151
|
Tamayo-Ramos JA, Barends S, de Lange D, de Jel A, Verhaert R, de Graaff L. Enhanced production ofAspergillus nigerlaccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system. Biotechnol Bioeng 2012; 110:543-51. [DOI: 10.1002/bit.24723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 02/03/2023]
|
152
|
Zeng X, Wang S, Jing K, Zhang Z, Lu Y. Use of biodiesel-derived crude glycerol for vancomycin production byAmycolatopsis orientalisXMU-VS01. Eng Life Sci 2012. [DOI: 10.1002/elsc.201200062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xianhai Zeng
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen; P. R. China
| | - Sili Wang
- Faculty of Blood; the First Affiliated Hospital of Xiamen University; Xiamen; P. R. China
| | - Keju Jing
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen; P. R. China
| | - Zhixiang Zhang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen; P. R. China
| | | |
Collapse
|
153
|
Sun S, Cheng Z, Fan J, Cheng X, Pang Y. The utility of camptothecin as a synergist of Bacillus thuringiensis var. kurstaki and nucleopolyhedroviruses against Trichoplusia ni and Spodoptera exigua. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1164-1170. [PMID: 22928294 DOI: 10.1603/ec12014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We studied the effect of combining microbial pesticides with camptothecin (CPT) on the mortality of two lepidopteran insects: Trichoplusia ni (Hübner) and Spodoptera exigua (Hübner). CPT is an alkaloid that is often used as an anticancer agent. Here, CPT was evaluated as a microbial pesticide synergist of Bacillus thuringiensis (Bt) and insect baculovirus. The toxicity of CPT and its synergistic effects on two microbial pesticides were studied using the diet overlay method. Bioassay results showed that CPT significantly enhances the toxicity of Bt variety kurstaki to S. exigua and T ni. In addition, CPT strongly enhanced the infectivity of Autographa californica (Speyer) multinucleocapsid nucleopolyhedrovirus (AcMNPV) and S. exigua nucleopolyhedrovirus (SeMNPV). Using light microscopy, we found that CPT disrupts the peritrophic membrane of T. ni larvae and severely affects the structure of the midgut, resulting in an abnormal gut lumen morphology. We speculate that CPT increases toxicity by affecting the permeability of the peritrophic membrane.
Collapse
Affiliation(s)
- Shifeng Sun
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, No. 135 XingangXi Road, Guangzhou, Guangdong 510275, People's Republic of China
| | | | | | | | | |
Collapse
|
154
|
Luo JM, Li JS, Liu D, Liu F, Wang YT, Song XR, Wang M. Genome shuffling of Streptomyces gilvosporeus for improving natamycin production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6026-6036. [PMID: 22607399 DOI: 10.1021/jf300663w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Improvement of natamycin production by Streptomyces gilvosporeus ATCC 13326 was performed by recursive protoplast fusion in a genome-shuffling format. After four rounds of genome shuffling, the best producer, GS 4-21, with genetic stability was obtained and its production of natamycin reached 4.69 ± 0.05 g/L in shaking flask after 96 h cultivation, which was increased by 97.1% and 379% in comparison with the highest parental strain pop-72A(r)07 and the initial strain ATCC 13326, respectively. Compared with the initial strain ATCC 13326, the recombinant GS 4-21 presented higher polymorphism. Fifty-four proteins showed differential expression levels between the recombinant GS 4-21 and initial strain ATCC 13326. Of these proteins, 34 proteins were upregulated and 20 proteins were downregulated. Of the upregulated proteins, one protein, glucokinase regulatory protein, was involved in natamycin biosynthesis. This comprehensive analysis would provide useful information for understanding the natamycin metabolic pathway in S. gilvosporeus.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
155
|
Joseph B, Shrivastava N, Ramteke PW. Extracellular cold-active lipase of Microbacterium luteolum isolated from Gangotri glacier, western Himalaya: Isolation, partial purification and characterization. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
156
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
157
|
Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012; 30:1533-42. [PMID: 22537876 DOI: 10.1016/j.biotechadv.2012.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.
