Oncotarget 2017; 8:18872-18884. [PMID: 28122351 PMCID: PMC5386654 DOI: 10.18632/oncotarget.14770] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Aberrant chromobox (CBX) family protein expression has been reported in a variety of human malignancies. However, the role of CBX6 in hepatocellular carcinoma (HCC) progression and patient prognosis remains unknown. In this study, we found that CBX6 was frequently up-regulated in HCC clinical samples and HCC cell lines and that CBX6 expression was significantly correlated with larger tumor sizes (≥ 5 cm, p = 0.011) and multiple tumors (n ≥ 2, p = 0.018). Survival analyses indicated that patients with higher CBX6 expression levels had significantly shorter recurrence-free survival (RFS) and overall survival (OS) than patients with lower CBX6 expression levels, and multivariate analyses confirmed that increased CBX6 expression was an independent unfavorable prognostic factor for HCC patients. Functional study demonstrated that CBX6 profoundly promoted HCC cell growth both in vitro and in vivo, and mechanistic investigation revealed that the S100A9/NF-κB/MAPK pathway was essential for mediating CBX6 function. In conclusion, our results represent the first evidence that CBX6 contributes to tumor progression and indicate that the protein may serve as a novel prognostic biomarker for HCC and as a therapeutic target in the treatment of the disease.
Collapse
Affiliation(s)
- Hao Zheng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Hua Jiang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, Shanghai 200336, China
| | - Tao Tian
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hai-Song Tan
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ying Chen
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, Shanghai 200336, China
| | - Guang-Lei Qiao
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, Shanghai 200336, China
| | - Jun Han
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Sheng-Yu Huang
- The Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shuai Li
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States of America
| | - Zhen-Guang Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rong Gao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China
| | - Hao Xing
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun-Sheng Ni
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lin-Hui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Li-Jun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, Shanghai 200336, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
154
|
Wang X, Hassan W, Jabeen Q, Khan GJ, Iqbal F. Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine 2017; 103:150-159. [PMID: 29029799 DOI: 10.1016/j.cyto.2017.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
The novelty of an effective therapeutic targeting for hepatocellular carcinoma (HCC) is based on improved understanding of each component of tumor microenvironment (TME) and its correspondent interactions at biological and molecular levels. In this context, new expansions for the treatment against TME and its communication with HCC are under exploration. Despite of the fact that blockage of growth factor receptors has become a treatment of choice in late phases of HCC in clinical practice, still a precise targeted treatment should address all the components of TME. Targeting one specific element out of cellular (cancer associated fibroblasts, endothelial cells, hepatic stellate cells, Kupffer cells and lymphocytes) or non-cellular (extracellular matrix, growth factors, inflammatory cytokines, proteolytic enzymes) parts of TME may not be a successful remedy for the disease because of well-designed hindrances of each component and their functional alternativeness. Meanwhile there are some elements of TME like epithelial-mesenchymal transition and CAF, which are considerably important and need thorough investigations. Ascertaining the potential role of these elements, and a single or combinational drug therapy targeting these elements of TME simultaneously, may provide the appreciable considerations to eventually improve in clinical practices and may also minimize the chances of reoccurrence of HCC.
Collapse
Affiliation(s)
- Xue Wang
- Jiangnan University, Wuxi Medical School, Wuxi 214122, China; China Pharmaceutical University, Department of Pharmacology, Nanjing 210009, China.
| | - Waseem Hassan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; Department of Pharmacy, The University of Lahore, Pakistan.
| | - Qaiser Jabeen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Ghulam Jilany Khan
- China Pharmaceutical University, Department of Pharmacology, Nanjing 210009, China.
| | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
155
|
Zang HL, Ren SN, Cao H, Tian XF. The ubiquitin ligase TRIM25 inhibits hepatocellular carcinoma progression by targeting metastasis associated 1 protein. IUBMB Life 2017; 69:795-801. [PMID: 28861931 DOI: 10.1002/iub.1661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022]
Abstract
Metastasis associated 1 protein (MTA1) is one of the prime facilitators of metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the underlying regulatory mechanism of MTA1 expression in HCC is not clear. In this study, we evaluated MTA1 transcript and protein expression in HCC and normal hepatic cell lines. The results revealed that MTA1 protein expression had a significantly increase in HCC cell line, HuH6, compared with that in normal hepatic cell line, THLE-2. Determination of protein half-life using cycloheximide (CHX) treatment did not reveal any statistically significant difference in protein turn-over rates between THLE-2 (3.3 ± 0.25 h) and HuH6 (3.6 ± 0.15 h) cell lines. MTA1 protein level was stabilized in THLE-2 cells after treatment with MG-132 to levels similar to those observed in HuH6 cells. Mass spectrometric analysis of FLAG immunoprecipitates of FLAG-MTA1 transfected THLE-2 cells after MG-132 treated revealed candidate ubiquitin ligases that were interacting with MTA1. RNAi-mediated silencing of each prospective ubiquitin ligase in THLE-2 cells indicated that knockdown of TRIM25 resulted in stabilization of MTA1 protein, indicating TRIM25 as a putative E3 ligase for MTA1. Coimmunoprecipitation of FLAG-tagged MTA1, but not IgG, in MG-132 treated and untreated THLE-2 cells cotransfected with either FLAG-MTA1 or Myc-TRIM25 revealed robust polyubiquitinated MTA1, confirming that the TRIM25 is the ubiquitin ligase for MTA1 degradation. Overexpression of TRIM25 in HuH6 and RNAi mediated silencing of TRIM25 in THLE-2 cells inhibited and increased the cell migration and invasion, respectively. Analysis of The Cancer Genome Atlas data for assessment of TRIM25 transcript level and MTA1 protein expression in 25 HCC patients confirmed an inverse correlation between the expression of TRIM25 and MTA1. Cumulatively, our data reveal a novel mechanism of post-translational to regulate MTA1 expression in normal hepatic cells, which is repressed in HCC. © 2017 IUBMB Life, 69(10):795-801, 2017.
Collapse
Affiliation(s)
- Hong-Liang Zang
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Sheng-Nan Ren
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Feng Tian
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
156
|
Choi JH, Kim MJ, Park YK, Im JY, Kwon SM, Kim HC, Woo HG, Wang HJ. Mutations acquired by hepatocellular carcinoma recurrence give rise to an aggressive phenotype. Oncotarget 2017; 8:22903-22916. [PMID: 28038442 PMCID: PMC5410272 DOI: 10.18632/oncotarget.14248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023] Open
Abstract
Recurrence of hepatocellular carcinoma (HCC) even after curative resection causes dismal outcomes of patients. Here, to delineate the driver events of genomic and transcription alteration during HCC recurrence, we performed RNA-Seq profiling of the paired primary and recurrent tumors from two patients with intrahepatic HCC. By comparing the mutational and transcriptomic profiles, we identified somatic mutations acquired by HCC recurrence including novel mutants of GOLGB1 (E2721V) and SF3B3 (H804Y). By performing experimental evaluation using siRNA-mediated knockdown and overexpression constructs, we demonstrated that the mutants of GOLGB1 and SF3B3 can promote cell proliferation, colony formation, migration, and invasion of liver cancer cells. Transcriptome analysis also revealed that the recurrent HCCs reprogram their transcriptomes to acquire aggressive phenotypes. Network analysis revealed CXCL8 (IL-8) and SOX4 as common downstream targets of the mutants. In conclusion, we suggest that the mutations of GOLGB1 and SF3B3 are potential key drivers for the acquisition of an aggressive phenotype in recurrent HCC.
Collapse
Affiliation(s)
- Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Min Jae Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Yong Keun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Jong-Yeop Im
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hyung Chul Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hee-Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
157
|
Hai H, Tamori A, Thuy LTT, Yoshida K, Hagihara A, Kawamura E, Uchida-Kobayashi S, Morikawa H, Enomoto M, Murakami Y, Kawada N. Polymorphisms in MICA, but not in DEPDC5, HCP5 or PNPLA3, are associated with chronic hepatitis C-related hepatocellular carcinoma. Sci Rep 2017; 7:11912. [PMID: 28928439 PMCID: PMC5605683 DOI: 10.1038/s41598-017-10363-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Recently, the MICA rs2596542 and DEPDC5 rs1012068 variants in Japanese individuals as well as the HCP5 rs2244546 and PNPLA3 rs738409 variants in European individuals have been found associated with hepatocellular carcinoma (HCC). The present study determined which single nucleotide polymorphism (SNP) is the most predictive for developing hepatitis C virus (HCV)-related HCC in a Japanese cohort. Of the 4 SNPs analysed, only the MICA genotypes were significantly associated with development of HCC (p = 0.0185). The major (MA), hetero (HE), and minor (MI) genotypes occurred in 40%, 41%, and 19% of HCC patients and in 43%, 47%, and 10% of non-HCC patients, respectively. Interestingly, the MICA genotype was significantly correlated with MICA mRNA and soluble protein levels. In patients older than 70 years, the MI genotype was significantly associated with HCC development. In addition, the MI genotype was related to HCC development when the platelet count range was 10-15 × 104/μL, corresponding with the fibrosis stage; but not when the range was less than 10, indicating advanced fibrosis; or greater than 15 × 104/μL, as mild fibrosis. Thus, polymorphisms in MICA, but not in DEPDC5, HCP5 or PNPLA3, are associated with HCC development in Japanese patients with chronic HCV infection.
Collapse
Affiliation(s)
- Hoang Hai
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tamori
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Le Thi Thanh Thuy
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kanako Yoshida
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Etsushi Kawamura
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Hiroyasu Morikawa
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Murakami
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
158
|
Wang JH, Zhong XP, Zhang YF, Wu XL, Li SH, Jian PE, Ling YH, Shi M, Chen MS, Wei W, Guo RP. Cezanne predicts progression and adjuvant TACE response in hepatocellular carcinoma. Cell Death Dis 2017; 8:e3043. [PMID: 28880268 PMCID: PMC5636974 DOI: 10.1038/cddis.2017.428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Abstract
We have previously reported that Cezanne could be a prognostic biomarker for survival in hepatocellular carcinoma (HCC) patients. However, the role of Cezanne genes in HCC cells and its response to postoperative adjuvant transcatheter arterial chemoembolization (TACE) in HCC patients remains unknown. In this study, Cezanne expression was detected in human HCC using real-time PCR, western blot and immunohistochemistry. The function of Cezanne in HCC cells was determined by Transwell invasion assays and nude mice metastasis assay. The response of Cezanne in patients who received adjuvant TACE after hepatectomy was evaluated. Functional study demonstrated that interference of Cezanne expression promoted the migration and invasion of HCC cells in vitro and boosted metastasized HCC formation in mice. Upregulation of Cezanne diminished the adhesion and migration of hepatoma cells. Further study indicated that Cezanne might inhibit invasion of HCC cells by inducing epithelial-mesenchymal transition (EMT). In addition, patients with low Cezanne expression had significant improvement in prognosis after receiving adjuvant TACE. In contrast, patients with high Cezanne expression had a poorer response to adjuvant TACE. Moreover, Cezanne status was associated with response to adjuvant TACE in patients subgroup stratified by vascular invasion, tumor size and tumor number. In conclusion, Cezanne may be a novel antioncogene that has a pivotal role in the invasion of HCC and contribute to the selection of patients who may benefit from adjuvant TACE to prevent recurrence.
