151
|
Duarte-Rojo A, Heathcote EJ, Feld JJ. 'Easy to treat' genotypes were not created equal: can rapid virological response (RVR) level the playing field? J Hepatol 2011; 55:466-73. [PMID: 21334393 DOI: 10.1016/j.jhep.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 12/19/2022]
Abstract
Genotypes 2 and 3 (G2/G3) of hepatitis C virus have been lumped together as 'easy to treat'. As a result, guidelines recommend 24 weeks of peginterferon/ribavirin for both. However, a closer look at trials shows that these genotypes are not the same, with G2 infection proving more responsive to peginterferon. The data supporting this conclusion are presented along with possible explanations for the differences observed. Ultimately, decisions must be made about therapy. Rapid virological response (RVR) may be the best parameter predicting successful antiviral therapy. For patients with G2 infection who achieve an RVR, shortened courses of therapy are effective. In contrast, for G3 patients without an RVR, there may be benefit to extending therapy to 48 weeks; however, this requires confirmation in prospective studies. Using RVR to guide therapy may level the playing field between these 'easy to treat' genotypes.
Collapse
Affiliation(s)
- Andres Duarte-Rojo
- Liver Centre, Toronto Western Hospital, University Health Network/University of Toronto, 399 Bathurst St., 6B Fell Pavilion, Room 158, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
152
|
Anderson LJ, Lin K, Compton T, Wiedmann B. Inhibition of cyclophilins alters lipid trafficking and blocks hepatitis C virus secretion. Virol J 2011; 8:329. [PMID: 21711559 PMCID: PMC3138436 DOI: 10.1186/1743-422x-8-329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/28/2011] [Indexed: 01/26/2023] Open
Abstract
Host cyclophilin (cyp) inhibitors, such as NIM811, efficiently inhibit replication of hepatitis C virus (HCV) and have shown significant promise in recent clinical trials for the treatment of chronic HCV. It is therefore important to fully understand the mechanism of action of these therapeutic agents. Data obtained from comprehensive systems biology approaches have led to the hypothesis that the antiviral activity of cyclophilin inhibitors is mediated through impairing the cellular machinery on which HCV relies to traffic cofactors necessary for formation of the replication complex. Indeed, our results demonstrate when cyclophilins are inhibited by NIM811, lipid and protein trafficking within the VLDL pathway is impaired. Following treatment of replicon or HCV infected cells with NIM811, intracellular lipid droplets (LD) more than double in size and decrease in number. Changes in the LDs in response to cyclophilin inhibition are dependent upon expression of viral proteins. Additionally, in cells treated with NIM811, apoB accumulates in a crescent or ring shaped structure surrounding the enlarged LDs and is no longer secreted. Silencing of cypA or cyp40 using siRNA had a similar effect on LD size and apoB localization as compound treatment, suggesting these cyclophilins may play an important role in lipid and apoB trafficking. Interestingly, the decrease in apoB secretion correlates with a decrease in release of viral particles in HCV infected cells. Altogether, these results add a new level of complexity to the mechanism of action of cyclophilin inhibition, and suggest the role for cyclophilins in the virus life cycle extends beyond replication to virus release.
Collapse
Affiliation(s)
- Leah J Anderson
- Novartis Institutes for Biomedical Research, Inc Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
153
|
Lipoprotein component associated with hepatitis C virus is essential for virus infectivity. Curr Opin Virol 2011; 1:19-26. [PMID: 22440563 DOI: 10.1016/j.coviro.2011.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/16/2011] [Accepted: 05/24/2011] [Indexed: 01/07/2023]
Abstract
Many chronic hepatitis patients with hepatitis C virus (HCV) are observed to have a degree of steatosis which is a factor in the progression of liver diseases. Transgenic mice expressing HCV core protein develop liver steatosis before the onset of hepatocellular carcinoma, suggesting active involvement of HCV in the de-regulation of lipid metabolism in host cells. However, the role of lipid metabolism in HCV life cycle has not been fully understood until the establishment of in vitro HCV infection and replication system. In this review we focus on HCV production with regard to modification of lipid metabolism observed in an in vitro HCV infection and replication system. The importance of lipid droplet to HCV production has been recognized, possibly at the stage of virus assembly, although the precise mechanism of lipid droplet for virus production remains elusive. Association of lipoprotein with HCV in circulating blood in chronic hepatitis C patients is observed. In fact, HCV released from culture medium is also associated with lipoprotein. The fact that treatment of HCV fraction with lipoprotein lipase (LPL) abolished infectivity indicates the essential role of lipoprotein's association with virus particle in the virus life cycle. In particular, apolipoprotein E (ApoE), a component of lipoprotein associated with HCV plays a pivotal role in HCV infectivity by functioning as a virus ligand to lipoprotein receptor that also functions as HCV receptor. These results strongly suggest the direct involvement of lipid metabolism in the regulation of the HCV life cycle.