Collapse
Affiliation(s)
- Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
158
|
Gan M, Tang Y, Shu Y, Wu H, Chen L. Massively parallel bacterial and yeast suspension culture on a chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:863-7. [PMID: 22294524 DOI: 10.1002/smll.201102322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Indexed: 05/07/2023]
Affiliation(s)
- Mingzhe Gan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Ruoshui Road 398, Suzhou 215123, P. R. China
| | | | | | | | | |
Collapse
|
159
|
Combinatorial approach of statistical optimization and mutagenesis for improved production of acidic phytase by Aspergillus niger NCIM 563 under submerged fermentation condition. Appl Microbiol Biotechnol 2012; 97:673-9. [DOI: 10.1007/s00253-012-3965-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
|
160
|
Response surface methodology for the optimization of α-amylase production by Streptomyces sp. ML12 using agricultural byproducts. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-011-0159-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
161
|
Aftab MN, Ikram-Ul-Haq, Baig S. Systematic mutagenesis method for enhanced production of bacitracin by Bacillus licheniformis Mutant Strain UV-MN-HN-6. Braz J Microbiol 2012; 43:78-88. [PMID: 24031806 PMCID: PMC3768963 DOI: 10.1590/s1517-83822012000100009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/13/2011] [Accepted: 01/16/2012] [Indexed: 11/21/2022] Open
Abstract
The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1). Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV) radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N’-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO2) increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1) by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate), Yp/x (IU/g cells), Yx/s(g/g), Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.
Collapse
Affiliation(s)
- Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University , Lahore , Pakistan
| | | | | |
Collapse
|
162
|
Abstract
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Collapse
|
163
|
Systems Metabolic Engineering: The Creation of Microbial Cell Factories by Rational Metabolic Design and Evolution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:1-23. [DOI: 10.1007/10_2012_137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
164
|
Lanza AM, Alper HS. Using transcription machinery engineering to elicit complex cellular phenotypes. Methods Mol Biol 2012; 813:229-248. [PMID: 22083746 DOI: 10.1007/978-1-61779-412-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular hosts are widely used for the production of chemical compounds, including pharmaceutics, fuels, and specialty chemicals. However, common metabolic engineering techniques are limited in their capacity to elicit multigenic, complex phenotypes. These phenotypes can include non-pathway-based traits, such as tolerance and productivity. Global transcription machinery engineering (gTME) is a generic methodology for eliciting these complex cellular phenotypes. In gTME, dominant mutant alleles of a transcription-related protein are screened for their ability to reprogram cellular metabolism and regulation, resulting in a unique and desired phenotype. gTME has been successfully applied to both prokaryotic and eukaryotic systems, resulting in improved environmental tolerances, metabolite production, and substrate utilization. The underlying principle involves creating mutant libraries of transcription factors, screening for a desired phenotype, and iterating the process in a directed evolution fashion. The successes of this approach and details for its implementation and application are described here.
Collapse
Affiliation(s)
- Amanda M Lanza
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
165
|
Gan M, Su J, Wang J, Wu H, Chen L. A scalable microfluidic chip for bacterial suspension culture. LAB ON A CHIP 2011; 11:4087-92. [PMID: 22030862 DOI: 10.1039/c1lc20670b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic systems could, in principle, enable high-throughput breeding and screening of microbial strains for industrial applications, but parallel and scalable culture and detection chips are needed before complete microbial selection systems can be integrated and tested. Here we demonstrate a scalable multi-channel chip that is capable of bacterial suspension culture. The key invention is a multi-layered chip design, which enables a single set of control channels to function as serial peristaltic pumps to drive parallel culture chamber loops. Such design leads to scalability of the culture chip. We demonstrate that E. coli growth in the chip is equivalent or superior to conventional suspension culture on shaking beds. The chip could also be used for suspension culture of other microbes such as Bacillus subtilis, Pseudomonas stutzeri, and Zymomonas mobilis, indicating its general applicability for bacterial suspension culture.
