151
|
Javaid N, Ramzan M, Khan IA, Alahmadi TA, Datta R, Fahad S, Danish S. The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae. BMC PLANT BIOLOGY 2022; 22:384. [PMID: 35918648 PMCID: PMC9344719 DOI: 10.1186/s12870-022-03750-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Musarrat Ramzan
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270 Pakistan
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461 Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Haripur, 22620 Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Punjab Pakistan
| |
Collapse
|
152
|
Yang C, Shan B, Liu Y, Wang L, Wu Q, Luo Z, Sun D. Complete Mitochondrial Genome of Two Ectoparasitic Capsalids (Platyhelminthes: Monogenea: Monopisthocotylea): Gene Content, Composition, and Rearrangement. Genes (Basel) 2022; 13:genes13081376. [PMID: 36011287 PMCID: PMC9407395 DOI: 10.3390/genes13081376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The capsalid monogeneans are important pathogens that generally infect marine fishes and have a substantial impact on fish welfare in aquaculture systems worldwide. However, the current mitogenome information on capsalids has received little attention, limiting the understanding of their evolution and phylogenetic relationships with other monogeneans. This paper reports the complete mitochondrial genomes of Capsala katsuwoni and Capsala martinieri for the first time, which we obtained using a next-generation sequencing method. The mitogenomes of C. katsuwoni and C. martinieri are 13,265 and 13,984 bp in length, respectively. Both species contain the typical 12 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The genome compositions show a moderate A+T bias (66.5% and 63.9% for C. katsuwoni and C. martinieri, respectively) and exhibit a negative AT skew but a positive GC skew in both species. One gene block rearrangement was found in C. katsuwoni in comparison with other capsalid species. Instead of being basal to the Gyrodactylidea and Dactylogyridea or being clustered with Dactylogyridea, all species of Capsalidea are grouped into a monophyletic clade. Our results clarify the gene rearrangement process and evolutionary status of Capsalidae and lay a foundation for further phylogenetic studies of monogeneans.
Collapse
Affiliation(s)
- Changping Yang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Yan Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Qiaer Wu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Zhengli Luo
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
- School of Fisheries of Zhejiang Ocean University, Zhoushan 316022, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
- Correspondence:
| |
Collapse
|
153
|
Xiang QP, Tang JY, Yu JG, Smith DR, Zhu YM, Wang YR, Kang JS, Yang J, Zhang XC. The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:768-784. [PMID: 35648423 DOI: 10.1111/tpj.15851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.
Collapse
Affiliation(s)
- Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun-Yong Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Gao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, N6A 5B7, Ontario, Canada
| | - Yan-Mei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
154
|
Ying Z, Awais M, Akter R, Xu F, Baik S, Jung D, Yang DC, Kwak GY, Wenying Y. Discrimination of Panax ginseng from counterfeits using single nucleotide polymorphism: A focused review. FRONTIERS IN PLANT SCIENCE 2022; 13:903306. [PMID: 35968150 PMCID: PMC9366256 DOI: 10.3389/fpls.2022.903306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 05/13/2023]
Abstract
Discrimination of plant species, cultivars, and landraces is challenging because plants have high phenotypic and genotypic resemblance. Panax ginseng is commonly referred to as Korean ginseng, which contains saponins with high efficacy on cells, and has been reported to be worth billions in agroeconomic value. Korean ginseng's increasing global agroeconomic value includes additional species and cultivars that are not Korean ginseng but have physical characteristics close to it. This almost unidentifiable physical characteristic of Korean ginseng-like species is discriminated via molecular markers. Single nucleotide polymorphism (SNP), found across the plant species in abundance, is a valuable tool in the molecular mapping of genes and distinguishing a plant species from adulterants. Differentiating the composition of genes in species is quite evident, but the varieties and landraces have fewer differences in addition to single nucleotide mismatch. Especially in the exon region, there exist both favorable and adverse effects on species. With the aforementioned ideas in discriminating ginseng based on molecular markers, SNP has proven reliable and convenient, with advanced markers available. This article provides the simplest cost-effective guidelines for experiments in a traditional laboratory setting to get hands-on SNP marker analysis. Hence, the current review provides detailed up-to-date information about the discrimination of Panax ginseng exclusively based on SNP adding with a straightforward method explained which can be followed to perform the analysis.