Collapse
|
154
|
Herker E, Ott M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab 2011; 22:241-8. [PMID: 21497514 PMCID: PMC3118981 DOI: 10.1016/j.tem.2011.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world's population, establishing a lifelong infection in the majority of cases. The life cycle of HCV is closely tied to the lipid metabolism of liver cells, and lipid droplets have emerged as crucial intracellular organelles that support persistent propagation of viral infection. In this review, we examine recent advances in our understanding of how HCV usurps intracellular lipids to propagate, and highlight unique opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
- To whom correspondence should be addressed: Melanie Ott, MD, PhD, Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, Tel: (415) 734-4807, Fax: (415) 355-0855,
| |
Collapse
|
155
|
Yamashita T, Honda M, Kaneko S. Molecular mechanisms of hepatocarcinogenesis in chronic hepatitis C virus infection. J Gastroenterol Hepatol 2011; 26:960-4. [PMID: 21443660 DOI: 10.1111/j.1440-1746.2011.06723.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) and chronic liver disease worldwide. Recent developments and advances in HCV replication systems in vitro and in vivo, transgenic animal models, and gene expression profiling approaches have provided novel insights into the mechanisms of HCV replication. They have also helped elucidate host cellular responses, including activated/inactivated signaling pathways, and the relationship between innate immune responses by HCV infection and host genetic traits. However, the mechanisms of hepatocyte malignant transformation induced by HCV infection are still largely unclear, most likely due to the heterogeneity of molecular paths leading to HCC development in each individual. In this review, we summarize recent advances in knowledge about the mechanisms of hepatocarcinogenesis induced by HCV infection.
Collapse
Affiliation(s)
- Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | |
Collapse
|
156
|
Akazawa D, Morikawa K, Omi N, Takahashi H, Nakamura N, Mochizuki H, Date T, Ishii K, Suzuki T, Wakita T. Production and characterization of HCV particles from serum-free culture. Vaccine 2011; 29:4821-8. [PMID: 21550372 DOI: 10.1016/j.vaccine.2011.04.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/08/2011] [Accepted: 04/19/2011] [Indexed: 01/02/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of liver cancer, and it is therefore important to develop a prophylactic strategy for HCV infection. In recent years, a system for cell culture of the infectious HCV particle has been established, and the inactivated particle has potential as an antigen for vaccine development. In this study, we aimed to establish highly efficient HCV particle purification procedures using the following serum-free culture of HCV particles. First, naïve human hepatoma Huh7 cells were grown in serum-free medium that was supplemented with human-derived insulin, transferrin and sodium selenite. Then, in vitro transcribed JFH-1 or J6/JFH-1 chimeric HCV-RNA was transfected into the serum-free conditioned Huh7 cells. Infectious HCV was secreted into the culture supernatant with the same efficiency as that from cells cultured in FBS-containing medium. The HCV-core protein and RNA continued to be detected in the culture supernatant when the infected cells were subcultured in serum-free medium. Sucrose gradient centrifugation analyses indicated that the profiles of HCV-core, HCV-RNA and the infectivity of HCV particles were almost identical between HCV from FBS-supplemented and serum-free cultures. We further determined that anti-CD81, anti-SR-BI and anti-E2 antibodies inhibited infection by serum-free cultured HCV to a greater extent than infection by HCV from FBS-supplemented cultures. These HCV particles also differed in the level of associated apoplipoproteins: the ApoE level was lower in serum-free cultured HCV. ApoB and ApoE antibody-depletion assays suggested that infection of serum-free cultured HCV was independent of ApoB and ApoE proteins. These data suggest that lipids conjugated with HCV affect infection and neutralization.