Collapse
Affiliation(s)
- Mingzhe Gan
- Suzhou Institute of Nano Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, P R China
| | | | | | | | | |
Collapse
|
166
|
Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 2011; 29:654-60. [DOI: 10.1016/j.biotechadv.2011.05.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/25/2011] [Accepted: 05/01/2011] [Indexed: 11/21/2022]
|
167
|
Tang Y, Xia L, Ding X, Luo Y, Huang F, Jiang Y. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol Lett 2011; 325:22-9. [PMID: 22092858 DOI: 10.1111/j.1574-6968.2011.02405.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/01/2022] Open
Abstract
Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. Most of the S. spinosa genes involved in spinosyn biosynthesis are found in a contiguous c. 74-kb cluster. To increase the spinosyn production through overexpression of their biosynthetic genes, part of its gene cluster (c. 18 kb) participating in the conversion of the cyclized polyketide to spinosyn was obtained by direct cloning via Red/ET recombination rather than by constructing and screening the genomic library. The resultant plasmid pUCAmT-spn was introduced into S. spinosa CCTCC M206084 from Escherichia coli S17-1 by conjugal transfer. The subsequent single-crossover homologous recombination caused a duplication of the partial gene cluster. Integration of this plasmid enhanced production of spinosyns with a total of 388 (± 25.0) mg L(-1) for spinosyns A and D in the exconjugant S. spinosa trans1 compared with 100 (± 7.7) mg L(-1) in the parental strain. Quantitative real time polymerase chain reaction analysis of three selected genes (spnH, spnI, and spnK) confirmed the positive effect of the overexpression of these genes on the spinosyn production. This study provides a simple avenue for enhancing spinosyn production. The strategies could also be used to improve the yield of other secondary metabolites.
Collapse
Affiliation(s)
- Ying Tang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology, Changsha, China
| | | | | | | | | | | |
Collapse
|
168
|
Dunlop MJ. Engineering microbes for tolerance to next-generation biofuels. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:32. [PMID: 21936941 PMCID: PMC3189103 DOI: 10.1186/1754-6834-4-32] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/21/2011] [Indexed: 05/02/2023]
Abstract
A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.
Collapse
Affiliation(s)
- Mary J Dunlop
- University of Vermont, School of Engineering, 33 Colchester Ave, Burlington, VT 05405, USA.
| |
Collapse
|
169
|
De Vero L, Solieri L, Giudici P. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway. Lett Appl Microbiol 2011; 53:572-5. [DOI: 10.1111/j.1472-765x.2011.03140.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
170
|
Toward improvement of erythromycin A production in an industrial Saccharopolyspora erythraea strain via facilitation of genetic manipulation with an artificial attB site for specific recombination. Appl Environ Microbiol 2011; 77:7508-16. [PMID: 21841022 DOI: 10.1128/aem.06034-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large-scale production of erythromycin A (Er-A) relies on the organism Saccharopolyspora erythraea, in which lack of a typical attB site largely impedes the application of phage ΦC31 integrase-mediated recombination into site-specific engineering. We herein report construction of an artificial attB site in an industrial S. erythraea strain, HL3168 E3, in an effort to break the bottleneck previously encountered during genetic manipulation mainly from homologous or unpredictable nonspecific integration. Replacement of a cryptic gene, nrps1-1, with a cassette containing eight attB DNA sequences did not affect the high Er-producing ability, setting the stage for precisely engineering the industrial Er-producing strain for foreign DNA introduction with a reliable conjugation frequency. Transfer of either exogenous or endogenous genes of importance to Er-A biosynthesis, including the S-adenosylmethionine synthetase gene for positive regulation, vhb for increasing the oxygen supply, and two tailoring genes, eryK and eryG, for optimizing the biotransformation at the late stage, was achieved by taking advantage of this facility, allowing systematic improvement of Er-A production as well as elimination of the by-products Er-B and Er-C in fermentation. The strategy developed here can generally be applicable to other strains that lack the attB site.
Collapse
|
171
|
Savergave LS, Gadre RV, Vaidya BK, Narayanan K. Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
172
|
Vu VH, Pham TA, Kim K. Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. MYCOBIOLOGY 2011; 39:20-25. [PMID: 22783068 PMCID: PMC3385078 DOI: 10.4489/myco.2011.39.1.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 06/01/2023]
Abstract
Spores of Aspergillus sp. SU14 were treated repeatedly and sequentially with Co(60) γ-rays, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine. One selected mutant strain, Aspergillus sp. SU14-M15, produced cellulase in a yield 2.2-fold exceeding that of the wild type. Optimal conditions for the production of cellulase by the mutant fungal strain using solid-state fermentation were examined. The medium consisted of wheat-bran supplemented with 1% (w/w) urea or NH(4)Cl, 1% (w/w) rice starch, 2.5 mM MgCl(2), and 0.05% (v/w) Tween 80. Optimal moisture content and initial pH was 50% (v/w) and 3.5, respectively, and optimal aeration area was 3/100 (inoculated wheat bran/container). The medium was inoculated with 25% 48 hr seeding culture and fermented at 35℃ for 3 days. The resulting cellulase yield was 8.5-fold more than that of the wild type strain grown on the basal wheat bran medium.