Collapse
Affiliation(s)
- Zheng Ying
- Weifang Engineering Vocational College, Qingzhou, China
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Fengjiao Xu
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Sul Baik
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Daehyo Jung
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Gi-Young Kwak
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - You Wenying
- Weifang Engineering Vocational College, Qingzhou, China
| |
Collapse
|
155
|
Li Q, Zhang T, Li L, Bao Z, Tu W, Xiang P, Wu Q, Li P, Cao M, Huang W. Comparative Mitogenomic Analysis Reveals Intraspecific, Interspecific Variations and Genetic Diversity of Medical Fungus Ganoderma. J Fungi (Basel) 2022; 8:781. [PMID: 35893149 PMCID: PMC9394262 DOI: 10.3390/jof8080781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ganoderma species are widely distributed in the world with high diversity. Some species are considered to be pathogenic fungi while others are used as traditional medicine in Asia. In this study, we sequenced and assembled four Ganoderma complete mitogenomes, including G. subamboinense s118, G. lucidum s37, G. lingzhi s62, and G. lingzhi s74. The sizes of the four mitogenomes ranged from 50,603 to 73,416 bp. All Ganoderma specimens had a full set of core protein-coding genes (PCGs), and the rps3 gene of Ganoderma species was detected to be under positive or relaxed selection. We found that the non-conserved PCGs, which encode RNA polymerases, DNA polymerases, homing endonucleases, and unknown functional proteins, are dynamic within and between Ganoderma species. Introns were thought to be the main contributing factor in Ganoderma mitogenome size variation (p < 0.01). Frequent intron loss/gain events were detected within and between Ganoderma species. The mitogenome of G. lucidum s26 gained intron P637 in the cox3 gene compared with the other two G. lucidum mitogenomes. In addition, some rare introns in Ganoderma were detected in distinct Basidiomycetes, indicating potential gene transfer events. Comparative mitogenomic analysis revealed that gene arrangements also varied within and between Ganoderma mitogenomes. Using maximum likelihood and Bayesian inference methods with a combined mitochondrial gene dataset, phylogenetic analyses generated identical, well-supported tree topologies for 71 Agaricomycetes species. This study reveals intraspecific and interspecific variations of the Ganoderma mitogenomes, which promotes the understanding of the origin, evolution, and genetic diversity of Ganoderma species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| |
Collapse
|
156
|
Guo H, Wang L, Xu W, Huo Z, Yang P, Zhang Q, Wang H, Li P, Lu X. The complete chloroplast genome sequence of Cyathula officinalis and comparative analysis with four related species. Gene 2022; 839:146728. [PMID: 35850203 DOI: 10.1016/j.gene.2022.146728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Cyathula officinalis is a medicinal and edible herb, which can remove blood stasis, stimulate menstrual flow, and ease joint movement. In this study, the complete chloroplast genome of Cyathula officinalis was sequenced, assembled, and analyzed. Compared with the chloroplast genomes of Cyathula capitata, Achyranthes bidentata, Achyranthes longifolianine and Achyranthes aspera, the basic characteristics, codon usage bias, repeat sequences, simple sequence repeats, and phylogenetic tree were analyzed. In addition, according to nucleotide diversity analysis and sequence alignment, DNA barcoding and allele-specific PCR primers were designed to identify and distinguish Cyathula officinalis from its fake drugs, which has effectively practical significance for the authentication of "Chuan Niuxi" crude drug in the market.
Collapse
Affiliation(s)
- Huijun Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Long Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbo Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Ziting Huo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Qianwen Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
157
|
Wu X, Luo D, Zhang Y, Yang C, Crabbe MJC, Zhang T, Li G. Comparative Genomic and Phylogenetic Analysis of Chloroplast Genomes of Hawthorn (Crataegus spp.) in Southwest China. Front Genet 2022; 13:900357. [PMID: 35860470 PMCID: PMC9289535 DOI: 10.3389/fgene.2022.900357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
The hawthorns (Crataegus spp.) are widely distributed and famous for their edible and medicinal values. There are ∼18 species and seven varieties of hawthorn in China distributed throughout the country. We now report the chloroplast genome sequences from C. scabrifolia, C. chungtienensis and C. oresbia, from the southwest of China and compare them with the previously released six species in Crataegus and four species in Rosaceae. The chloroplast genome structure of Crataegus is typical and can be divided into four parts. The genome sizes are between 159,654 and 159,898bp. The three newly sequenced chloroplast genomes encode 132 genes, including 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Comparative analysis of the chloroplast genomes revealed six divergent hotspot regions, including ndhA, rps16-trnQ-UUG, ndhF-rpl32, rps16-psbK, trnR-UCU-atpA and rpl32-trnL-UAG. According to the correlation and co-occurrence analysis of repeats with indels and SNPs, the relationship between them cannot be ignored. The phylogenetic tree constructed based on the complete chloroplast genome and intergenic region sequences indicated that C. scabrifolia has a different origin from C. chungtienensis and C. oresbia. We support the placement of C. hupehensis, C. cuneata, C. scabrifolia in C. subg. Crataegus and C. kansuensis, C. oresbia, C. kansuensis in C. subg. Sanguineae. In addition, based on the morphology, geographic distribution and phylogenetic relationships of C. chungtienensis and C. oresbia, we speculate that these two species may be the same species. In conclusion, this study has enriched the chloroplast genome resources of Crataegus and provided valuable information for the phylogeny and species identification of this genus.