Collapse
Affiliation(s)
- Jia-Hong Wang
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Abdominal Surgery, Affiliated Cancer Hospital &Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Ping Zhong
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yong-Fa Zhang
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Liang Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shao-Hua Li
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Pei-En Jian
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Hong Ling
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Shi
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Min-Shan Chen
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ping Guo
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
159
|
Li Q, Liu X, Jin K, Lu M, Zhang C, Du X, Xing B. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMC Cancer 2017; 17:605. [PMID: 28859621 PMCID: PMC5579925 DOI: 10.1186/s12885-017-3570-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/21/2017] [Indexed: 04/05/2023] Open
Abstract
Background N-acetyltransferase 10 (NAT10) is a histone acetyltransferase which is involved in a wide range of cellular processes. Recent evidences indicate that NAT10 is involved in the development of human cancers. Previous study showed that NAT10 acetylates the tumor suppressor p53 and regulates p53 activation. As Tp53 gene is frequently mutated in hepatocellular carcinoma (HCC) and associates with the occurrence and development of HCC, the relationship between NAT10 and HCC was investigated in this study. Methods Immunohistochemistry (IHC) and western blot analysis were performed to evaluate the NAT10 expression in HCC. Immunoprecipitation experiments were performed to verify the interaction of NAT10 with mutant p53 and Mdm2. RNA interference and Western blot were applied to determine the effect of NAT10 on mutant p53. Cell growth curve was used to examine the effect of NAT10 on HCC cell proliferation. Results NAT10 was upregulated in HCC and increased NAT10 expression was correlated with poor overall survival of the patients. NAT10 protein levels were significantly correlated with p53 levels in human HCC tissues. Furthermore, NAT10 increased mutant p53 levels by counteracting Mdm2 action in HCC cells and promoted proliferation in cells carrying p53 mutation. Conclusion Increased NAT10 expression levels are associated with shortened patient survival and correlated with mutant p53 levels. NAT10 upregulates mutant p53 level and might enhance its tumorigenic activity. Hence, we propose that NAT10 is a potential prognostic and therapeutic candidate for p53-mutated HCC.
Collapse
Affiliation(s)
- Qijiong Li
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China
| | - Xiaofeng Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kemin Jin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Min Lu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chunfeng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
160
|
Makita Y, Murata S, Katou Y, Kikuchi K, Uejima H, Teratani M, Hoashi Y, Kenjo E, Matsumoto S, Nogami M, Otake K, Kawamata Y. Anti-tumor activity of KNTC2 siRNA in orthotopic tumor model mice of hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 493:800-806. [PMID: 28843857 DOI: 10.1016/j.bbrc.2017.08.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is still one of the major causes of cancer-related death. Kinetochore-associated protein 2 (KNTC2) is specifically upregulated in tumor tissues of HCC patients and recognized as a potential candidate target for the treatment of HCC. However, the relationship between KNTC2 and in vivo tumor growth of HCC is not yet fully understood. Here we encapsulated KNTC2 siRNAs into a lipid nanoparticle (LNP) and investigated their knockdown activity, target engagement marker, anti-tumor activity and hepatotoxicity in an orthotopic HCC model mice of Hep3B-luc cells. Single i.v. administration of KNTC2 siRNA-LNP specifically suppressed the expression levels of both human KNTC2 mRNA and mouse Kntc2 mRNA in tumor tissues. Phosphorylation levels of histone H3 (HH3) at serine 10 in tumor tissues were increased by KNTC2 siRNA-LNP. Repeated administration of KNTC2 siRNA-LNP (twice a week) specifically inhibited the growth of tumor tissues without increasing the plasma AST and ALT levels. Their growth inhibitory activities were consistent with knockdown activities. These data strongly indicated that KNTC2 is a promising target for the treatment of HCC and that phosphorylated HH3 at serine 10 is one of the target engagement markers for KNTC2.
Collapse
Affiliation(s)
- Yukimasa Makita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan.
| | - Shumpei Murata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yoshiki Katou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kuniko Kikuchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Hiroshi Uejima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Mika Teratani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yasutaka Hoashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Eriya Kenjo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Satoru Matsumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Masahiro Nogami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kentaro Otake
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Yuji Kawamata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
161
|
Qian LQ, Li XQ, Ye PH, Su HY, Wang G, Liu Y, Shen GH, Gao QG. Downregulation of MACC1 inhibits the viability, invasion and migration and induces apoptosis in esophageal carcinoma cells through the phosphatase and tensin homolog/phosphoinositide 3-kinase/protein kinase B signaling pathway. Oncol Lett 2017; 14:4897-4905. [PMID: 29085498 DOI: 10.3892/ol.2017.6790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
As an oncogene, MACC1 serves an important function in cancer progression and metastasis. However, the effect of MACC1 in esophageal carcinoma (EC) remains to be fully understood. The present study assessed the association between MACC1 expression and the progression of EC cells. A small interfering (si)RNA was delivered into EC cells to downregulate MACC1 expression. The MTT assay demonstrated that EC cell viability was reduced by siRNA-MACC1. Decreasing MACC1 expression increased the apoptotic rate of EC cells compared with control cells. Transwell and Matrigel assays demonstrated that EC cell migration and invasion, respectively, were downregulated by siRNA-MACC1. Furthermore, knocking down MACC1 suppressed the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by upregulating the expression of phosphatase and tensin homolog (PTEN), a tumor suppressor. The results of the present study revealed that MACC1 expression affected cellular functions of the EC cells through the PTEN/PI3K/Akt signaling pathway. Therefore, MACC1 may potentially serve as a novel biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Li-Qiang Qian
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| | - Xia-Qin Li
- Department of Gynaecology and Obstetrics, Health Center of Songling, Suzhou, Jiangsu 215200, P.R. China
| | - Peng-Hui Ye
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| | - Hao-Yuan Su
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| | - Gang Wang
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| | - Yan Liu
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| | - Gen-Hai Shen
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| | - Quan-Gen Gao
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, Jiangsu 215200, P.R. China
| |
Collapse
|
162
|
Wu M, Huang C, Huang X, Liang R, Feng Y, Luo X. MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma. Oncol Rep 2017; 38:2173-2181. [PMID: 28849156 PMCID: PMC5652965 DOI: 10.3892/or.2017.5900] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022] Open
Abstract
In our previous studies, the Illumine Soledad massively parallel signature sequencing of miRNomes in non-tumor and hepatocellular carcinoma (HCC) tissues revealed that microRNA (miR)-144-3p was significantly downregulated in HCC, but its role in HCC development, especially angiogenesis, remains unclear. In this investigation, we found recovering miR-144-3p expression can significantly suppress the growth, migration and induced angiogenic capacity of HCC cells through both in vivo and in vitro experiments. Moreover, clinical correlation analysis showed that low expression of miR-144-3p was positively correlated to poor disease-free survival (DFS) of HCC patients. Mechanistically, serum and glucocorticoid kinase 3 (SGK3), the putative targets of miR-144-3p, was predicted by Target Scan database and identified to be suppressed by miR-144-3p so that inhibiting the activation of mTOR-VEGF downstream signals was activated by the phosphoinositide 3-kinase (PI3K)-independent pathway. Hence, we concluded that miR-144-3p, which is frequently downregulated in HCC, can inhibit proliferation, migration and repress angiogenesis by regulating SGK3 activation with PI3K independent signal pathway, and acts as a prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Manya Wu
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chaoyuan Huang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinping Huang
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Feng
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoling Luo
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
163
|
Liao Y, Yuan S, Chen X, Zhu P, Li J, Qin L, Liao W. Up-regulation of BRCA1-associated RING Domain 1 Promotes Hepatocellular Carcinoma Progression by Targeting Akt Signaling. Sci Rep 2017; 7:7649. [PMID: 28794477 PMCID: PMC5550490 DOI: 10.1038/s41598-017-07962-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The present study was designed to investigate the potential clinical, pathological, prognostic value, role and mechanism of BRCA1-associated RING Domain 1 (BARD1) in Hepatocellular carcinoma (HCC). Quantitative real-time PCR and immunohistochemistry were performed to evaluate the expression of BARD1 mRNA and protein. The expression of BARD1 in the HCC tissue samples was markedly higher than that in the adjacent noncancerous liver tissues. Elevated BARD1 expression was positively correlated with tumor-node-metastasis stage, Barcelona-Clinic Liver Cancer stage, hepatitis B surface antigen, large tumor size, serum alpha-fetoprotein levels, and serum aspartate aminotransferase levels. Univariate and multivariate analyses revealed the BARD1 was an independent predictor for decreased progression-free survival and overall survival in HCC. In vitro experiments demonstrated that knocking down BARD1 significantly inhibited the proliferation, invasion and migration of HCC cells. Moreover, silencing BARD1 inhibit the signaling pathway via decreased the levels of Akt, mTOR, and MMP-9 and inhibited the phosphorylation of Akt (Ser473) and mTOR (Ser2248). Collectively, our findings suggest that BARD1 may be a novel diagnostic and prognostic biomarker of HCC, and up-regulation of BARD1 can contribute to HCC progression by targeting Akt signaling.