Collapse
Affiliation(s)
- Van Hanh Vu
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong 445-743, Korea
| | | | | |
Collapse
|
173
|
Abstract
Cellular hosts are widely used for the production of chemical compounds including pharmaceutics, fuels, and specialty chemicals. Strain engineering focuses on manipulating and improving these hosts for new and enhanced functionalities including increased titers and better bioreactor performance. These tasks have traditionally been accomplished using a combination of random mutation, screening and selection, and metabolic engineering. However, common metabolic engineering techniques are limited in their capacity to elicit multigenic, complex phenotypes. These phenotypes can also include nonpathway-based traits such as tolerance and productivity. Global transcription machinery engineering (gTME) is a generic methodology for engineering strains with these complex cellular phenotypes. In gTME, dominant mutant alleles of a transcription-related protein are screened for their ability to reprogram cellular metabolism and regulation, resulting in a unique and desired phenotype. gTME has been successfully applied to both prokaryotic and eukaryotic systems, resulting in improved environmental tolerances, metabolite production, and substrate utilization. The underlying principle involves creating mutant libraries of transcription factors, screening for a desired phenotype, and iterating the process in a directed evolution fashion. The successes of this approach and details for its implementation and application are described here.
Collapse
Affiliation(s)
- Amanda M Lanza
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
174
|
Nasri Nasrabadi MR, Razavi SH. Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2010. [DOI: 10.1590/s0104-66322010000400003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
|
175
|
Throndset W, Kim S, Bower B, Lantz S, Kelemen B, Pepsin M, Chow N, Mitchinson C, Ward M. Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved strains. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
176
|
Pimenta EF, Vita-Marques AM, Tininis A, Seleghim MHR, Sette LD, Veloso K, Ferreira AG, Williams DE, Patrick BO, Dalisay DS, Andersen RJ, Berlinck RGS. Use of experimental design for the optimization of the production of new secondary metabolites by two Penicillium species. JOURNAL OF NATURAL PRODUCTS 2010; 73:1821-1832. [PMID: 21053938 DOI: 10.1021/np100470h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.
Collapse
Affiliation(s)
- Eli F Pimenta
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Lee KY, Park JM, Kim TY, Yun H, Lee SY. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 2010; 9:94. [PMID: 21092328 PMCID: PMC3004842 DOI: 10.1186/1475-2859-9-94] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023] Open
Abstract
Background Zymomonas mobilis ZM4 is a Gram-negative bacterium that can efficiently produce ethanol from various carbon substrates, including glucose, fructose, and sucrose, via the Entner-Doudoroff pathway. However, systems metabolic engineering is required to further enhance its metabolic performance for industrial application. As an important step towards this goal, the genome-scale metabolic model of Z. mobilis is required to systematically analyze in silico the metabolic characteristics of this bacterium under a wide range of genotypic and environmental conditions. Results The genome-scale metabolic model of Z. mobilis ZM4, ZmoMBEL601, was reconstructed based on its annotated genes, literature, physiological and biochemical databases. The metabolic model comprises 579 metabolites and 601 metabolic reactions (571 biochemical conversion and 30 transport reactions), built upon extensive search of existing knowledge. Physiological features of Z. mobilis were then examined using constraints-based flux analysis in detail as follows. First, the physiological changes of Z. mobilis as it shifts from anaerobic to aerobic environments (i.e. aerobic shift) were investigated. Then the intensities of flux-sum, which is the cluster of either all ingoing or outgoing fluxes through a metabolite, and the maximum in silico yields of ethanol for Z. mobilis and Escherichia coli were compared and analyzed. Furthermore, the substrate utilization range of Z. mobilis was expanded to include pentose sugar metabolism by introducing metabolic pathways to allow Z. mobilis to utilize pentose sugars. Finally, double gene knock-out simulations were performed to design a strategy for efficiently producing succinic acid as another example of application of the genome-scale metabolic model of Z. mobilis. Conclusion The genome-scale metabolic model reconstructed in this study was able to successfully represent the metabolic characteristics of Z. mobilis under various conditions as validated by experiments and literature information. This reconstructed metabolic model will allow better understanding of Z. mobilis metabolism and consequently designing metabolic engineering strategies for various biotechnological applications.