Collapse
Affiliation(s)
- Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dengli Luo
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingmin Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Congwei Yang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - M. James C. Crabbe
- Wolfson College, Oxford University, Oxford, United Kingdom
- Institute of Biomedical and Environmental Science and Technology, School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Ticao Zhang, ; Guodong Li,
| | - Guodong Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Ticao Zhang, ; Guodong Li,
| |
Collapse
|
158
|
Huang S, Liu S, Liang X, Qin Y. The complete chloroplast genome sequence of Aspidopterys concava (Wall.) A. Juss. (Malpighiaceae). Mitochondrial DNA B Resour 2022; 7:1357-1359. [PMID: 35903305 PMCID: PMC9318314 DOI: 10.1080/23802359.2022.2098853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aspidopterys concava is related to a group of important medicinal plants in Malpighiaceae in southeast Asia. Here, we report the first chloroplast genome fully sequenced and annotated for Aspidopterys concava. The genome size was 160,441 bp and contained a large single-copy (LSC) region of 71,434 bp, a small single-copy (SSC) region of 53,544 bp, and a pair of inverted repeats (IRs) regions of 8943 bp. Total GC content was 37.9%. It contained 125 genes in total, comprising 82 protein-coding genes, 37 transfer RNA genes, and six ribosomal RNA genes. Phylogenetic analysis showed that A. concava was the most closely related to A. obcordata from the same genus.
Collapse
Affiliation(s)
| | - Shinan Liu
- Forestry College, Guangxi University, Nanning, China
| | | | - Yonghua Qin
- Guangxi Nanning Arboretum, Nanning, China
- Guangxi Forestry Inventory and Planning Institute, Nanning, China
| |
Collapse
|
159
|
He H, Zhang G, Chen M, Yang S, Liang G, Liang R. The Complete Mitochondrial Genome of Plectorhinchus Chaetodonoides (Perciformes: Haemulidae). Mitochondrial DNA B Resour 2022; 7:1334-1336. [PMID: 35898664 PMCID: PMC9310796 DOI: 10.1080/23802359.2022.2098852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plectorhinchus chaetodonoides Lacepède, 1801 is a widespread multicolored sweetlips fish found in the Indo-West Pacific Ocean where its appearance and color patterns drastically change during growth. In this study, the whole mitochondrial genome of P. chaetodonoides was sequenced which revealed it is 16,546 bp long and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one noncoding regulatory region. The GC content of the whole genome was 47.5% and 48.2%, 46.3%, 46.8%, 42.5% in the protein coding genes, tRNAs, rRNAs, and control regions, respectively. Molecular phylogenetic analysis resolved P. chaetodonoides as closely associated with Diagramma pictum and nested within a clade of Haemulidae that is allied with species from the Lutjanidae, Kyphosidae, Teraponidae, and Sciaenidae families. These results provide an essential genomic resource for future evolutionary and conservation studies of P. chaetodonoides as well as the Haemulidae family.