Collapse
Affiliation(s)
- Yan Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China.,Disease Prevention and Control Center of Guilin, Guilin, Guangxi, P.R. China
| | - Shengguang Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Xinhuang Chen
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Pengpeng Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Jun Li
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Liling Qin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China.
| |
Collapse
|
164
|
Limaiem F, Bouhamed M, Sahraoui G, Mzabi S. Hepatocellular carcinoma: a clinicopathological study of 64 cases. Pan Afr Med J 2017; 27:41. [PMID: 28761617 PMCID: PMC5516652 DOI: 10.11604/pamj.2017.27.41.9584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/02/2017] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common of all liver cancers and is a major worldwide public health problem. The aim of this study was to provide an updated overview on clinicopathological features, treatment and outcome of HCC. In our retrospective study, we reviewed 64 cases of HCC that were diagnosed at the pathology department of Mongi Slim hospital over a fifteen-year period (2000- 2014). Relevant clinical information and microscopic slides were retrospectively reviewed. Our study group included 38 men and 26 women (sex ratio M/F = 1,26) aged between 8 and 83 years (mean = 56,64 years). The presenting clinical symptoms were dominated by abdominal pain (n=34), followed by altered general health (n=25) and jaundice (n=4). Fifty-five patients underwent surgical treatment. Liver transplantation was performed in two cases and transarterial chemoembolization was achieved in seven cases. Histopathological examination of the surgical or biopsy specimen established the diagnosis of conventional HCC in 55 cases, fibrolamellar carcinoma in 6 cases and clear cell HCC in 3 cases. Seven patients with HCC died postoperatively. Local recurrence of the tumour occurred in three cases and two patients had distant metastases postoperatively. The other patients are still being followed-up. Hepatocellular carcinoma is associated with a high rate of mortality because of early invasion, widespread metastasis and lack of effective therapeutic modalities. Accurate diagnosis and staging of these tumours is critical for optimal treatment planning and for determining prognosis.
Collapse
Affiliation(s)
- Faten Limaiem
- Université de Tunis El Manar, Faculté de Médecine de Tunis, 1007
| | - Marwa Bouhamed
- Université de Tunis El Manar, Faculté de Médecine de Tunis, 1007
| | - Ghada Sahraoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, 1007
| | - Sabeh Mzabi
- Université de Tunis El Manar, Faculté de Médecine de Tunis, 1007
| |
Collapse
|
165
|
Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SM, Wang Y, Leong KW, Chen M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater 2017; 58:349-364. [PMID: 28455219 DOI: 10.1016/j.actbio.2017.04.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 01/24/2023]
Abstract
Co-delivery of multiple drugs with complementary anticancer mechanisms by nano-carriers offers an effective strategy to treat cancer. The combination of drugs with pro-apoptotic and anti-angiogenic activities is potentially effective in treating human hepatocellular carcinoma (HCC). Herein, we developed a co-delivery system for doxorubicin (Dox), a pro-apoptotic drug, and curcumin (Cur), a potent drug for antiangiogenesis, in pH-sensitive nanoparticles (NPs) constituted with amphiphilic poly(β-amino ester) copolymer. Dox & Cur co-loaded NPs ((D+C)/NPs) were prepared with optimized drug ratio, showing low polydispersity, high encapsulation efficiency, and enhanced release in the acidic environment of cancer cells. Furthermore, enhanced cellular internalization of cargoes delivered from (D+C)/NPs were observed in human liver cancer SMMC 7721 cells and human umbilical vein endothelial cells (HUVECs) compared to the use of free drugs. The (D+C)/NPs induced a high rate of apoptosis in SMMC 7721 cells through decreased mitochondrial membrane potential. Additionally, (D+C)/NPs exhibited stronger anti-angiogenic effects including inhibition of HUVEC proliferation, migration, invasion, and tube formation mediated VEGF pathway modulation in vitro and in vivo. Taken together, encapsulation of the pro-apoptotic drug Dox and antiangiogenic agent Cur in pH-sensitive NPs provides a promising strategy to effectively inhibit HCC progression in a synergistic manner. STATEMENT OF SIGNIFICANCE The combination of multiple drugs has been demonstrated to be more effective than single treatment. However, the different physicochemical and pharmacokinetic profiles of each drug render optimal delivery challenging. In view of the great delivery advantage of nanocarriers to unify the multiple drugs in vivo, stimulus-responsive nano-carriers are more crucial to increase efficacy and reduce toxicity from off-target exposure. Therefore, herein the pH-sensitive nanoparticles, composed by d-α-tocopheryl polyethylene glycol 1000-block-poly (β-amino ester) (TPGS-PAE) polymers, have been fabricated for doxorubicin (Dox) and curcumin (Cur) co-delivery, which exhibited diverse anticancer approaches, i.e. pro-apoptosis and antiangiogenesis. The precise intracellular target site and effective drug combination concentration result in the enhanced antitumor efficiency and the reduced systematic toxicity of Dox. The co-encapsulation of the pro-apoptotic drug and antiangiogenic agent in pH-sensitive NPs provides a promising strategy to effectively inhibit malignant neoplasm progression in a synergistic manner.
Collapse
|
166
|
Elsemman IE, Mardinoglu A, Shoaie S, Soliman TH, Nielsen J. Systems biology analysis of hepatitis C virus infection reveals the role of copy number increases in regions of chromosome 1q in hepatocellular carcinoma metabolism. MOLECULAR BIOSYSTEMS 2017; 12:1496-506. [PMID: 27040643 DOI: 10.1039/c5mb00827a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional treatment methods have failed to cure all patients, and HCV has developed resistance to new drugs. Systems biology-based analyses could play an important role in the holistic analysis of the impact of HCV on hepatocellular metabolism. Here, we integrated HCV assembly reactions with a genome-scale hepatocyte metabolic model to identify metabolic targets for HCV assembly and metabolic alterations that occur between different HCV progression states (cirrhosis, dysplastic nodule, and early and advanced hepatocellular carcinoma (HCC)) and healthy liver tissue. We found that diacylglycerolipids were essential for HCV assembly. In addition, the metabolism of keratan sulfate and chondroitin sulfate was significantly changed in the cirrhosis stage, whereas the metabolism of acyl-carnitine was significantly changed in the dysplastic nodule and early HCC stages. Our results explained the role of the upregulated expression of BCAT1, PLOD3 and six other methyltransferase genes involved in carnitine biosynthesis and S-adenosylmethionine metabolism in the early and advanced HCC stages. Moreover, GNPAT and BCAP31 expression was upregulated in the early and advanced HCC stages and could lead to increased acyl-CoA consumption. By integrating our results with copy number variation analyses, we observed that GNPAT, PPOX and five of the methyltransferase genes (ASH1L, METTL13, SMYD2, TARBP1 and SMYD3), which are all located on chromosome 1q, had increased copy numbers in the cancer samples relative to the normal samples. Finally, we confirmed our predictions with the results of metabolomics studies and proposed that inhibiting the identified targets has the potential to provide an effective treatment strategy for HCV-associated liver disorders.
Collapse
Affiliation(s)
- Ibrahim E Elsemman
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. and Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt and The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Adil Mardinoglu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. and Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Taysir H Soliman
- Information Systems Department, Faculty of Computers and Information, Assiut University, Assiut, Egypt
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. and Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
167
|
Liu T, Kan XF, Ma C, Chen LL, Cheng TT, Zou ZW, Li Y, Cao FJ, Zhang WJ, Yao J, Li PD. GPX2 overexpression indicates poor prognosis in patients with hepatocellular carcinoma. Tumour Biol 2017. [PMID: 28635398 DOI: 10.1177/1010428317700410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glutathione peroxidase 2 has important role of tumor progression in lots of carcinomas, yet little is known about the prognosis of glutathione peroxidase 2 in hepatocellular carcinoma. Glutathione peroxidase 2 expression was assessed by immunohistochemistry in hepatocellular carcinoma tissues. The association between glutathione peroxidase 2 expression with clinicopathological/prognostic value was examined. Glutathione peroxidase 2 overexpression was correlated with alpha-fetoprotein level, larger tumor, BCLC stage, and tumor recurrence. Kaplan-Meier analysis showed that glutathione peroxidase 2 was an independent predictor for overall survival and time to recurrence. glutathione peroxidase 2 overexpression was correlated with poor prognosis in patient subgroups stratified by tumor size, differentiation, tumor-node-metastasis, and BCLC stage. Moreover, stratified analysis showed that tumor-node-metastasis stage-I patients with high glutathione peroxidase 2 expression had poor prognosis than those with low glutathione peroxidase 2 expression. Additionally, combination of glutathione peroxidase 2 and serum alpha-fetoprotein was correlated with prognosis in hepatocellular carcinoma. In conclusion, glutathione peroxidase 2 overexpression contributes to poor prognosis of hepatocellular carcinoma patients and helps to identify the high-risk hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Ting Liu
- 1 Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Feng Kan
- 2 Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Charlie Ma
- 3 The Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Li-Li Chen
- 3 The Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tian-Tian Cheng
- 4 Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Wei Zou
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- 6 Cancer Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Feng-Jun Cao
- 6 Cancer Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen-Jie Zhang
- 7 Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Jing Yao
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pin-Dong Li
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
168
|
Lan T, Yan X, Li Z, Xu X, Mao Q, Ma W, Hong Z, Chen X, Yuan Y. Long non-coding RNA PVT1 serves as a competing endogenous RNA for miR-186-5p to promote the tumorigenesis and metastasis of hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317705338. [PMID: 28656879 DOI: 10.1177/1010428317705338] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma is third leading cause of cancer-related death globally. Long non-coding RNA plasmacytoma variant translocation 1 has been reported to be dysregulated and plays a crucial role in various cancers. In this study, we investigated the interactions between plasmacytoma variant translocation 1 and miR-186-5p in the progression of hepatocellular carcinoma and explored the functional significance of plasmacytoma variant translocation 1. It was determined that plasmacytoma variant translocation 1 was significantly higher, while miR-186-5p was statistically lower in the hepatocellular carcinoma tissues than that in the adjacent normal tissues. Using gain-of-function and loss-of-function methods, our results revealed that plasmacytoma variant translocation 1 affected hepatocellular carcinoma cells proliferation, invasion, and migration. It was found that there was direct interaction between miR-186-5p and the binding site of plasmacytoma variant translocation 1 by performing dual-luciferase assay and RNA immunoprecipitation assay. Furthermore, it was identified that plasmacytoma variant translocation 1 regulated the expression of the miR-186-5p target gene, yes-associated protein 1. Taken together, plasmacytoma variant translocation 1 served as an endogenous sponge for miR-186-5p to reduce its inhibiting effect on yes-associated protein 1 and thus promoted the tumorigenesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tian Lan
- 1 Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Xia Yan
- 2 Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhuo Li
- 3 Department of Pediatric Surgery, People's Hospital of Nanshan District, Shenzhen, P.R. China
| | - Xin Xu
- 4 Department of Digestion, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Qi Mao
- 5 Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Weijie Ma
- 1 Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhenfei Hong
- 1 Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Xi Chen
- 1 Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yufeng Yuan
- 1 Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
169
|
Chen SL, Liu LL, Lu SX, Luo RZ, Wang CH, Wang H, Cai SH, Yang X, Xie D, Zhang CZ, Yun JP. HBx-mediated decrease of AIM2 contributes to hepatocellular carcinoma metastasis. Mol Oncol 2017; 11:1225-1240. [PMID: 28580773 PMCID: PMC5579341 DOI: 10.1002/1878-0261.12090] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor metastasis is responsible for the high mortality rates in patients with hepatocellular carcinoma (HCC). Absent in melanoma 2 (AIM2) has been implicated in inflammation and carcinogenesis, although its role in HCC metastasis remains unknown. In the present study, we show that AIM2 protein expression was noticeably reduced in HCC cell lines and clinical samples. A reduction in AIM2 was closely associated with higher serum AFP levels, vascular invasion, poor tumor differentiation, an incomplete tumor capsule and unfavorable postsurgical survival odds. In vitro studies demonstrated that AIM2 expression was modulated by hepatitis B virus X protein (HBx) at transcriptional and post-translational levels. HBx overexpression markedly blocked the expression of AIM2 at mRNA and protein levels by enhancing the stability of Enhancer of zeste homolog 2 (EZH2). Furthermore, HBx interacted with AIM2, resulting in an increase of AIM2 degradation via ubiquitination induction. Functionally, knockdown of AIM2 enhanced cell migration, formation of cell pseudopodium, wound healing and tumor metastasis, whereas reintroduction of AIM2 attenuated these functions. The loss of AIM2 induced the activation of epithelial-mesenchymal transition (EMT). Fibronectin 1 (FN1) was found to be a downstream effector of AIM2, with its expression reversely modulated by AIM2. Silencing of FN1 significantly halted cell migration induced by AIM2 depletion. These data demonstrate that HBx-induced loss of AIM2 is associated with poor outcomes and facilitates HCC metastasis by triggering the EMT process. The results of the present study therefore suggest that AIM2 is a potential prognostic biomarker in hepatitis B virus-related HCC, as well as a possible therapeutic target for tumor metastasis.