Collapse
Affiliation(s)
- Daisuke Akazawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med 2011; 13:e13. [PMID: 21489334 DOI: 10.1017/s1462399411001785] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry - the first encounter of the virus with the host cell - are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.
Collapse
|
158
|
Verdegem D, Badillo A, Wieruszeski JM, Landrieu I, Leroy A, Bartenschlager R, Penin F, Lippens G, Hanoulle X. Domain 3 of NS5A protein from the hepatitis C virus has intrinsic alpha-helical propensity and is a substrate of cyclophilin A. J Biol Chem 2011; 286:20441-54. [PMID: 21489988 DOI: 10.1074/jbc.m110.182436] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonstructural protein 5A (NS5A) is essential for hepatitis C virus (HCV) replication and constitutes an attractive target for antiviral drug development. Although structural data for its in-plane membrane anchor and domain D1 are available, the structure of domains 2 (D2) and 3 (D3) remain poorly defined. We report here a comparative molecular characterization of the NS5A-D3 domains of the HCV JFH-1 (genotype 2a) and Con1 (genotype 1b) strains. Combining gel filtration, CD, and NMR spectroscopy analyses, we show that NS5A-D3 is natively unfolded. However, NS5A-D3 domains from both JFH-1 and Con1 strains exhibit a propensity to partially fold into an α-helix. NMR analysis identifies two putative α-helices, for which a molecular model could be obtained. The amphipathic nature of the first helix and its conservation in all genotypes suggest that it might correspond to a molecular recognition element and, as such, promote the interaction with relevant biological partner(s). Because mutations conferring resistance to cyclophilin inhibitors have been mapped into NS5A-D3, we also investigated the functional interaction between NS5A-D3 and cyclophilin A (CypA). CypA indeed interacts with NS5A-D3, and this interaction is completely abolished by cyclosporin A. NMR heteronuclear exchange experiments demonstrate that CypA has in vitro peptidyl-prolyl cis/trans-isomerase activity toward some, but not all, of the peptidyl-prolyl bonds in NS5A-D3. These studies lead to novel insights into the structural features of NS5A-D3 and its relationships with CypA.
Collapse
|
159
|
Romero-Gomez M, Eslam M, Ruiz A, Maraver M. Genes and hepatitis C: susceptibility, fibrosis progression and response to treatment. Liver Int 2011; 31:443-460. [PMID: 21382156 DOI: 10.1111/j.1478-3231.2011.02449.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus contact and infection show three different phenotypes: spontaneous viral clearance (SVC), chronic hepatitis C (CHC) and sustained virological response (SVR) following antiviral treatment. Many factors, including genetics, influence the evolution of these three phenotypes. We performed a literature search (PubMed) up to 31 January 2010 without language restriction to identify relevant studies on genes and hepatitis C. Additional studies were sought by reviewing the reference lists of the identified articles. Meta-analysis (using Meta-disk 1.4) was conducted to evaluate the association of single nucleotide polymorphism (SNP) in the IL28B region and SVR. The candidate gene approach showed strong relationships between human leucocyte antigen class II (DQB1(*) 0301 and DRB1(*) 1101) and SVC. A cirrhosis risk score involving 7 SNPs has been validated recently. The set of odds ratios of studies demonstrated an association between SNP (rs12987960/rs8099917) in the IL28B and SVR in CHC treated with peginterferon plus ribavirin (OR: 4.6; 95% CI: 2.9-7.3). The overall distribution of protective allele correlated with ethnic differences in SVR (Asians, Europeans, Hispanic and Afro-Americans) together with SVC, but not with fibrosis stage or viral load. These polymorphisms did not influence SVR in very-easy-to-treat patients such as genotype 2/3, rapid virological responders or patients with acute hepatitis C. While the genetic fingerprint for fibrosis progression remains elusive, IL28b polymorphism predicts SVC and SVR. However, nearly half of patients achieving SVR did not show favourable genotype. Further genetic signals are warranted to complete the puzzle of factors influencing hepatitis C.