Collapse
Affiliation(s)
- Haobin He
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, China
| | - Guoqing Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, China
| | - Ming Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, China
| | - Sen Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guanyu Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rishen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, China
| |
Collapse
|
160
|
Li C, Liu Y, Lin F, Zheng Y, Huang P. Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily of Papilionoideae (Fabaceae). PeerJ 2022; 10:e13570. [PMID: 35795179 PMCID: PMC9252178 DOI: 10.7717/peerj.13570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Dalbergia spp. are numerous and widely distributed in pantropical areas in Asia, Africa and America, and most of the species have important economic and ecological value as precious timber. In this study, we determined and characterized six complete chloroplast genomes of Dalbergia species (Dalbergia obtusifolia, D. hupeana, D. mimosoides, D. sissoo, D. hancei, D. balansae), which displayed the typical quadripartite structure of angiosperms. The sizes of the genomes ranged from 155,698 bp (D. hancei) to 156,419 bp (D. obtusifolia). The complete chloroplast genomes of Dalbergia include 37 tRNA genes, eight rRNA genes and 84 protein-coding genes. We analysed the sequence diversity of Dalberigia chloroplast genomes coupled with previous reports. The results showed 12 noncoding regions (rps16-accD, trnR-UCU-trnG-UCC, ndhE-ndhG, trnG-UCC-psbZ, rps8-rpl14, trnP-UGG-psaJ, ndhH-rps15, trnQ-UUG-rps16, trnS-GCU-psbI, rps12-clpP, psbA-trnK-UUU, trnK-UUU-intron), and four coding regions (rps16, ycf1, rps15 and ndhF) showed many nucleotide variations that could be used as potential molecular markers. Based on a site-specific model, we analysed the selective pressure of chloroplast genes in Dalbergia species. Twenty-two genes with positively selected sites were detected, involving the photosynthetic system (ndhC, adhD, ndhF, petB, psaA, psaB, psbB, psbC, psbK and rbcL), self-replication category of genes (rpoA, rpoC2, rps3, rps12 and rps18) and others (accD, ccsA, cemA, clpP, matK, ycf1 and ycf2). Additionally, we identified potential RNA editing sites that were relatively conserved in the genus Dalbergia. Furthermore, the comparative analysis of cp genomes of Dalbergieae species indicated that the boundary of IRs/SSC was highly variable, which resulted in the size variation of cp genomes. Finally, phylogenetic analysis showed an inferred phylogenetic tree of Papilionoideae species with high bootstrap support and suggested that Amorpheae was the sister of the clade Dalbergieae. Moreover, three genera of the Pterocarpus clade showed a nested evolutionary relationship. These complete cp genomes provided valuable information for understanding the genetic variation and phylogenetic relationship of Dalbergia species with their relatives.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
161
|
Xu Y, Dong Y, Cheng W, Wu K, Gao H, Liu L, Xu L, Gong B. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Diospyros oleifera, the first representative from the family Ebenaceae. Heliyon 2022; 8:e09870. [PMID: 35847622 PMCID: PMC9283892 DOI: 10.1016/j.heliyon.2022.e09870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 01/30/2023] Open
Abstract
Plant mitochondrial genomes are a valuable source of genetic information for a better understanding of phylogenetic relationships. However, no mitochondrial genome of any species in Ebenaceae has been reported. In this study, we reported the first mitochondrial genome of an Ebenaceae model plant Diospyros oleifera. The mitogenome was 493,958 bp in length, contained 39 protein-coding genes, 27 transfer RNA genes, and 3 ribosomal RNA genes. The rps2 and rps11 genes were missing in the D. oleifera mt genome, while the rps10 gene was identified. The length of the repetitive sequence in the D. oleifera mt genome was 31 kb, accounting for 6.33%. A clear bias in RNA-editing sites were found in the D. oleifera mt genome. We also detected 28 chloroplast-derived fragments significantly associated with D. oleifera mt genes, indicating intracellular tRNA genes transferred frequently from chloroplasts to mitochondria in D. oleifera. Phylogenetic analysis based on the mt genomes of D. oleifera and 27 other taxa reflected the exact evolutionary and taxonomic status of D. oleifera. Ka/Ks analysis revealed that 95.16% of the protein-coding genes in the D. oleifera mt genome had undergone negative selections. But, the rearrangement of mitochondrial genes has been widely occur among D. oleifera and these observed species. These results will lay the foundation for identifying further evolutionary relationships within Ebenaceae.
Collapse
Affiliation(s)
- Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yi Dong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Wenqiang Cheng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Kaiyun Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Haidong Gao
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Liu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Xu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
162
|
The complete chloroplast genome of critically endangered Chimonobambusa hirtinoda (Poaceae: Chimonobambusa) and phylogenetic analysis. Sci Rep 2022; 12:9649. [PMID: 35688841 PMCID: PMC9187695 DOI: 10.1038/s41598-022-13204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Chimonobambusa hirtinoda, a threatened species, is only naturally distributed in Doupeng Mountain, Duyun, Guizhou, China. Next-generation sequencing (NGS) is used to obtain the complete chloroplast (cp) genome sequence of C. hirtinoda. The sequence was assembled and analyzed for phylogenetic and evolutionary studies. Additionally, we compared the cp genome of C. hirtinoda with previously published Chimonobambusa species. The cp genome of C. hirtinoda has a total length of 139, 561 bp and 38.90% GC content. This genome included a large single -copy (LSC) region of 83, 166 bp, a small single-copy (SSC) region of 20, 811 bp and a pair of inverted repeats of 21,792 bp each. We discovered 130 genes in the cp genome, including 85 protein-coding genes, 37 tRNA, and 8 rRNA genes. A total of 48 simple sequence repeats (SSRs) were detected. The A/U preference of the third nucleotide in the cp genome of C. hirtinoda was obtained by measuring the codon usage frequency of amino acids. Furthermore, phylogenetic analysis using complete cp sequences and matK gene revealed a genetic relationship within the Chimonobambusa genus. This study reported the chloroplast genome of the C. hirtinoda.