Collapse
Affiliation(s)
- Kyung Yun Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
178
|
Lee JY, Yang KS, Jang SA, Sung BH, Kim SC. Engineering butanol-tolerance in escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 2010; 108:742-9. [PMID: 21404248 DOI: 10.1002/bit.22989] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/10/2010] [Accepted: 10/18/2010] [Indexed: 11/06/2022]
Abstract
Escherichia coli has been explored as a host for butanol production because of its many advantages such as a fast growth and easy genetic manipulation. Butanol toxicity, however, is a major concern in the biobutanol production with E. coli. In particular, E. coli growth is severely inhibited by butanol, being almost completely stopped by 1% (vol/vol) butanol. Here we developed a new method to increase the butanol-tolerance of E. coli with artificial transcription factor (ATF) libraries which consist of zinc finger (ZF) DNA-binding proteins and an E. coli cyclic AMP receptor protein (CRP). Using these ATFs, we selected a butanol-tolerant E. coli which can tolerate up to 1.5% (vol/vol) butanol, with a concomitant increase in heat resistance. We also identified genes of E. coli that are associated with the butanol-tolerance. These results show that E. coli can be engineered as a promising host for high-yield butanol production.
Collapse
Affiliation(s)
- Ju Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
179
|
Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010; 28:817-30. [DOI: 10.1016/j.biotechadv.2010.07.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/27/2022]
|
180
|
Ni X, Li D, Yang L, Huang T, Li H, Xia H. Construction of kanamycin B overproducing strain by genetic engineering of Streptomyces tenebrarius. Appl Microbiol Biotechnol 2010; 89:723-31. [PMID: 20936279 DOI: 10.1007/s00253-010-2908-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/29/2022]
Abstract
Genetic engineering as an important approach to strain optimization has received wide recognition. Recent advances in the studies on the biosynthetic pathways and gene clusters of Streptomyces make stain optimization by genetic alteration possible. Kanamycin B is a key intermediate in the manufacture of the important medicines dibekacin and arbekacin, which belong to a class of antibiotics known as the aminoglycosides. Kanamycin could be prepared by carbamoylkanamycin B hydrolysis. However, carbamoylkanamycin B production in Streptomyces tenebrarius H6 is very low. Therefore, we tried to obtain high kanamycin B-producing strains that produced kanamycin B as a main component. In our work, aprD3 and aprD4 were clarified to be responsible for deoxygenation in apramycin and tobramycin biosynthesis. Based on this information, genes aprD3, aprQ (deduced apramycin biosynthetic gene), and aprD4 were disrupted to optimize the production of carbamoylkanamycin B. Compared with wild-type strain, mutant strain SPU313 (ΔaprD3, ΔaprQ, and ΔaprD4) produced carbamoylkanamycin B as a single antibiotic, whose production increased approximately fivefold. To construct a strain producing kanamycin B instead of carbamoylkanamycin B, the carbamoyl-transfer gene tacA was inactivated in strain SPU313. Mutant strain SPU314 (ΔaprD3, ΔaprQ, ΔaprD4, and ΔtacA) specifically produced kanamycin B, which was proven by LC-MS. This work demonstrated careful genetic engineering could significantly improve production and eliminate undesired products.