Collapse
Affiliation(s)
- Shi-Lu Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Xun Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong-Zhen Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chun-Hua Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shao-Hang Cai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing-Ping Yun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
170
|
Huang ZJ, Zhu JJ, Yang XY, Biskup E. NEDD4 promotes cell growth and migration via PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Oncol Lett 2017; 14:2649-2656. [PMID: 28928809 PMCID: PMC5588169 DOI: 10.3892/ol.2017.6532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
The novel E3 ubiquitin-protein ligase neural precursor cell-expressed developmentally downregulated protein 4 (NEDD4) has been implicated as a crucial factor promoting the tumorigenesis of several types of cancer. The present study investigated the oncogenic role of NEDD4 in hepatocellular carcinoma (HCC) by targeted small interfering RNA silencing of the tumor suppressor phosphatase and tensin homolog (PTEN). Using normal hepatocyte and HCC cell lines, the influence of NEDD4 depletion on proliferation and migration as well as on the PTEN/phosphatidylinositol-3-kinase/protein kinase B signaling pathway was assessed. Additionally, the expression of NEDD4 was assessed in HCC specimens from 78 patients. The in vitro immunohistochemistry results indicated that NEDD4 protein expression was higher, but PTEN expression was lower, in HCC cells compared with normal hepatocytes. The results from the MTT assay, wound healing experiment and Transwell assays demonstrated that NEDD4 depletion lead to decreased proliferation and migration ability of HCC cells. Results from western blotting and immunofluorescence demonstrated that silencing of NEDD4 disrupted the PTEN/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in HCC cells. A total of 55 (70.5%) of the HCC specimens stained positive for NEDD4 and expression significantly correlated with tumor size (P=0.047), differentiation degree (P=0.032), vascular invasion (P<0.001), and lymph node metastasis (P=0.005). Thus, NEDD4 appears to perform a critical role in promoting the proliferation and metastasis of HCC via activation of the PTEN/PI3K/AKT signaling pathway; as such, NEDD4 may be a promising target for novel treatments of HCC.
Collapse
Affiliation(s)
- Zhi-Jun Huang
- Department of General Surgery, First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, P.R. China
| | - Jun-Jun Zhu
- Department of Radioactive Intervention, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Xiao-Yu Yang
- Second Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Ewelina Biskup
- Department of Oncology, University Hospital of Basel, 4055 Basel, Switzerland
| |
Collapse
|
171
|
Quan Y, Song Q, Wang J, Zhao L, Lv J, Gong S. MiR-1202 functions as a tumor suppressor in glioma cells by targeting Rab1A. Tumour Biol 2017; 39:1010428317697565. [PMID: 28443461 DOI: 10.1177/1010428317697565] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aberrant expression of microRNAs correlates with the development and progression of human cancers by targeting downstream proteins. MiR-1202 is downregulated in ovarian cancer and clear cell papillary renal cell carcinoma; however, its role in glioma remains unknown. The purpose of this study was to determine the expression and the role of miR-1202 and to elucidate its regulatory mechanism in glioma. We used quantitative real-time polymerase chain reaction to measure miR-1202 expression in both glioma tissues and cell lines. The findings showed that the miR-1202 expression decreased dramatically in clinical glioma tissues and cell lines, and miR-1202 expression was inversely correlated with the expression of Rab1A. Using bioinformatics and luciferase reporter assays, we identified Rab1A as a novel and direct target of miR-1202. In vitro, overexpression of miR-1202 inhibited glioma cell proliferation and induced endoplasmic reticulum stress and apoptosis through targeting Rab1A, whereas suppression of miR-1202 promoted cell proliferation and inhibited endoplasmic reticulum stress and apoptosis. Similarly, silencing Rab1A with small interfering RNA also suppressed glioma cell growth and induced endoplasmic reticulum stress and apoptosis. Taken together, our data indicate that miR-1202 suppresses proliferation and induces endoplasmic reticulum stress and apoptosis through targeting and inhibiting Rab1A in glioma cells. These results suggest miR-1202 as a potential therapeutic target for the treatment of glioma patients.
Collapse
Affiliation(s)
- Yu Quan
- 1 Department of Neurosurgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Qian Song
- 2 Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Jvbo Wang
- 1 Department of Neurosurgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Lingyu Zhao
- 3 Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Jian Lv
- 1 Department of Neurosurgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Shouping Gong
- 1 Department of Neurosurgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
172
|
Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2. Int J Biochem Cell Biol 2017; 89:157-170. [PMID: 28579529 DOI: 10.1016/j.biocel.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
It has been well-known that over activation of NF-κB has close relationship with hepatitis and hepatocellular carcinoma (HCC). However, the complete and exact underlying molecular pathways and mechanisms still remain not fully understood. By manipulating NF-κB activity with its recognized activator TNFα and using ChIP-seq and RNA-seq techniques, this study identified 699 NF-κB direct target genes (DTGs) in a widely used HCC cell line, HepG2, including 399 activated and 300 repressed genes. In these NF-κB DTGs, 216 genes (126 activated and 90 repressed genes) are among the current HCC gene signature. In comparison with NF-κB target genes identified in LPS-induced THP-1 and TNFα-induced HeLa cells, only limited numbers (24-46) of genes were shared by the two cell lines, indicating the HCC specificity of identified genes. Functional annotation revealed that NF-κB DTGs in HepG2 cell are mainly related with many typical NF-κB-related biological processes including immune system process, response to stress, response to stimulus, defense response, and cell death, and signaling pathways of MAPK, TNF, TGF-beta, Chemokine, NF-kappa B, and Toll-like receptor. Some NF-κB DTGs are also involved in Hepatitis C and B pathways. It was found that 82 NF-κB DTGs code secretory proteins, which include CCL2 and DKK1 that have already been used as HCC markers. Finally, the NF-κB DTGs were further confirmed by detecting the NF-κB binding and expression of 14 genes with ChIP-PCR and RT-PCR. This study thus provides a useful NF-κB DTG list for future studies of NF-κB-related molecular mechanisms and theranostic biomarkers of HCC.
Collapse
|
173
|
GABPA predicts prognosis and inhibits metastasis of hepatocellular carcinoma. BMC Cancer 2017; 17:380. [PMID: 28549418 PMCID: PMC5446731 DOI: 10.1186/s12885-017-3373-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence indicates that abnormal expression of GABPA is associated with tumor development and progression. However, the function and clinicopathological significance of GABPA in hepatocellular carcinoma (HCC) remain obscure. Methods The mRNA and protein expression of GABPA in HCC clinical specimens and cell lines was examined by real-time PCR and western blotting, respectively. Follow-up data were used to uncover the relationship between GABPA expression and the prognosis of HCC patients. HCC cell lines stably overexpressing or silencing GABPA were established to explore the function of GABPA in HCC cell migration and invasion by Transwell and wound healing assays in vitro and in a xenograft model in vivo. Restoration of function analysis was used to examine the underlying molecular mechanisms. Results GABPA was downregulated at the protein and mRNA levels in HCC tissues compared with adjacent normal tissues. Decreased GABPA expression was correlated with alpha-fetoprotein levels (P = 0.001), tumor grade (P = 0.017), and distant metastasis (P = 0.021). Kaplan-Meier survival analysis showed that patients with lower GABPA expression had significantly shorter survival times than those with higher GABPA (P = 0.031). In vivo and in vitro assays demonstrated that GABPA negatively regulated HCC cell migration and invasion, and the effect of GABPA on HCC cell migration was mediated at least partly by the regulation of E-cadherin. Conclusions Collectively, our data indicate that GABPA inhibits HCC cell migration by modulating E-cadherin and could serve as a novel biomarker for HCC prognosis. GABPA may act as a tumor suppressor during HCC progression and metastasis, and is a potential therapeutic target in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3373-7) contains supplementary material, which is available to authorized users.