Collapse
|
163
|
Xia C, Wang M, Guan Y, Li Y, Li J. Comparative analysis of complete chloroplast genome of ethnodrug Aconitum episcopale and insight into its phylogenetic relationships. Sci Rep 2022; 12:9439. [PMID: 35676401 PMCID: PMC9178047 DOI: 10.1038/s41598-022-13524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Aconitum episcopale Leveille is an important medicinal plant from the genus Aconitum L. of Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. According to the available data and Ethno folk applications, A. episcopale is the only Aconitum species that has detoxifying and antialcoholic property. It can detoxify opium, especially the poisoning of Aconitum plants. Aconitum species have been widely used for their medicinal properties, and it is important to be noted that many of the species of this plant are reported to be toxic also. Distinguishing the species of this plant based on the morphology is a tough task and there are also no significant differences in the chemical composition. Therefore, before application of this plant for medicinal usage, it is very important to identify the species which could be life-threatening and exclude them. In this paper, the complete chloroplast (cp) genome sequence of A. episcopale was acquired by Illumina paired-end (PE) sequencing technology and compared with other species in the same family and genus. Herein, we report the complete cp genome of A. episcopale. The whole circular cp genome of A. episcopale has been found to be of 155,827 bp in size and contains a large single-copy region (LSC) of 86,452 bp, a small single-copy region (SSC) of 16,939 bp, and two inverted repeat regions (IRs) of 26,218 bp. The A. episcopale cp genome was found to be comprised of 132 genes, including 85 protein-coding genes (PCGs), 37 transfer RNA genes (tRNAs), eight ribosomal RNA genes (rRNAs), and two pseudogenes. A total of 20 genes contained introns, of which 14 genes contained a single intron and two genes had two introns. The chloroplast genome of A. episcopale contained 64 codons encoding 20 amino acids, with the number of codons encoding corresponding amino acids ranging from 22 to 1068. The Met and Trp amino acids have only one codon, and other amino acids had 2–6 codons. A total of 64 simple sequence repeats (SSRs) were identified, among which mononucleotide sequences accounted for the most. Phylogenetic analysis showed that A. episcopale is closely related with A. delavayi. Cumulatively the results of this study provided an essential theoretical basis for the molecular identification and phylogeny of A. episcopale.
Collapse
|
164
|
Jo E, Cho G. The complete mitochondrial genome of Cacopsyllaburckhardti (Hemiptera, Psylloidea, Psyllidae). Biodivers Data J 2022; 10:e85094. [PMID: 36761512 PMCID: PMC9848484 DOI: 10.3897/bdj.10.e85094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
Cacopsyllaburckhardti Luo, Li, Ma & Cai, 2012 (Hemiptera, Psylloidea, Psyllidae) is a pear psyllid species, distributed in the East Asia. The complete mitogenome of C.burckhardti is obtained in this study for the first time. The mitogenome of C.burckhardti is circular form and 14,798 bp long, which consists of 13 protein-coding genes, 22 tRNAs and two rRNAs. The base composition is 38.80% for A, 34.89% for T, 9.99% for G and 16.33% for C, with the higher A + T contents (73.69%). The phylogenetic analysis, using 13 protein-coding genes, shows that C.burckhardti is clustered with other Cacopsylla species and nested in the Psyllidae clade within the superfamily Psylloidea.