Collapse
Affiliation(s)
- Xianpu Ni
- Shenyang Pharmaceutical University, Liaoning, China
| | | | | | | | | | | |
Collapse
|
181
|
Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci U S A 2010; 107:11250-4. [PMID: 20534557 DOI: 10.1073/pnas.1006085107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Avermectin and its analogues are produced by the actinomycete Streptomyces avermitilis and are widely used in the field of animal health, agriculture, and human health. Here we have adopted a practical approach to successfully improve avermectin production in an industrial overproducer. Transcriptional levels of the wild-type strain and industrial overproducer in production cultures were monitored using microarray analysis. The avermectin biosynthetic genes, especially the pathway-specific regulatory gene, aveR, were up-regulated in the high-producing strain. The upstream promoter region of aveR was predicted and proved to be directly recognized by sigma(hrdB) in vitro. A mutant library of hrdB gene was constructed by error-prone PCR and selected by high-throughput screening. As a result of evolved hrdB expressed in the modified avermectin high-producing strain, 6.38 g/L of avermectin B1a was produced with over 50% yield improvement, in which the transcription level of aveR was significantly increased. The relevant residues were identified to center in the conserved regions. Engineering of the hrdB gene can not only elicit the overexpression of aveR but also allows for simultaneous transcription of many other genes. The results indicate that manipulating the key genes revealed by reverse engineering can effectively improve the yield of the target metabolites, providing a route to optimize production in these complex regulatory systems.
Collapse
|
182
|
Optimization of the medium for streptolydigin production by Streptomyces lydicus AS 4.2501 with precursor feeding using response surface methodology. J Taiwan Inst Chem Eng 2010. [DOI: 10.1016/j.jtice.2009.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
183
|
|
184
|
Gao H, Zhou X, Gou Z, Zhuo Y, Fu C, Liu M, Song F, Ashforth E, Zhang L. Rational design for over-production of desirable microbial metabolites by precision engineering. Antonie van Leeuwenhoek 2010; 98:151-63. [DOI: 10.1007/s10482-010-9442-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
185
|
Wang M, Liu S, Li Y, Xu R, Lu C, Shen Y. Protoplast Mutation and Genome Shuffling Induce the Endophytic Fungus Tubercularia sp. TF5 to Produce New Compounds. Curr Microbiol 2010; 61:254-60. [DOI: 10.1007/s00284-010-9604-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
186
|
Abstract
The chemical industry is currently undergoing a dramatic change driven by demand for developing more sustainable processes for the production of fuels, chemicals, and materials. In biotechnological processes different microorganisms can be exploited, and the large diversity of metabolic reactions represents a rich repository for the design of chemical conversion processes that lead to efficient production of desirable products. However, often microorganisms that produce a desirable product, either naturally or because they have been engineered through insertion of heterologous pathways, have low yields and productivities, and in order to establish an economically viable process it is necessary to improve the performance of the microorganism. Here metabolic engineering is the enabling technology. Through metabolic engineering the metabolic landscape of the microorganism is engineered such that there is an efficient conversion of the raw material, typically glucose, to the product of interest. This process may involve both insertion of new enzymes activities, deletion of existing enzyme activities, but often also deregulation of existing regulatory structures operating in the cell. In order to rapidly identify the optimal metabolic engineering strategy the industry is to an increasing extent looking into the use of tools from systems biology. This involves both x-ome technologies such as transcriptome, proteome, metabolome, and fluxome analysis, and advanced mathematical modeling tools such as genome-scale metabolic modeling. Here we look into the history of these different techniques and review how they find application in industrial biotechnology, which will lead to what we here define as industrial systems biology.
Collapse
Affiliation(s)
- José Manuel Otero
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | |
Collapse
|
187
|
Kirst HA. The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot (Tokyo) 2010; 63:101-11. [DOI: 10.1038/ja.2010.5] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
188
|
Chen Y, Smanski MJ, Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 2010; 86:19-25. [PMID: 20091304 DOI: 10.1007/s00253-009-2428-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 12/21/2022]
Abstract
Titer improvement is a constant requirement in the fermentation industry. The traditional method of "random mutation and screening" has been very effective despite the considerable amount of time and resources it demands. Rational metabolic engineering, with the use of recombinant DNA technology, provides a novel, alternative strategy for titer improvement that complements the empirical method used in industry. Manipulation of the specific regulatory systems that govern secondary metabolite production is an important aspect of metabolic engineering that can efficiently improve fermentation titers. In this review, we use examples from Streptomyces secondary metabolism, the most prolific source of clinically used drugs, to demonstrate the power and utility of exploiting natural regulatory networks, in particular pathway-specific regulators, for titer improvement. Efforts to improve the titers of fredericamycin, C-1027, platensimycin, and platencin in our lab are highlighted.