Collapse
Affiliation(s)
- Manuel Romero-Gomez
- Unit for the Clinical Management of Digestive Diseases and Ciberehd, Hospital Universitario de Valme, Sevilla, Spain.
| | | | | | | |
Collapse
|
160
|
Abstract
Infection with hepatitis C virus (HCV) is a major risk factor for chronic hepatitis, cirrhosis and hepatocellular carcinoma. Once robust cell culture systems for production of recombinant infectious HCV became available, evidence on molecular mechanisms underlying assembly and release of the virus particles began to accumulate. Recent studies have demonstrated that lipid droplets and viral nonstructural proteins play key roles in HCV morphogenesis. This review considers the current knowledge about maturation of HCV structural proteins and production of viral infectious particles.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| |
Collapse
|
161
|
Schuster C, Lefèvre M, Baumert TF. Triglyceride synthesis and hepatitis C virus production: identification of a novel host factor as antiviral target. Hepatology 2011; 53:1046-8. [PMID: 21374668 DOI: 10.1002/hep.24177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Catherine Schuster
- INSERM Unité 748, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | |
Collapse
|
162
|
Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF. Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol 2011; 54:566-76. [PMID: 21146244 DOI: 10.1016/j.jhep.2010.10.014] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Preventive modalities are absent and the current antiviral treatment is limited by resistance, toxicity, and high costs. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for antiviral therapy. HCV entry is a highly orchestrated process involving viral and host cell factors. These include the viral envelope glycoproteins E1 and E2, CD81, scavenger receptor BI, and tight junction proteins claudin-1 and occludin. Recent studies in preclinical models and HCV-infected patients have demonstrated that the virus has developed multiple strategies to escape host immune responses during viral entry. These include evasion from neutralizing antibodies and viral spread by cell-cell transmission. These challenges have to be taken into account for the design of efficient antiviral strategies. Thus, a detailed understanding of the mechanisms of viral entry and escape is a prerequisite to define viral and cellular targets and develop novel preventive and therapeutic antivirals. This review summarizes the current knowledge about the molecular mechanisms of HCV entry into hepatocytes, highlights novel targets and reviews the current preclinical and clinical development of compounds targeting entry. Proof-of-concept studies suggest that HCV entry inhibitors are a novel and promising class of antivirals widening the preventive and therapeutic arsenal against HCV infection.
Collapse
|
163
|
Diong C, Raboud JM, Li M, Cooper C. HIV/hepatitis C virus and HIV/hepatitis B virus coinfections protect against antiretroviral-related hyperlipidaemia. HIV Med 2011; 12:403-11. [DOI: 10.1111/j.1468-1293.2010.00897.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
164
|
Production of hepatitis C virus lacking the envelope-encoding genes for single-cycle infection by providing homologous envelope proteins or vesicular stomatitis virus glycoproteins in trans. J Virol 2010; 85:2138-47. [PMID: 21159872 DOI: 10.1128/jvi.02313-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide health problem. The envelope glycoproteins are the major components of viral particles. Here we developed a trans-complementation system that allows the production of infectious HCV particles in whose genome the regions encoding envelope proteins are deleted (HCVΔE). The lack of envelope proteins could be efficiently complemented by the expression of homologous envelope proteins in trans. HCVΔE production could be enhanced significantly by previously described adaptive mutations in NS3 and NS5A. Moreover, HCVΔE could be propagated and passaged in packaging cells stably expressing HCV envelope proteins, resulting in only single-round infection in wild-type cells. Interestingly, we found that vesicular stomatitis virus (VSV) glycoproteins could efficiently rescue the production of HCV lacking endogenous envelope proteins, which no longer required apolipoprotein E for virus production. VSV glycoprotein-mediated viral entry could allow for the bypass of the natural HCV entry process and the delivery of HCV replicon RNA into HCV receptor-deficient cells. Our development provides a new tool for the production of single-cycle infectious HCV particles, which should be useful for studying individual steps of the HCV life cycle and may also provide a new strategy for HCV vaccine development.