Collapse
Affiliation(s)
- Euna Jo
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of KoreaDivision of Biotechnology, College of Life Sciences and Biotechnology, Korea UniversitySeoulRepublic of Korea,Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, Republic of KoreaDivision of Life Sciences, Korea Polar Research Institute (KOPRI)IncheonRepublic of Korea
| | - Geonho Cho
- Sunchon National University, Suncheon, Republic of KoreaSunchon National UniversitySuncheonRepublic of Korea
| |
Collapse
|
165
|
Xia X, Peng J, Yang L, Zhao X, Duan A, Wang D. Comparative Analysis of the Complete Chloroplast Genomes of Eight Ficus Species and Insights into the Phylogenetic Relationships of Ficus. Life (Basel) 2022; 12:life12060848. [PMID: 35743879 PMCID: PMC9224849 DOI: 10.3390/life12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
The genus Ficus is an evergreen plant, the most numerous species in the family Moraceae, and is often used as a food and pharmacy source. The phylogenetic relationships of the genus Ficus have been debated for many years due to the overlapping phenotypic characters and morphological similarities between the genera. In this study, the eight Ficus species (Ficus altissima, Ficus auriculata, Ficus benjamina, Ficus curtipes, Ficus heteromorpha, Ficus lyrata, Ficus microcarpa, and Ficus virens) complete chloroplast (cp) genomes were successfully sequenced and phylogenetic analyses were made with other Ficus species. The result showed that the eight Ficus cp genomes ranged from 160,333 bp (F. heteromorpha) to 160,772 bp (F. curtipes), with a typical quadripartite structure. It was found that the eight Ficus cp genomes had similar genome structures, containing 127 unique genes. The cp genomes of the eight Ficus species contained 89−104 SSR loci, which were dominated by mono-nucleotides repeats. Moreover, we identified eight hypervariable regions (trnS-GCU_trnG-UCC, trnT-GGU_psbD, trnV-UAC_trnM-CAU, clpP_psbB, ndhF_trnL-UAG, trnL-UAG_ccsA, ndhD_psaC, and ycf1). Phylogenetic analyses have shown that the subgenus Ficus and subgenus Synoecia exhibit close affinities and based on the results, we prefer to merge the subgenus Synoecia into the subgenus Ficus. At the same time, new insights into the subgeneric classification of the Ficus macrophylla were provided. Overall, these results provide useful data for further studies on the molecular identification, phylogeny, species identification and population genetics of speciation in the Ficus genus.
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100089, China;
| | - Lin Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Xueli Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Anan Duan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
- Correspondence: ; Tel.: +86-138-8891-5161
| |
Collapse
|
166
|
Zhang J, Yang Y, Tang J, Luo Y, Lv H, Chai S. The complete chloroplast genome sequence of Habenaria dentata (Orchidaceae). Mitochondrial DNA B Resour 2022; 7:969-970. [PMID: 35712546 PMCID: PMC9196706 DOI: 10.1080/23802359.2022.2080016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Habenaria dentata is a rare species with high ornamental value in China. In this study, we report the complete chloroplast (cp) genome of H. dentata using the Illumina sequencing data. The total genome of H. dentata is 153,682 bp in length and the GC content is 36.62%, with a pair of inverted repeats (IRs) regions of 26,339 bp each, a large single-copy (LSC) region of 83,963 bp and a small single-copy (SSC) region of 17,041 bp. The cp genome encoded 133 genes, including 87 protein-coding genes (PCG), eight rRNA genes, and 38 tRNA genes. The maximum-likelihood phylogenetic analysis based on 12 cp genomes showed that H. dentata was sister to Habenaria chejuensis and Habenaria ciliolaris. This work will be valuable for genetic and phylogenetic studies on H. dentata.
Collapse
Affiliation(s)
- Jin Zhang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yishan Yang
- College of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Jianmin Tang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yajin Luo
- Yachang Orchid National Nature Reserve Management Center, Baise, China
| | - Huqiang Lv
- College of Pharmacy, Guilin Medical University, Guilin, China
- Xi'an Research Institute of Chinese Lacquer Under All China Federation of Supply and Marketing Cooperatives, Xi'an, China
| | - Shengfeng Chai
- College of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
167
|
Xia C, Wang M, Guan Y, Li J. Comparative Analysis of the Chloroplast Genome for Aconitum Species: Genome Structure and Phylogenetic Relationships. Front Genet 2022; 13:878182. [PMID: 35711937 PMCID: PMC9194378 DOI: 10.3389/fgene.2022.878182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aconitum is an important medicinal group of the Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. There are about 350 Aconitum species globally and about 170 species in China. It is challenging to identify the species in morphology, and the lack of molecular biology information hinders the identification and rational utilization of the germplasm of this genus. Therefore, it is necessary to increase the molecular data of Aconitum species. This paper acquired the complete chloroplast (CP) genome sequence of ten medicinal plants of Aconitum species from Yunnan by Illumina paired-end (PE) sequencing technology and compared it with other species in the same family and genus. These CP genomes exhibited typical circular quadripartite structure, and their sizes ranged from 155,475 (A. stylosum) to 155,921 bp (A. vilmoinianum), including a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRs). Their gene content, order, and GC content (38.1%) were similar. Moreover, their number of genes ranged from 129 (A. vilmoinianum) to 132 (A. ramulosum), including 83 to 85 protein-coding genes (PCGs), 37 tRNA genes (tRNAs), eight rRNA genes (rRNAs), and two pseudogenes. In addition, we performed repeated sequence analysis, genomic structure, and comparative analysis using 42 Aconitum chloroplast genomes, including ten Aconitum chloroplast genomes and other sequenced Aconitum species. A total of 48-79 simple sequence repeats (SSRs) and 17 to 77 long repeat sequences were identified. IR regions showed higher variability than the SSC region and LSC region. Seven mutational hotspots were screened out, including trnK-UUU-trnQ-UGG, psbD, ndhJ-ndhK, clpP, psbH-petB, ycf1, and trnA-UGC-trnI-GAU, respectively. The phylogenetic trees of ten Aconitum species and other Aconitum species revealed that the complete CP genome was beneficial in determining the complex phylogenetic relationships among Aconitum species. This study provides a potential molecular marker and genomic resource for phylogeny and species identification of Aconitum species and an important reference and basis for Ranunculaceae species identification and phylogeny.