Collapse
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|
189
|
Improved production of the tallysomycin H-1 in Streptoalloteichus hindustanus SB8005 strain by fermentation optimization. Appl Microbiol Biotechnol 2010; 86:1345-53. [DOI: 10.1007/s00253-009-2406-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 11/24/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
|
190
|
Systems biology of industrial microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:51-99. [PMID: 20503029 DOI: 10.1007/10_2009_59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.
Collapse
|
191
|
Infante MR, Pérez L, Morán MC, Pons R, Mitjans M, Vinardell MP, Garcia MT, Pinazo A. Biocompatible surfactants from renewable hydrophiles. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
192
|
Tao M, Wang L, Wendt-Pienkowski E, Zhang N, Yang D, Galm U, Coughlin JM, Xu Z, Shen B. Functional characterization of tlmH in Streptoalloteichus hindustanus E465-94 ATCC 31158 unveiling new insight into tallysomycin biosynthesis and affording a novel bleomycin analog. MOLECULAR BIOSYSTEMS 2009; 6:349-56. [PMID: 20094654 DOI: 10.1039/b918106g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tallysomycins (TLMs) belong to the bleomycin (BLM) family of anticancer antibiotics and differ from the BLMs principally by the presence of a 4-amino-4,6-dideoxy-L-talose attached to C-41 of the TLM backbone as part of a glycosylcarbinolamide. To facilitate an understanding of the differences in anticancer activities observed between TLMs and BLMs, we thought to generate des-talose TLM analogs by engineering TLM biosynthesis in Streptoalloteichus hindustanus E465-94 ATCC 31158. Here we report (i) the engineering of the DeltatlmH mutant SB8005 strain that produces the two TLM analogs, TLM H-1 and TLM H-2, (ii) production, isolation, and structural elucidation of TLM H-1 and TLM H-2 by NMR and mass spectroscopic analyses as the desired des-talose TLM analogs, and (iii) comparison of the DNA cleavage activities of TLM H-1 with selected TLMs and BLMs. These findings support the previous functional assignment of tlmH to encode an alpha-ketoglutarate-dependent hydroxylase and unveil the TlmH-catalyzed hydroxylation at both C-41 and C-42 and the TlmK-catalyzed glycosylation of a labile carbinolamide intermediate as the final two steps for TLM biosynthesis. TlmH is apparently distinct from other enzymes known to catalyze carbinolamide formation. The availability of TLM H-1 now sets the stage to study the TlmH enzymology in vitro and to elucidate the exact contribution of the l-talose to the anticancer activities of TLMs in vivo.
Collapse
Affiliation(s)
- Meifeng Tao
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Dhale MA, Vijay-Raj AS. Pigment and amylase production inPenicilliumsp NIOM-02 and its radical scavenging activity. Int J Food Sci Technol 2009. [DOI: 10.1111/j.1365-2621.2009.01983.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
194
|
Vu VH, Pham TA, Kim K. Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. MYCOBIOLOGY 2009; 37:267-271. [PMID: 23983546 PMCID: PMC3749416 DOI: 10.4489/myco.2009.37.4.267] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/01/2009] [Indexed: 06/01/2023]
Abstract
A fungal strain producing a high level of cellulase was selected from 320 fungal isolates and identified as Aspergillus sp. This strain was further improved for cellulase production by sequential treatments by two repeated rounds of γ-irradiation of Co(60), ultraviolet treatment and four repeated rounds of treatment with N-methyl-N'-nitro-N-nitrosoguanidine. The best mutant strain, Aspergillus sp. XTG-4, was selected after screening and the activities of carboxymethyl cellulase, filter paper cellulase and β-glucosidase of the cellulase were improved by 2.03-, 3.20-, and 1.80-fold, respectively, when compared to the wild type strain. After being subcultured 19 times, the enzyme production of the mutant Aspergillus sp. XTG-4s was stable.
Collapse
Affiliation(s)
- Van Hanh Vu
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong 445-743, Korea
| | | | | |
Collapse
|
195
|
Nasri Nasrabadi MR, Razavi SH. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J Biosci Bioeng 2009; 109:361-8. [PMID: 20226378 DOI: 10.1016/j.jbiosc.2009.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/08/2009] [Accepted: 10/15/2009] [Indexed: 11/30/2022]
Abstract
In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM.