Collapse
|
165
|
Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2010; 19:95-103. [PMID: 21146993 DOI: 10.1016/j.tim.2010.11.005] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 02/07/2023]
Abstract
A hallmark of the hepatitis C virus (HCV) replication cycle is its tight link with host cell lipid synthesis. This is best illustrated by the peculiar pathway used for the assembly of infectious HCV particles. Research in the past few years has shown that formation of HC-virions is closely connected to lipid droplets that could serve as an assembly platform. Moreover, HCV particle production appears to be strictly linked to very-low-density lipoproteins. In this review, we focus on new insights into the molecular aspects of the architecture and assembly of this unique type of virus particle.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Im Neuenheimer Feld 345, Heidelberg University, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
166
|
Merz A, Long G, Hiet MS, Brügger B, Chlanda P, Andre P, Wieland F, Krijnse-Locker J, Bartenschlager R. Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 2010; 286:3018-32. [PMID: 21056986 DOI: 10.1074/jbc.m110.175018] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A hallmark of hepatitis C virus (HCV) particles is their association with host cell lipids, most notably lipoprotein components. It is thought that this property accounts for the low density of virus particles and their large heterogeneity. However, the composition of infectious virions and their biochemical and morphological properties are largely unknown. We developed a system in which the envelope glycoprotein E2 was N-terminally tagged with a FLAG epitope. This virus, designated Jc1E2(FLAG), produced infectivity titers to wild type levels and allowed affinity purification of virus particles that were analyzed for their protein and lipid composition. By using mass spectrometry, we found the lipid composition of Jc1E2(FLAG) particles to resemble the one very low- and low density-lipoprotein with cholesteryl esters accounting for almost half of the total HCV lipids. Thus, HCV particles possess a unique lipid composition that is very distinct from all other viruses analyzed so far and from the human liver cells in which HCV was produced. By electron microscopy (EM), we found purified Jc1E2(FLAG) particles to be heterogeneous, mostly spherical structures, with an average diameter of about 73 nm. Importantly, the majority of E2-containing particles also contained apoE on their surface as assessed by immuno-EM. Taken together, we describe a rapid and efficient system for the production of large quantities of affinity-purified HCV allowing a comprehensive analysis of the infectious virion, including the determination of its lipid composition.
Collapse
Affiliation(s)
- Andreas Merz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Hepatitis C virus (HCV) establishes a persistent infection and is recognized as a major cause of chronic liver diseases worldwide. Although much work remains to be done regarding the viral life cycle, significant progress has been made with respect to the molecular biology of HCV, especially the viral genome replication and virion formation. A variety of host cell factors, which play roles in replication of the viral genome RNA, have been identified. Involvement of lipid droplet, lipid metabolism and the viral nonstructural proteins in the production of the infectious particles has also been revealed.
Collapse
|
168
|
Trotter JH, Liebl AL, Weeber EJ, Martin LB. Linking ecological immunology and evolutionary medicine: the case for apolipoprotein E. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01780.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin H. Trotter
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33613, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, USA
| | - Andrea L. Liebl
- Department of Integrative Biology, University of South Florida, Tampa Florida 33620, USA
| | - Edwin J. Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33613, USA
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida 33613, USA
| | - Lynn B. Martin
- Department of Integrative Biology, University of South Florida, Tampa Florida 33620, USA
| |
Collapse
|
169
|
Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 2010; 84:12048-57. [PMID: 20826689 DOI: 10.1128/jvi.01063-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.