Collapse
Affiliation(s)
- Conglong Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
- College of Pharmacy, Dali University, Dali, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| | - Yunhui Guan
- College of Pharmacy, Dali University, Dali, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
168
|
Huang Y, Li J, Yang Z, An W, Xie C, Liu S, Zheng X. Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC PLANT BIOLOGY 2022; 22:253. [PMID: 35606691 PMCID: PMC9125854 DOI: 10.1186/s12870-022-03643-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Jing Li
- Traditional Chinese Medicine Gynecology Laboratory in Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510410, China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China.
| |
Collapse
|
169
|
Huo Z, Xu W, Guo H, Yang P, Zhang Q, Lu X, Wang L. The complete chloroplast genome of Persicaria perfoliata and comparative analysis with Four Medicinal Plants of Polygonaceae. Genome 2022; 65:377-389. [PMID: 35576612 DOI: 10.1139/gen-2021-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polygonaceae is a large family of medicinal herbs that includes many species used as traditional Chinese medicine, such as Persicaria perfoliate. Here, we sequenced the complete cp genome of P. perfoliata using Illumina sequencing technology with the purpose to provide a method to facilitate accurate identification. After being annotated, the cp genome of P. perfoliata was compared with Fagopyrum tataricum, Persicaria chinensis, Fagopyrum dibotrys and Fallopia multiflora. The complete cp genome of P. perfoliata is 160,730 bp in length, containing a small single copy (SSC) region of 12,927 bp, a large single copy (LSC) region of 85,433 bp and a pair of inverted repeats (IR) regions of 62,370 bp. A total of 131 genes were annotated, including eight rRNA genes, 34 tRNA genes and 84 protein-coding genes. Forty-two simple sequence repeats and fifty-five repeat sequences were identified. Mutational hot spots analyses indicated that five genes (matK, ndhF, ccsA, cemA, rpl20) could be selected as candidates for molecular markers. Moreover, phylogenetic analysis showed that all the Polygonaceae species formed a monophyletic clade, and P. perfoliata showed the closest relationship with P. chinense. The study provides valuable molecular information to accurately identify P. perfoliata and assist in its development and application.
Collapse
Affiliation(s)
- Ziting Huo
- China Pharmaceutical University, 56651, Nanjing, China;
| | - Wenbo Xu
- China Pharmaceutical University, 56651, Nanjing, China;
| | - Huijun Guo
- China Pharmaceutical University, 56651, Nanjing, China;
| | - Peng Yang
- China Pharmaceutical University, 56651, Nanjing, China;
| | - Qianwen Zhang
- China Pharmaceutical University, 56651, Nanjing, China;
| | - Xu Lu
- China Pharmaceutical University, 56651, Nanjing, China;
| | - Long Wang
- China Pharmaceutical University, 56651, Nanjing, China;
| |
Collapse
|
170
|
Guo S, Liao X, Chen S, Liao B, Guo Y, Cheng R, Xiao S, Hu H, Chen J, Pei J, Chen Y, Xu J, Chen S. A Comparative Analysis of the Chloroplast Genomes of Four Polygonum Medicinal Plants. Front Genet 2022; 13:764534. [PMID: 35547259 PMCID: PMC9084321 DOI: 10.3389/fgene.2022.764534] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Polygonum is a generalized genus of the Polygonaceae family that includes various herbaceous plants. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Polygonum at the chloroplast (cp) genome-scale level, we sequenced and annotated the complete chloroplast genomes of four Polygonum species using next-generation sequencing technology and CpGAVAS. Then, repeat sequences, IR contractions, and expansion and transformation sites of chloroplast genomes of four Polygonum species were studied, and a phylogenetic tree was built using the chloroplast genomes of Polygonum. The results indicated that the chloroplast genome construction of Polygonum also displayed characteristic four types of results, comparable to the published chloroplast genome of recorded angiosperms. The chloroplast genomes of the four Polygonum plants are highly consistent in genome size (159,015 bp-163,461 bp), number of genes (112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes), gene types, gene order, codon usage, and repeat sequence distribution, which identifies the high preservation among the Polygonum chloroplast genomes. The Polygonum phylogenetic tree was recreated by a full sequence of the chloroplast genome, which illustrates that the P. bistorta, P. orientale, and P. perfoliatum are divided into the same branch, and P. aviculare belongs to Fallopia. The precise system site of lots base parts requires further verification, but the study would provide a basis for developing the available genetic resources and evolutionary relationships of Polygonum.