Collapse
Affiliation(s)
- Mohammad Reza Nasri Nasrabadi
- Department of Food Science and Engineering, Faculty of Biosystem Engineering, College of Agriculture, University of Tehran, P.O. Box 31587-78659, Karaj, Islamic Republic of Iran
| | | |
Collapse
|
196
|
Aromatic amino acid auxotrophs constructed by recombinant marker exchange in Methylophilus methylotrophus AS1 cells expressing the aroP-encoded transporter of Escherichia coli. Appl Environ Microbiol 2009; 76:75-83. [PMID: 19880640 DOI: 10.1128/aem.02217-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of auxotrophic mutants, which is a prerequisite for a substantial genetic analysis and metabolic engineering of obligate methylotrophs, remains a rather complicated task. We describe a novel method of constructing mutants of the bacterium Methylophilus methylotrophus AS1 that are auxotrophic for aromatic amino acids. The procedure begins with the Mu-driven integration of the Escherichia coli gene aroP, which encodes the common aromatic amino acid transporter, into the genome of M. methylotrophus. The resulting recombinant strain, with improved permeability to certain amino acids and their analogues, was used for mutagenesis. Mutagenesis was carried out by recombinant substitution of the target genes in the chromosome by linear DNA using the FLP-excisable marker flanked with cloned homologous arms longer than 1,000 bp. M. methylotrophus AS1 genes trpE, tyrA, pheA, and aroG were cloned in E. coli, sequenced, disrupted in vitro using a Kmr marker, and electroporated into an aroP carrier recipient strain. This approach led to the construction of a set of marker-less M. methylotrophus AS1 mutants auxotrophic for aromatic amino acids. Thus, introduction of foreign amino acid transporter genes appeared promising for the following isolation of desired auxotrophs on the basis of different methylotrophic bacteria.
Collapse
|
197
|
Strain improvement of Serratia marcescens ECU1010 and medium cost reduction for economic production of lipase. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0203-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
198
|
Funke M, Diederichs S, Kensy F, Müller C, Büchs J. The baffled microtiter plate: Increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 2009; 103:1118-28. [DOI: 10.1002/bit.22341] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
199
|
McCleary WR. Application of promoter swapping techniques to control expression of chromosomal genes. Appl Microbiol Biotechnol 2009; 84:641-8. [PMID: 19633836 DOI: 10.1007/s00253-009-2137-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/25/2022]
Abstract
The ability to control the expression of chromosomal genes is important for many applications, including metabolic engineering and the functional analysis of cellular processes. This mini-review presents recent work on the application of techniques that allow researchers to replace a chromosomal promoter with one designed for a specific level of activity, thereby exerting precise transcriptional control while retaining the natural genetic context of a gene or operon. This technique, termed promoter swapping, involves the creation of a PCR product that encodes a removable antibiotic resistance cassette and an engineered promoter. Short homology sequences on the ends of the PCR fragment target it for homologous recombination with the chromosome catalyzed by phage-derived recombination proteins. After the PCR product is introduced by electroporation into an appropriate acceptor strain, antibiotic resistance selects the desired recombination products. The antibiotic resistance cassette is then removed from the strain by site-specific recombination leaving the engineered promoter precisely positioned upstream of a target gene but downstream of a short scar consisting of a single site-specific recombination site.
Collapse
Affiliation(s)
- William R McCleary
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
200
|
Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl Environ Microbiol 2009; 75:2705-11. [PMID: 19251886 DOI: 10.1128/aem.01888-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combinatorial or random methods for strain engineering have been extensively used for the improvement of multigenic phenotypes and other traits for which the underlying mechanism is not fully understood. Although the preferred method has traditionally been mutagenesis and selection, our laboratory has successfully used mutant transcription factors, which direct the RNA polymerase (RNAP) during transcription, to engineer complex phenotypes in microbial cells. Here, we show that it is also possible to impart new phenotypes by altering the RNAP core enzyme itself, in particular through mutagenesis of the alpha subunit of the bacterial polymerase. We present the use of this tool for improving tolerance of Escherichia coli to butanol and other solvents and for increasing the titers of two commercially relevant products, L-tyrosine and hyaluronic acid. In addition, we explore the underlying physiological changes that give rise to the solvent-tolerant mutant.
Collapse
|