Collapse
|
170
|
Pfeffer S, Baumert T. Impact of microRNAs for pathogenesis and treatment of hepatitis C virus infection. ACTA ACUST UNITED AC 2010; 34:431-5. [DOI: 10.1016/j.gcb.2010.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 12/11/2022]
|
171
|
Tews BA, Popescu CI, Dubuisson J. Last stop before exit - hepatitis C assembly and release as antiviral drug targets. Viruses 2010; 2:1782-1803. [PMID: 21994707 PMCID: PMC3185729 DOI: 10.3390/v2081782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/16/2010] [Accepted: 08/04/2010] [Indexed: 12/15/2022] Open
Abstract
Chronic Hepatitis C infection is a global health problem. While primary infection is often inapparent, it becomes chronic in most cases. Chronic infection with Hepatitis C virus (HCV) frequently leads to liver cirrhosis or liver cancer. Consequently, HCV infection is one of the leading causes for liver transplantation in industrialized countries. Current treatment is not HCV specific and is only effective in about half of the infected patients. This situation underlines the need for new antivirals against HCV. To develop new and more efficient drugs, it is essential to specifically target the different steps of the viral life cycle. Of those steps, the targeting of HCV assembly has the potential to abolish virus production. This review summarizes the advances in our understanding of HCV particle assembly and the identification of new antiviral targets of potential interest in this late step of the HCV life cycle.
Collapse
Affiliation(s)
- Birke Andrea Tews
- Hepatitis C Laboratory, Center of Infection and Immunity of Lille, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 1, rue du professeur Calmette, BP447, 59021 Lille, France; E-Mails: (C.-I.P.); (J.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-320-87-1162; Fax: +33-320-87-1201
| | - Costin-Ioan Popescu
- Hepatitis C Laboratory, Center of Infection and Immunity of Lille, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 1, rue du professeur Calmette, BP447, 59021 Lille, France; E-Mails: (C.-I.P.); (J.D.)
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031, Bucharest, Romania
| | - Jean Dubuisson
- Hepatitis C Laboratory, Center of Infection and Immunity of Lille, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 1, rue du professeur Calmette, BP447, 59021 Lille, France; E-Mails: (C.-I.P.); (J.D.)
| |
Collapse
|
172
|
The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. J Virol 2010; 84:11532-41. [PMID: 20719944 DOI: 10.1128/jvi.01021-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated that human apolipoprotein E (apoE) is required for the infectivity and assembly of hepatitis C virus (HCV) (K. S. Chang, J. Jiang, Z. Cai, and G. Luo, J. Virol. 81:13783-13793, 2007; J. Jiang and G. Luo, J. Virol. 83:12680-12691, 2009). In the present study, we have determined the molecular basis underlying the importance of apoE in HCV assembly. Results derived from mammalian two-hybrid studies demonstrate a specific interaction between apoE and HCV nonstructural protein 5A (NS5A). The C-terminal third of apoE per se is sufficient for interaction with NS5A. Progressive deletion mutagenesis analysis identified that the C-terminal α-helix domain of apoE is important for NS5A binding. The N-terminal receptor-binding domain and the C-terminal 20 amino acids of apoE are dispensable for the apoE-NS5A interaction. The NS5A-binding domain of apoE was mapped to the middle of the C-terminal α-helix domain between amino acids 205 and 280. Likewise, deletion mutations disrupting the apoE-NS5A interaction resulted in blockade of HCV production. These findings demonstrate that the specific apoE-NS5A interaction is required for assembly of infectious HCV. Additionally, we have determined that using different major isoforms of apoE (E2, E3, and E4) made no significant difference in the apoE-NS5A interaction. Likewise, these three major isoforms of apoE are equally compatible with infectivity and assembly of infectious HCV, suggesting that apoE isoforms do not differentially modulate the infectivity and/or assembly of HCV in cell culture.
Collapse
|
173
|
Abstract
Hepatitis C virus is a blood-borne virus that typically establishes a chronic infection in the liver, which often results in cirrhosis and hepatocellular carcinoma. Progress in understanding the complete virus life cycle has been greatly enhanced by the recent availability of a tissue culture system that produces infectious virus progeny. Thus, it is now possible to gain insight into the roles played by viral components in assembly and egress and the cellular pathways that contribute to virion formation. This minireview describes the key determining viral and host factors that are needed to produce infectious virus.