Collapse
|
174
|
Zhang R, Real CI, Liu C, Baba HA, Gerken G, Lu M, Broering R. Hepatic expression of oncogenes Bmi1 and Dkk1 is up-regulated in hepatitis B virus surface antigen-transgenic mice and can be induced by treatment with HBV particles or lipopolysaccharides in vitro. Int J Cancer 2017; 141:354-363. [PMID: 28419472 DOI: 10.1002/ijc.30742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have shown that hepatocellular carcinoma (HCC) develops more frequently in hepatitis B virus surface antigen (HBsAg)-transgenic mice (Alb/HBs) than in wild-type (WT) mice. However, the mechanism of this HCC model has not been well documented. Toll-like receptor 4 (Tlr4) signaling probably links innate immunity and HCC progression. This study was designed to investigate the role of innate immunity in hepatocarcinogenesis in Alb/HBs mice. Immunohistochemical analysis of liver specimens from Alb/HBs mice (16 per group) showed that the oncogenes Bmi1 (16/16, 100%) and Dkk1 (13/16, 81.25%) were highly expressed in Alb/HBs mice, whereas the other oncogenes evaluated were expressed in smaller percentages of mice (Afp, 9/16, 56.2%; Ctnnb1, 5/16, 31.3%; Epcam, 0/16; 0%). Comparable results were obtained by quantitative PCR analysis. Hepatic gene expression of Tlr2, Tlr4, Il6 and Tnf was additionally elevated in Alb/HBs mice. Stimulation of primary murine hepatocytes with cell culture-derived HBV particles or LPS increased the expression of oncogenes (Bmi1, Dkk1) and inflammatory factors (Tnf, Il6, Tlr4). Proliferation and colony formation of hepatoma cells were enhanced by treatment with HBV and LPS and were impaired by the suppression of Bmi1 and Dkk1 by small interfering RNAs. Substantial induction of BMI1 and DKK1 was found in liver biopsy samples from patients with HBV-related HCC but not in HCC samples without HBV infection background. These findings suggest that innate immunity may link inflammation and tumor progression during chronic HBV infection, involving the oncogenes BMI1 and DKK1.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Germany.,Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Catherine I Real
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hideo A Baba
- Department of Pathology and Neuropathology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
175
|
Wang C, Fu S, Wang M, Yu W, Cui Q, Wang H, Huang H, Dong W, Zhang W, Li P, Lin C, Pan Z, Yang Y, Wu M, Zhou W. Zinc finger protein X-linked promotes expansion of EpCAM + cancer stem-like cells in hepatocellular carcinoma. Mol Oncol 2017; 11:455-469. [PMID: 28156061 PMCID: PMC5527465 DOI: 10.1002/1878-0261.12036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc finger protein X-linked (ZFX) is frequently upregulated in multiple human malignancies and also plays a critical role in the maintenance of self-renewal in embryonic stem cells. However, the role of ZFX in liver cancer stem cells (CSCs) remains obscure. We observed that the elevated expression of both ZFX and epithelial cell adhesion molecule (EpCAM) was associated with aggressive clinicopathological features and indicated poor prognosis in patients with hepatocellular carcinoma (HCC). ZFX was commonly enriched in liver EpCAM+ CSCs. Knockdown of ZFX decreased the proportion of EpCAM+ CSCs in HCC cells and suppressed their expression of stemness-related genes, self-renewal capacity, chemoresistance, metastatic potential, and tumorigenicity. Conversely, upregulation of ZFX in CSCs rescued these inhibitory effects and enhanced stem-like properties. Mechanistically, depletion of ZFX reduced nuclear translocation and transactivation of β-catenin, thereby inhibiting the self-renewal capacity of EpCAM+ CSCs. Moreover, knockdown of β-catenin attenuated the self-renewal of EpCAM+ HCC cells stably expressing ZFX, further indicating that β-catenin is required for ZFX-mediated expansion and maintenance of EpCAM+ CSCs. Taken together, our findings indicate that ZFX activates and maintains EpCAM+ liver CSCs by promoting nuclear translocation and transactivation of β-catenin. Furthermore, combination of ZFX and EpCAM may serve as a significant indicator for prognosis of patients with HCC.
Collapse
Affiliation(s)
- Chao Wang
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
- Department of UrologyChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Si‐yuan Fu
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Ming‐da Wang
- The Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Wen‐bo Yu
- The Second Military Medical UniversityShanghaiChina
| | - Qin‐shu Cui
- The Second Military Medical UniversityShanghaiChina
| | - Hong‐ru Wang
- The Second Military Medical UniversityShanghaiChina
| | - Hai Huang
- Department of Urinary SurgeryChangzheng HospitalSecond Military Medical UniversityShanghaiChina
| | | | - Wei‐wei Zhang
- Department of Laboratory DiagnosticChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Peng‐peng Li
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Chuan Lin
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Ze‐ya Pan
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Yuan Yang
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Meng‐chao Wu
- The Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| | - Wei‐ping Zhou
- The Third Department of Hepatic SurgeryEastern Hepatobiliary HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
176
|
Fan H, Cui Z, Zhang H, Kailasam Mani SK, Diab A, Lefrancois L, Fares N, Merle P, Andrisani O. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection. Oncogene 2017; 36:2435-2445. [PMID: 27797380 PMCID: PMC5408304 DOI: 10.1038/onc.2016.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/16/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
Sal-like protein 4 (SALL4), an embryonic stem cell transcriptional regulator, is re-expressed by an unknown mechanism in poor prognosis hepatocellular carcinoma (HCC), often associated with chronic hepatitis B virus (HBV) infection. Herein, we investigated the mechanism of SALL4 re-expression in HBV-related HCCs. We performed bisulfite sequencing PCR of genomic DNA isolated from HBV-related HCCs and HBV replicating cells, and examined DNA methylation of a CpG island located downstream from SALL4 transcriptional start site (TSS). HBV-related HCCs expressing increased SALL4 exhibited demethylation of specific CpG sites downstream of SALL4 TSS. Similarly, SALL4 re-expression and demethylation of these CpGs was observed in HBV replicating cells. SALL4 is also re-expressed in poor prognosis HCCs of other etiologies. Indeed, increased SALL4 expression in hepatitis C virus-related HCCs correlated with demethylation of these CpG sites. To understand how CpG demethylation downstream of SALL4 TSS regulates SALL4 transcription, we quantified by chromatin immunoprecipitation (ChIP) assays RNA polymerase II occupancy of SALL4 gene, as a function of HBV replication. In absence of HBV replication, RNA polymerase II associated with SALL4 exon1. By contrast, in HBV replicating cells RNA polymerase II occupancy of all SALL4 exons increased, suggesting CpG demethylation downstream from SALL4 TSS influences SALL4 transcriptional elongation. Intriguingly, demethylated CpGs downstream from SALL4 TSS are within binding sites of octamer-binding transcription factor 4 (OCT4) and signal transducer and activator of transcription3 (STAT3). ChIP assays confirmed occupancy of these sites by OCT4 and STAT3 in HBV replicating cells, and sequential ChIP assays demonstrated co-occupancy with chromatin remodeling BRG1/Brahma-associated factors. BRG1 knockdown reduced SALL4 expression, whereas BRG1 overexpression increased SALL4 transcription in HBV replicating cells. We conclude demethylation of CpGs located within OCT4 and STAT3 cis-acting elements, downstream of SALL4 TSS, enables OCT4 and STAT3 binding, recruitment of BRG1, and enhanced RNA polymerase II elongation and SALL4 transcription.
Collapse
Affiliation(s)
- Huitao Fan
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Zhibin Cui
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Hao Zhang
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Ahmed Diab
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| | - Lydie Lefrancois
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex, France
| | - Nadim Fares
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex, France
| | - Philippe Merle
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex, France
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette IN 47907
| |
Collapse
|
177
|
Klungboonkrong V, Das D, McLennan G. Molecular Mechanisms and Targets of Therapy for Hepatocellular Carcinoma. J Vasc Interv Radiol 2017; 28:949-955. [PMID: 28416267 DOI: 10.1016/j.jvir.2017.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCC develops through a multistep process that involves the local tumor microenvironment, intracellular signaling pathways, and altered metabolic system that allows the cancer proliferation. Understanding the mechanisms of tumor development and progression is critical to developing improved therapies aimed at better survival. This article reviews the molecular mechanisms of HCC development and highlights the potential therapeutic targets for treatments.
Collapse
Affiliation(s)
- Vivian Klungboonkrong
- Department of Interventional Radiology, Imaging Institute, Cleveland, OH 44195; Department of Radiology, KhonKaen University, KhonKaen, Thailand
| | - Dola Das
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Gordon McLennan
- Department of Interventional Radiology, Imaging Institute, Cleveland, OH 44195.
| |
Collapse
|
178
|
Zeng X, Wang N, Zhai H, Wang R, Wu J, Pu W. SIRT3 functions as a tumor suppressor in hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317691178. [PMID: 28347248 DOI: 10.1177/1010428317691178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma is one of the leading causes for cancer-related mortality worldwide. SIRT3 may function as either oncogene or tumor suppressor in a panel of cancers; however, the role of SIRT3 in hepatocellular carcinoma remains unclear. In this study, we assayed the expression level of SIRT3 in hepatocellular carcinoma tissues by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. A loss-of-function approach was used to examine the effects of SIRT3 on biological activity, including cell proliferative activity and invasive potential. The results demonstrated that the expression levels of SIRT3 protein in hepatocellular carcinoma tissues were significantly downregulated compared with those in adjacent non-cancerous tissues. Furthermore, SIRT3 could decrease cell proliferation and inhibit cell migration/invasion in hepatocellular carcinoma cell line. Taken together, these results elucidated the function of SIRT3 in hepatocellular carcinoma development and suggested that SIRT3 might function as tumor suppressor in hepatocellular carcinoma by targeting PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xianchun Zeng
- 1 Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Nanzhu Wang
- 1 Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hui Zhai
- 2 School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Rongpin Wang
- 1 Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiahong Wu
- 2 School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Pu
- 1 Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
179
|
Yan C, Yang Q, Huo X, Li H, Zhou L, Gong Z. Chemical inhibition reveals differential requirements of signaling pathways in kras V12- and Myc-induced liver tumors in transgenic zebrafish. Sci Rep 2017; 7:45796. [PMID: 28378824 PMCID: PMC5381109 DOI: 10.1038/srep45796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Previously we have generated inducible liver tumor models by transgenic expression of an oncogene and robust tumorigenesis can be rapidly induced by activation of the oncogene in both juvenile and adult fish. In the present study, we aimed at chemical intervention of tumorigenesis for understanding molecular pathways of tumorigenesis and for potential development of a chemical screening tool for anti-cancer drug discovery. Thus, we evaluated the roles of several major signaling pathways in krasV12- or Myc-induced liver tumors by using several small molecule inhibitors: SU5402 and SU6668 for VEGF/FGF signaling; IWR1 and cardionogen 1 for Wnt signaling; and cyclopamine and Gant61 for Hedgehog signaling. Inhibition of VEGF/FGF signaling was found to deter both Myc- and krasV12-induced liver tumorigenesis while suppression of Wnt signaling relaxed only Myc- but not krasV12-induced liver tumorigenesis. Inhibiting Hedgehog signaling did not suppress either krasV12 or Myc-induced tumors. The suppression of liver tumorigenesis was accompanied with a decrease of cell proliferation, increase of apoptosis, distorted liver histology. Collectively, our observations suggested the requirement of VEGF/FGF signaling but not the hedgehog signaling in liver tumorigenesis in both transgenic fry. However, Wnt signaling appeared to be required for liver tumorigenesis only in Myc but not krasV12 transgenic zebrafish.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore graduate school for integrative sciences and engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Li Zhou
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- National University of Singapore graduate school for integrative sciences and engineering, National University of Singapore, Singapore
| |
Collapse
|
180
|
Li J, Wang Y, Zhu Y, Gong Y, Yang Y, Tian J, Zhang Y, Zou D, Peng X, Ke J, Gong J, Zhong R, Chang J. Breast cancer risk-associated variants at 6q25.1 influence risk of hepatocellular carcinoma in a Chinese population. Carcinogenesis 2017; 38:447-454. [PMID: 28334234 DOI: 10.1093/carcin/bgx024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of estrogens in HCC pathogenesis. In this study, we conducted a case-control study to investigate whether breast cancer risk-associated single nucleotide polymorphisms (SNPs) located at estrogens loci identified by genome-wide association studies (GWASs) also predispose to HCC in a Chinese population. Three candidate SNPs at 6q25.1 were genotyped in 2025 HCC cases and 2032 healthy controls. Differential expression analyses and expression quantitative trait loci (eQTL) analyses were conducted to further explore the potential function of significant SNPs and genes they reside in. Two of the three candidate SNPs (rs9383951 and rs9485372) were observed to be significantly associated with HCC risk. Under a dominant model, the odds ratios (OR) for rs9383951 and rs9485372 were 1.28 (95% CI: 1.10-1.49, P = 0.002) and 1.34 (95% CI: 1.17-1.53, P = 2.75 × 10-5), respectively. We also found a significant accumulative effect of these two SNPs and there was a gradual increase in OR with a greater number of hazard genotypes. Moreover, the association between rs9383951 and HCC risk was specific in males. Lower ESR1 and TAB2 expressions were investigated in hepatic tumor tissues than adjacent normal tissues. We found a significant association between rs9383951 and ESR1 expression (P = 0.047). Besides, ESR1 expression was significantly correlated with the expression of TAB2. Taken together, our study identified two genetic variants at 6q25.1 newly associated with HCC risk, suggesting ESR1 and estrogen signaling may play a role in mediating susceptibility to HCC in Chinese population.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, China
| | - Ying Zhu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Yajie Gong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Yang Yang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Jianbo Tian
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Yi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Danyi Zou
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Xiating Peng
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Juntao Ke
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Jing Gong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Rong Zhong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China and
| | - Jiang Chang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
181
|
Song Y, Wu G, Zhang M, Kong Q, Du J, Zheng Y, Yue L, Cao L. N-myc downstream-regulated gene 1 inhibits the proliferation and invasion of hepatocellular carcinoma cells via the regulation of integrin β3. Oncol Lett 2017; 13:3599-3607. [PMID: 28521460 PMCID: PMC5431403 DOI: 10.3892/ol.2017.5924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 01/19/2017] [Indexed: 01/17/2023] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a multifunctional protein associated with carcinogenesis and tumor progression. The function of NDRG1 in hepatocellular carcinoma (HCC) cells remains controversial. The present study investigated the role of NDRG1 in HCC as well as its molecular mechanism using a range of techniques, including western blot analysis, cellular proliferation test, wound healing assay and Transwell assay. In HCC, the levels of NDRG1 expression were highest in the cytoplasm, followed by the membrane, and were lowest in the nucleus. NDRG1 was revealed to inhibit the proliferation and invasion of BEL7402 cells, which facilitated the hypothesis that NDRG1 expression levels may be lower in cell line with a high metastatic potential compared with those in cell lines with a low metastatic potential. However, the present study identified that NDRG1 expression was higher in detached BEL7402 cells and MHCC-97H cells compared with that in attached BEL7402 cells and MHCC-97L cells. Thus, this finding was contrary to what was expected, suggesting that NDRG1 overexpression in the HCC with a high metastatic potential may be the compensatory mechanism. The human HCC BEL7402 cell line demonstrated a significant increase in the capability of motility, invasion and cellular proliferation following NDRG1-short hairpin RNA transfection. Integrin β3 (ITGB3) protein expression was increased in NDRG1-downregulated BEL7402 cells and SMMC7721 cells compared with that in the control cells. The present study suggested that NDRG1 may be a potential anti-tumor target for the treatment of patients with HCC. A potential mechanism for these roles of NDRG1 is by regulating ITGB3 expression; however, this requires additional investigation.
Collapse
Affiliation(s)
- Yan Song
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou, Jiangsu 213001, P.R. China
| | - Guangping Wu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Mingyang Zhang
- Department of Clinical Laboratory, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Qianqian Kong
- Department of Clinical Laboratory, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Juan Du
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yabing Zheng
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Longtao Yue
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Lili Cao
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
182
|
Acar A, Canbak T, Unal E. Hepatosellüler karsinomada p53 gen tedavisi. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2017. [DOI: 10.25000/acem.296300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
183
|
Chang W, Zhang L, Xian Y, Yu Z. MicroRNA-33a promotes cell proliferation and inhibits apoptosis by targeting PPARα in human hepatocellular carcinoma. Exp Ther Med 2017; 13:2507-2514. [PMID: 28565872 DOI: 10.3892/etm.2017.4236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-33a (miR-33a) is dysregulated in a number of human cancers, where it functions as an oncogenic miRNA. However, the clinical significance of miR-33a and its underlying molecular pathways regarding the progression of hepatocellular carcinoma (HCC) are currently unknown. In the present study, it was observed that the level of miR-33a expression was significantly increased in HCC tissues, relative to adjacent non-tumor tissues. Increased miR-33a expression was significantly correlated with poor prognostic features of HCC, including larger tumor size, higher Edmondson-Steiner grading and higher tumor-node-metastasis tumor stage. Furthermore, high levels of miR-33a expression were associated with decreases in the 5-year overall survival rate and recurrence-free survival of patients with HCC. In addition, functional experiments indicated that overexpression of miR-33a led to increased proliferation and reduced apoptosis of the HCC cell line Huh7, while knockdown of miR-33a decreased proliferation and induced apoptosis in the HCC cell line HepG2. Furthermore, peroxisome proliferator activated receptor alpha (PPARα) was identified as a direct target of miR-33a in HCC. Upregulation of miR-33a was found to reduce the levels of PPARα expression in Huh7 cells, while inhibition of miR-33a lead to a downregulation in PPARα expression in HepG2 cells. Collectively, these results suggest that miR-33a regulates the proliferation and apoptosis of HCC cells, and is a potential prognostic marker of HCC.
Collapse
Affiliation(s)
- Weiping Chang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yao Xian
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhaoxiang Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
184
|
Liu F, Luo L, Wei Y, Wang W, Wen T, Yang J, Xu M, Li B. Association of VEGFA polymorphisms with susceptibility and clinical outcome of hepatocellular carcinoma in a Chinese Han population. Oncotarget 2017; 8:16488-16497. [PMID: 28147320 PMCID: PMC5369979 DOI: 10.18632/oncotarget.14870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is an important angiogenesis regulator, which plays an important role in angiogenesis and progression of tumor, including hepatocellular carcinoma (HCC). We aimed at determining whether single nucleotide polymorphisms of VEGFA gene influence the development and clinical outcomes of HCC. We analyzed four potential functional polymorphisms (936C/T, 634G/C, 1612G/A, 2578C/A) of VEGFA gene in 476 HCC patients and 526 controls using matrix-assisted laser desorption ionization time-of-flight mass spectrometry method. Serum VEGF levels were measured by enzyme-linked immunosorbent assay. The Kaplan-Meier methods with log-rank test and Cox regression models were used to compare survival of resected HCC patients according to the genotype. We found that only the VEGFA 2578C/A polymorphism was significantly associated with decreased risk of HCC (AA/AC vs. CC; adjusted OR = 0.69, 95% CI = 0.51-0.93). Furthermore, the 2578C/A polymorphism was associated with significantly decreased postoperative recurrence (AA/AC vs. CC, adjusted OR = 0.51; 95% CI, 0.29-0.88) and improved overall survival (AA/AC vs. CC, adjusted HR = 0.27, 95% CI = 0.13-0.52) of resected HCC patients. In addition, the VEGF serum levels in HCC patients were significantly higher than those in healthy controls, although no significant association between VEGFA genotype and serum levels of VEGF was observed. These results suggest that the VEGFA 2578 C/A polymorphism may play a potential role in the development and clinical outcome of HCC among Chinese Han population.
Collapse
Affiliation(s)
- Fei Liu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Limei Luo
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, 610041, China
| | - Yonggang Wei
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wentao Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Tianfu Wen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Mingqing Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Li
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
185
|
Lin YT, Chien KY, Wu CC, Chang WY, Chu LJ, Chen MC, Yeh CT, Yu JS. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma. J Proteomics 2017; 157:40-51. [DOI: 10.1016/j.jprot.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
|
186
|
Aravalli RN, Steer CJ. Immune-Mediated Therapies for Liver Cancer. Genes (Basel) 2017; 8:E76. [PMID: 28218682 PMCID: PMC5333065 DOI: 10.3390/genes8020076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
In recent years, immunotherapy has gained renewed interest as an alternative therapeutic approach for solid tumors. Its premise is based on harnessing the power of the host immune system to destroy tumor cells. Development of immune-mediated therapies, such as vaccines, adoptive transfer of autologous immune cells, and stimulation of host immunity by targeting tumor-evasive mechanisms have advanced cancer immunotherapy. In addition, studies on innate immunity and mechanisms of immune evasion have enhanced our understanding on the immunology of liver cancer. Preclinical and clinical studies with immune-mediated therapies have shown potential benefits in patients with liver cancer. In this review, we summarize current knowledge and recent developments in tumor immunology by focusing on two main primary liver cancers: hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
187
|
Gaggini M, Cabiati M, Del Turco S, Navarra T, De Simone P, Filipponi F, Del Ry S, Gastaldelli A, Basta G. Increased FNDC5/Irisin expression in human hepatocellular carcinoma. Peptides 2017; 88:62-66. [PMID: 28012856 DOI: 10.1016/j.peptides.2016.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/12/2023]
Abstract
The fibronectin type III domain containing 5 (FNDC5)/Irisin, a novel energy-regulating hormone, is associated with lipid and carbohydrate metabolism. It is produced in low amounts by normal hepatic tissue, while in human hepatocellular carcinoma (HCC), in which aberrant de novo lipogenesis (DNL) occurs, the hepatic expression of FNDC5/Irisin is still unknown. The gene expression of FNDC5/Irisin, associated to key regulators of DNL, inflammation and cancer progression was evaluated in liver tissue of 18 patients with HCC undergoing liver transplantation and of 18 deceased donors. Hepatic mRNA expression of FNDC5/Irisin and stearoyl-CoA desaturase (SCD-1), main enzymatic regulator of DNL, were significantly higher in HCC patients than in donors (p<0.0001 and p=0.015, respectively). The hepatic mRNA expression of the neurogenic locus notch homolog protein 1 (NOTCH1) tended to be higher in HCC patients than in donors (p=0.06). Only in HCC patients, hepatic FNDC5/Irisin strongly correlated with the transcription factor sterol regulatory element-binding factor 1, SCD-1, NOTCH1, tumor necrosis factor-α and Interleukin-6 mRNA expression. Further, in HCC patients, FNDC5/Irisin mRNA tended to correlate to plasma lipid profile namely triglycerides, palmitic/linoleic acid and polyunsaturated fatty acid/saturated fatty acid ratios. In conclusion, HCC-liver tissue over-expressed FNDC5/Irisin in association with gene expression of mediators involved in lipogenesis, inflammation and cancer, suggesting a possible protective role of the hormone from the liver damage.