Collapse
Affiliation(s)
- Daniel M. Jones
- From the Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | - John McLauchlan
- From the Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| |
Collapse
|
174
|
Pécheur EI, Diaz O, Molle J, Icard V, Bonnafous P, Lambert O, André P. Morphological characterization and fusion properties of triglyceride-rich lipoproteins obtained from cells transduced with hepatitis C virus glycoproteins. J Biol Chem 2010; 285:25802-11. [PMID: 20551330 DOI: 10.1074/jbc.m110.131664] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The density of hepatitis C virus (HCV) particles circulating in the blood of chronically infected patients and of cell-culture produced HCV is heterogeneous. Specific infectivity and fusion of low density particles are higher than those of high density particles. We recently characterized hybrid particles produced by Caco-2 colon or Huh-7.5 liver cells transduced with HCV E1 and E2 envelope glycoproteins. Caco-2-derived particles, called empty lipo-viral particles (eLVP), are composed of triglyceride-rich lipoproteins positive for apolipoproteins B (i.e. apoB100 and apoB48) and contain HCV E1 and E2. Here we aimed at characterizing the morphology and in vitro fusion properties of eLVP using electron microscopy and fluorescence spectroscopy. They displayed the aspect of beta-lipoproteins, and immunogold labeling confirmed the presence of apoB and HCV E1 and E2 at their surface. These particles are able to fuse with lipid bilayers (liposomes) in a fusion process leading to the coalescence of internal contents of triglyceride-rich lipoproteins particles and liposomes. Fusion was pH-dependent and could be inhibited by either Z-fFG, a peptide known to inhibit viral fusion, or by monoclonal antibodies directed against HCV E2 or the apolipoprotein moiety of the hybrid particle. Interestingly, particles derived from Huh-7.5 cells failed to display equivalent efficient fusion. Optimal fusion activity is, thus, observed when HCV envelope proteins are associated to apoB-positive hybrid particles. Our results, therefore, point to a crucial role of the E1 and E2 proteins in HCV fusion with a subtle interplay with the apolipoprotein part of eLVP.
Collapse
Affiliation(s)
- Eve-Isabelle Pécheur
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon BioSciences Gerland, 69007 Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
175
|
Georgel P, Schuster C, Zeisel MB, Stoll-Keller F, Berg T, Bahram S, Baumert TF. Virus-host interactions in hepatitis C virus infection: implications for molecular pathogenesis and antiviral strategies. Trends Mol Med 2010; 16:277-86. [PMID: 20537953 DOI: 10.1016/j.molmed.2010.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 12/18/2022]
Abstract
With a global burden of 170 million chronically infected patients and a major cause of liver cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is a major public health challenge. Recent discoveries of viral and cellular factors mediating virus-host interactions have allowed scientists to uncover the key molecular mechanisms of viral infection and escape from innate and adaptive immune responses. These include the discovery of tight junction proteins as entry factors and microRNA-122, cyclophilins and lipoproteins as host factors for virus translation, replication and production. Furthermore, global genetic analyses have identified IL-28B as a genetic factor associated with the outcome of HCV infection. These discoveries markedly advance the understanding of the molecular pathogenesis of HCV infection and uncover novel targets for urgently needed antiviral strategies.
Collapse
Affiliation(s)
- Philippe Georgel
- Laboratoire d'Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
176
|
Targett-Adams P, Boulant S, Douglas MW, McLauchlan J. Lipid metabolism and HCV infection. Viruses 2010; 2:1195-1217. [PMID: 21994676 PMCID: PMC3187597 DOI: 10.3390/v2051195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 12/15/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) can lead to severe liver disease and is a global healthcare problem. The liver is highly metabolically active and one of its key functions is to control the balance of lipid throughout the body. A number of pathologies have been linked to the impact of HCV infection on liver metabolism. However, there is also growing evidence that hepatic metabolic processes contribute to the HCV life cycle. This review summarizes the relationship between lipid metabolism and key stages in the production of infectious HCV.
Collapse
Affiliation(s)
- Paul Targett-Adams
- Pfizer Global Research & Development, Infectious Diseases Group, Sandwich Laboratories, Sandwich, CT13 9NJ, UK; E-Mail:
| | - Steeve Boulant
- Immune Disease Institute, Harvard Medical School, Department of Microbiology and Molecular Genetics, Boston, MA 02115, USA; E-Mail:
| | - Mark W. Douglas
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, PO Box 412, Westmead, NSW 2145, Australia; E-Mail:
| | - John McLauchlan
- MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-141-330-4028; Fax: +44-141-330-3520
| |
Collapse
|