Collapse
Affiliation(s)
| | | | | | | | - Paolo De Simone
- Hepatobiliary surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Franco Filipponi
- Hepatobiliary surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | | | | | | |
Collapse
|
188
|
Chen W, Qiu Y. Ginsenoside Rh2 Targets EGFR by Up-Regulation of miR-491 to Enhance Anti-tumor Activity in Hepatitis B Virus-Related Hepatocellular Carcinoma. Cell Biochem Biophys 2017; 72:325-31. [PMID: 25561284 DOI: 10.1007/s12013-014-0456-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive tumors in humans. The typical therapeutic strategies include a combination of chemotherapy, radiotherapy, and surgery, whereas the survival rate of patients is very poor. Ginsenoside Rh2 has been reported to have therapeutic effects on some tumors, but its effect on HCC has not been extensively evaluated. Here, we show that ginsenoside Rh2 can effectively inhibit the proliferation and cell survival of HCC cells in vitro and in a mouse model. Moreover, the inhibition of the tumor growth appears to result from combined effects on decreased tumor cell proliferation and cell viability. Further analyses suggest that ginsenoside Rh2 may have its anti-tumor effect through inhibition of epidermal growth factor receptor (EGFR) signaling pathway. Recombinant EGFR was given together with ginsenoside Rh2 to the tumor cells, which completely blocked the anti-tumor effect of ginsenoside Rh2. Our data also show that miR-491 is up-regulated in SMMC-7721 cells after Rh2 treatment. There is a negative correlation between EGFR and miR-491 levels in SMMC-7721 cells and miR-491 directly targeted EGFR at translational level. Our data not only reveal an anti-tumor effect of ginsenoside Rh2 but also demonstrate that this effect may function via activation and inhibition of EGFR signaling in HCC cells. The results suggest miR-491 can be a promising regulatory factor in EGFR signal transduction.
Collapse
Affiliation(s)
- Weiwen Chen
- Medical Laboratories, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yurong Qiu
- Medical Laboratories, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
189
|
Lan T, Ma W, Hong Z, Wu L, Chen X, Yuan Y. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:11. [PMID: 28073380 PMCID: PMC5223416 DOI: 10.1186/s13046-016-0486-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is third leading cause of cancer-related death globally. Evidence suggest that long non-coding RNAs (lncRNAs) have emerged as key regulators of tumorigenesis and metastasis in HCC. In this study, we investigated the functional significance of SNHG12 and explored whether SNHG12 can directly interact with miR-199a/b-5p in the progression of HCC. Methods We determined the expression level of SNHG12 in HCC tissues with quantitative real-time PCR and then studied its clinical significance. The binding site between SNHG12 and miR-199a/b-5p was confirmed using dual luciferase assay and RNA immunoprecipitation (RIP) assay. SNHG12 was silenced through the siRNA transfection to determine whether SNHG12-siRNA is able to affect cell proliferation, invasion and metastasis. Results SNHG12 was significantly higher in the HCC tissues than that in the adjacent normal tissues. There were direct interactions between miR-199a/b-5p and the binding site of SNHG12. SNHG12 functioned as an endogenous sponge for miR-199a/b-5p to regulate the expression of MLK3 and affect the NF-κB pathway. Conclusion SNHG12 may serve as a valuable biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatobiliary surgery, Zhongnan Hospital of Wuhan University, No. 169 of Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Weijie Ma
- Department of Hepatobiliary surgery, Zhongnan Hospital of Wuhan University, No. 169 of Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Zhenfei Hong
- Department of Hepatobiliary surgery, Zhongnan Hospital of Wuhan University, No. 169 of Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Long Wu
- Department of Hepatobiliary surgery, Zhongnan Hospital of Wuhan University, No. 169 of Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Xi Chen
- Department of Hepatobiliary surgery, Zhongnan Hospital of Wuhan University, No. 169 of Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary surgery, Zhongnan Hospital of Wuhan University, No. 169 of Donghu Road, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
190
|
Lin Y, Deng W, Pang J, Kemper T, Hu J, Yin J, Zhang J, Lu M. The microRNA-99 family modulates hepatitis B virus replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. Cell Microbiol 2017; 19. [PMID: 27886437 DOI: 10.1111/cmi.12709] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small highly conserved noncoding RNAs that are widely expressed in multicellular organisms and participate in the regulation of various cellular processes including autophagy and viral replication. Evidently, microRNAs are able to modulate host gene expression and thereby inhibit or enhance hepatitis B virus (HBV) replication. The miR-99 family members are highly expressed in the liver. Interestingly, the plasma levels of miR-99 family in the peripheral blood correspond with HBV DNA loads. Thus, we asked whether the miR-99 family regulated HBV replication and analyzed the underlying molecular mechanism. Compared with primary hepatocytes, miR-99 family expression was downregulated in hepatoma cells. Transfection of miR-99a, miR-99b, and miR-100 markedly increased HBV replication, progeny secretion, and antigen expression in hepatoma cells. However, miR-99 family had no effect on HBV transcription and HBV promoter activities, suggesting that they regulate HBV replication at posttranscriptional steps. Consistent with bioinformatic analysis and recent reports, ectopic expression of miR-99 family attenuated IGF-1R/Akt/mTOR pathway signaling and repressed insulin-stimulated activation in hepatoma cells. Moreover, the experimental data demonstrated that the miR-99 family promoted autophagy through mTOR/ULK1 signaling and thereby enhanced HBV replication. In conclusion, the miR-99 family promotes HBV replication posttranscriptionally through IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy.
Collapse
Affiliation(s)
- Yong Lin
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wanyu Deng
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jinke Pang
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thekla Kemper
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jing Hu
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Jian Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
191
|
Hsu MH, Hsu SM, Kuo YC, Liu CY, Hsieh CY, Twu YC, Wang CK, Wang YH, Liao YJ. Treatment with low-dose sorafenib in combination with a novel benzimidazole derivative bearing a pyrolidine side chain provides synergistic anti-proliferative effects against human liver cancer. RSC Adv 2017. [DOI: 10.1039/c6ra28281d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies and deadliest cancers in the world.
Collapse
Affiliation(s)
- Ming-Hua Hsu
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences
- National Yang-Ming University
- Taipei
- Taiwan
| | - Yu-Cheng Kuo
- Radiation Oncology
- Show Chwan Memorial Hospital
- Changhua
- Taiwan
| | - Chih-Yu Liu
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taipei
- Taiwan
| | - Cheng-Ying Hsieh
- Nuclear Science & Technology Development Center
- National Tsing Hua University
- Hsinchu
- Taiwan
- Department of Chemistry
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine
- School of Biomedical Science and Engineering
- National Yang-Ming University
- 11221 Taipei
- Taiwan
| | - Chung-Kwe Wang
- Department of International Medicine
- Taipei City Hospital Ranai Branch
- Taipei
- Taiwan
| | - Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taipei
- Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology
- College of Medical Science and Technology
- Taipei Medical University
- Taipei
- Taiwan
| |
Collapse
|
192
|
Chen J, Li N, Lian P, Wang J, Li P, Gong Z, Jiang L. Interaction of cyclophilin A with a novel binding protein, SR-25, and characterization of their expression pattern in Chinese hepatocellular carcinoma patients. Oncol Lett 2016; 12:5254-5260. [PMID: 28105234 PMCID: PMC5228411 DOI: 10.3892/ol.2016.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/18/2016] [Indexed: 11/06/2022] Open
Abstract
Cyclophilin (Cyp) A has been reported to be overexpressed in the majority of cancer cells, including hepatocellular carcinoma (HCC). However, the biological functions of CypA in HCC are far from being understood. To determine the biological functions of CypA in HCC, the present study screened human fetal liver complementary DNA for proteins interacting with CypA using the yeast two-hybrid system. A nuclear protein, serine/arginine-rich (SR)-25, was isolated as a novel CypA-binding protein that is distinct from those previously described in the literature. Binding assays and co-immunoprecipitation confirmed the physical association between CypA and SR-25. The present study demonstrated that CypA may interact with SR-25 through its peptidyl-prolyl isomerase domain. In addition, CypA may induce the expression of SR-25 in Hep3B cells. The messenger RNA levels of CypA and SR-25 in HCC indicated that there was a significant correlation between the expression of CypA and the expression of SR-25 in HCC. It can be speculated that the interaction between CypA and SR-25 proteins may be involved in potential carcinogenic functions of CypA in HCC. Further studies will focus on elucidating in detail the molecular mechanisms of the interaction between CypA and SR-25.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oncology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Peiwen Lian
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jiahui Wang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Peng Li
- Department of Oncology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lixin Jiang
- Department of Gastrointestinal Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
193
|
Zhang HL, Wang MD, Zhou X, Qin CJ, Fu GB, Tang L, Wu H, Huang S, Zhao LH, Zeng M, Liu J, Cao D, Guo LN, Wang HY, Yan HX, Liu J. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment. Cancer Lett 2016; 388:1-11. [PMID: 27894955 DOI: 10.1016/j.canlet.2016.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
Cancer cells display altered metabolic phenotypes characterized by a high level of glycolysis, even under normoxic conditions. Because of a high rate of glycolytic flux and inadequate vascularization, tumor cells often suffer from nutrient deficiency and require metabolic adaptations to address such stresses. Although tumor-initiating cells (T-ICs) have been identified in various malignancies, the cells' metabolic phenotypes remain elusive. In this study, we observed that liver T-ICs preferentially survived under restricted glucose treatment. These cell populations compete successfully for glucose uptake by preferentially expressing glucose transporters (GLUT1 and GLUT3), whereas inhibition of GLUT1 or GLUT3 abolished the survival advantage and suppressed the tumorigenic potential of liver T-ICs. Among signaling pathways related to T-ICs, IL-6/STAT3 was identified to be responsible for the elevation of glucose uptake in liver T-ICs under glucose limitation. Further investigation revealed that IL-6 stimulation upregulated GLUT1 and GLUT3 expressions in CD133+ cells, particularly during glucose deprivation. More importantly, inhibition of glucose uptake sensitized liver T-ICs to sorafenib treatment and enhanced the therapeutic efficacy in vivo. Our findings suggest that blocking IL-6/STAT3-mediated preferential glucose uptake might be exploited for novel therapeutic targets during hepatocellular carcinoma (HCC) progression.
Collapse
Affiliation(s)
- Hui-Lu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming-Da Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xu Zhou
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Chen-Jie Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liang Tang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China
| | - Han Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Shuai Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Ling-Hao Zhao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Min Zeng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Jiao Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Dan Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Lin-Na Guo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China.
| | - He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China; National Center for Liver Cancer Research, Shanghai 201805, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
194
|
Ren K, Li T, Zhang W, Ren J, Li Z, Wu G. miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci 2016; 23:79. [PMID: 27832779 PMCID: PMC5103406 DOI: 10.1186/s12929-016-0295-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND miR-199a-3p was significantly downregulated in the majority of human hepatocellular carcinoma (HCC) tissues and HCC cell lines. Yes associated protein 1 (YAP1) was overexpressed in human HCC, which promoted HCC development and progression by upregulating Jagged1 and activating the Notch pathway. We searched potential targets of miR-199a-3p with DIANA, TargetScan and PicTar tools, and found that YAP1 is one of the potential targets. Based on these findings, we speculated that miR-199a-3p might suppress HCC growth by targeting YAP1, downregulating Jagged1 and suppressing the Notch pathway. RESULTS We determined the expression of miR-199a-3p and YAP1 by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found downregulation of miR-199a-3p and upregulation of YAP1 in HCC cell lines. Cell proliferation and apoptosis assays showed that miR-199a-3p suppresses HCC cell proliferation and promotes apoptosis, and knockdown of YAP1 has similar role. Furthermore, we verified that miR-199a-3p can directly target YAP1. We further investigated and confirmed that miR-199a-3p and YAP1 regulate HCC cell proliferation and apoptosis through Jagged1-Notch signaling. CONCLUSION miR-199a-3p targets YAP1, downregulates Jagged1 and suppresses the Notch signaling to inhibit HCC cell proliferation and promote apoptosis. These findings provide new insights into the mechanism by which miR-199a-3p suppresses HCC cell proliferation and induces apoptosis.
Collapse
Affiliation(s)
- Kewei Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Tengfei Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Wenzhe Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Jianzhuang Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Zhen Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| | - Gang Wu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 People’s Republic of China
| |
Collapse
|
195
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2016. [PMID: 26668505 DOI: 10.3748/wjg.v21.i45.1281426668505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
Affiliation(s)
- Yun Shi
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Si-Ye Wang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wei Wu
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yin Cai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
196
|
Zou CD, Zhao WM, Wang XN, Li Q, Huang H, Cheng WP, Jin JF, Zhang H, Wu MJ, Tai S, Zou CX, Gao X. MicroRNA-107: a novel promoter of tumor progression that targets the CPEB3/EGFR axis in human hepatocellular carcinoma. Oncotarget 2016; 7:266-78. [PMID: 26497556 PMCID: PMC4807997 DOI: 10.18632/oncotarget.5689] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many types of malignancies, including human hepatocellular carcinoma (HCC). MiR-107 has been implicated in several types of cancer regulation; however, relatively little is known about miR-107 in human HCC. In the present study, we showed that the overexpression of miR-107 accelerates the tumor progression of HCC in vitro and in vivo through its new target gene, CPEB3. Furthermore, our results demonstrated that CPEB3 is a newly discovered tumor suppressor that acts via the EGFR pathway. Therefore, our study demonstrates that the newly discovered miR-107/CPEB3/EGFR axis plays an important role in HCC progression and might represent a new potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Chen-Dan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Wei-Ming Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xiao-Na Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Qiang Li
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Wan-Peng Cheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jian-Feng Jin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - He Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ming-Juan Wu
- Academy of Traditional Chinese Medicines, Harbin, China
| | - Sheng Tai
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao-Xia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
197
|
Decreased expression of PBLD correlates with poor prognosis and functions as a tumor suppressor in human hepatocellular carcinoma. Oncotarget 2016; 7:524-37. [PMID: 26594798 PMCID: PMC4808015 DOI: 10.18632/oncotarget.6358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 11/14/2015] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating genomic and proteomic data suggested that decreased expression of phenazine biosynthesis-like domain-containing protein (PBLD) was frequently involved in hepatocellular carcinoma (HCC). However, there is lack of systematical investigation focusing on its expression pattern, clinical relevance, and biological function. Here, we found that PBLD was frequently decreased in HCC tissues relative to adjacent non-tumorigenic liver tissues. This decreased expression was significantly associated with poor tumor differentiation and advanced tumor stage. Kaplan–Meier analysis further showed that recurrence-free survival and overall survival were significantly worse among patients with low PBLD expression. Moreover, multivariate analyses revealed that PBLD was an independent predictor of OS and RFS. This prognostic value of PBLD was further validated in another independent cohort. We also found PBLD inhibited HCC cell growth and invasion in vitro and tumor growth in vivo. Furthermore, forced expression of PBLD influenced multiple downstream genes related to MAPK, NF-κB, EMT, and angiogenesis signaling pathways. PBLD deletion was an independent predictor of poor prognosis in patients with HCC. Elevated PBLD expression may reduce HCC cell growth and invasion via inactivation of several tumorigenesis-related signaling pathways.
Collapse
|
198
|
Ezzat WM, Amr KS. Insights for hepatitis C virus related hepatocellular carcinoma genetic biomarkers: Early diagnosis and therapeutic intervention. World J Hepatol 2016; 8:1251-1261. [PMID: 27843535 PMCID: PMC5084054 DOI: 10.4254/wjh.v8.i30.1251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
The current review explores the role of emerging molecular contributing factors in liver carcinogenesis on top of hepatitis C virus (HCV). Here we will try to discuss the role genetic and epigenetic factors in pathogenesis of hepatocellular carcinoma. Understanding the role of these factors will help in discovering the mystery of liver carcinogenesis on top of chronic HCV infection. Moreover, use of the studied molecular factors will provide the hepatologists with tailored diagnostic promising biomarkers and flatten the way for establishment of emerging molecular treatment based on exploring the molecular subscription of this aggressive liver cancer.
Collapse
|
199
|
Wang D, Yang L, Zhang P, LaBaer J, Hermjakob H, Li D, Yu X. AAgAtlas 1.0: a human autoantigen database. Nucleic Acids Res 2016; 45:D769-D776. [PMID: 27924021 PMCID: PMC5210642 DOI: 10.1093/nar/gkw946] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
Autoantibodies refer to antibodies that target self-antigens, which can play pivotal roles in maintaining homeostasis, distinguishing normal from tumor tissue and trigger autoimmune diseases. In the last three decades, tremendous efforts have been devoted to elucidate the generation, evolution and functions of autoantibodies, as well as their target autoantigens. However, reports of these countless previously identified autoantigens are randomly dispersed in the literature. Here, we constructed an AAgAtlas database 1.0 using text-mining and manual curation. We extracted 45 830 autoantigen-related abstracts and 94 313 sentences from PubMed using the keywords of either ‘autoantigen’ or ‘autoantibody’ or their lexical variants, which were further refined to 25 520 abstracts, 43 253 sentences and 3984 candidates by our bio-entity recognizer based on the Protein Ontology. Finally, we identified 1126 genes as human autoantigens and 1071 related human diseases, with which we constructed a human autoantigen database (AAgAtlas database 1.0). The database provides a user-friendly interface to conveniently browse, retrieve and download human autoantigens as well as their associated diseases. The database is freely accessible at http://biokb.ncpsb.org/aagatlas/. We believe this database will be a valuable resource to track and understand human autoantigens as well as to investigate their functions in basic and translational research.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Liuhui Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ping Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Henning Hermjakob
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China .,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing 102206, China
| |
Collapse
|
200
|
Gan WJ, Wang JR, Zhu XL, He XS, Guo PD, Zhang S, Li XM, Li JM, Wu H. RARγ-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis. J Exp Clin Cancer Res 2016; 35:164. [PMID: 27756432 PMCID: PMC5069892 DOI: 10.1186/s13046-016-0441-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aberrant expression of Retinoic acid receptor γ (RARγ) is implicated in cancer development. Our previous study identified that RARγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its contribution to HCC invasion and metastasis remains unclear. METHODS RARγ expression in clinical HCC samples was detected by western blot and immunohistochemistry. The relationship between RARγ expression levels and the clinical characteristics were evaluated. HCC cell line MHCC-97H were stably knocked down RARγ using a lentivirus vector-based shRNA technique. The cells were analyzed by migration and invasion assays, and injected into nude mice to assess tumor metastasis. E-cadherin expression regulated by RARγ was examined by qPCR, western blot and immunofluorescence staining. RESULTS The expression of RARγ is significantly upregulated in human HCC tissues. Moreover, its expression positively correlates with tumor size, distant metastasis and TNM stage, and negatively correlates with length of survival of HCC patients. Knockdown of RARγ markedly inhibits HCC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations reveal that RARγ functions through regulation of NF-κB-mediated E-cadherin downregulation to promote HCC invasion and metastasis. Notably, RARγ expression status negatively correlates with E-cadherin expression in HCC cell lines and clinical HCC samples. CONCLUSIONS These findings demonstrate that RARγ could promote HCC invasion and metastasis by regulating E-cadherin reduction, and implicate new strategies to aggressively treat HCC through targeting RARγ/E-cadherin signaling axis.
Collapse
Affiliation(s)
- Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiao-Li Zhu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiao-Shun He
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| |
Collapse
|