Collapse
Affiliation(s)
- Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Guo
- Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangjin Chen
- Department of City and Regional Planning, Nanjing University, Nanjing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
171
|
Wang T, Chen LL, Shu HJ, You F, Liang XL, Li J, Ren J, Wanga VO, Mutie FM, Cai XZ, Liu KM, Hu GW. Fortunella venosa (Champ. ex Benth.) C. C. Huang and F. hindsii (Champ. ex Benth.) Swingle as Independent Species: Evidence From Morphology and Molecular Systematics and Taxonomic Revision of Fortunella (Rutaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:867659. [PMID: 35646034 PMCID: PMC9133918 DOI: 10.3389/fpls.2022.867659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Recently, the systematic status of Fortunella Swingle and its taxonomy has attracted much attention. Flora of China incorporates Fortunella into Citrus Linn. and treats all species of the traditional Fortunella as one species, namely Citrus japonica (Thunb.) Swingle. Furthermore, F. venosa (Champ. ex Benth.) C. C. Huang and F. hindsii (Champ. ex Benth.) Swingle are currently considered as synonyms of C. japonica. In this paper, morphological, palynological, and phylogenetic analyses were used to systematically explore the taxonomic status of traditional Fortunella. The key morphological features that differed among the Fortunella species were the leaf and the petiole hence could be key in its taxonomic classification of the species. Additionally, pollen morphological analysis based on the pollen size, germination grooves, polar, and equatorial axes also supported the separation of the species. The results of the phylogenetic analysis showed that each of the three species clustered separately, hence strongly supporting the conclusion of independent species. In addition, the phylogenetic analysis showed that the two genera clustered closely together hence our results support the incorporation of Fortunella into Citrus. Based on the above, this article has revised the classification of the traditional Fortunella and determined that this genus has three species, namely; F. venosa, F. hindsii, and F. japonica. F. venosa and F. hindsii are placed in the Citrus as separate species, and their species names still use the previous specific epithet. The revised scientific names of the new combinations of F. venosa and F. hindsii are as follows: Citrus venosa (Champ. ex Benth.) K. M. Liu, X. Z. Cai, and G. W. Hu, comb. nov. and Citrus hindsii (Champ. ex Benth.) K. M. Liu, G. W. Hu, and X. Z. Cai, comb. nov. F. venosa is the original species of Fortunella, F. venosa and F. hindsii are both listed as the second-class key protected wild plants in China. Therefore, the establishment of the taxonomic status of F. venosa and F. hindsii not only deepens our understanding, importance, and the complexity of the systematic classification of Fortunella, but is also significant for global biodiversity conservation, genetic resources for breeding purposes, and population genetics.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ling-Ling Chen
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Juan Shu
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang You
- Department of Ecological Environment of Hunan Province, Changsha, China
| | - Xiao-Li Liang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Li
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Ren
- College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Vincent Okelo Wanga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- UCAS, University of Chinese Academy of Sciences, Beijing, China
| | - Fredrick Munyao Mutie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- UCAS, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Zhen Cai
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ke-Ming Liu
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- UCAS, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
172
|
Fan X, Wang W, Wagutu GK, Li W, Li X, Chen Y. Fifteen complete chloroplast genomes of Trapa species (Trapaceae): insight into genome structure, comparative analysis and phylogenetic relationships. BMC PLANT BIOLOGY 2022; 22:230. [PMID: 35513783 PMCID: PMC9069798 DOI: 10.1186/s12870-022-03608-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/19/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Trapa L. is a floating-leaved aquatic plant with important economic and ecological values. However, the species identification and phylogenetic relationship within Trapa are still controversial, which necessitates the need for plastid genome information of Trapa. In this study, complete chloroplast genomes of 13 Trapa species/taxa were sequenced and annotated. Combined with released sequences, comparative analyses of chloroplast genomes were performed on the 15 Trapa species/taxa for the first time. RESULTS The Trapa chloroplast genomes exhibited typical quadripartite structures with lengths from 155,453 to 155,559 bp. The gene orders and contents within Trapa were conservative, but several changes were found in the microstructure. The intron loss of rpl2, also detected in Lythraceae, was found in all Trapa species/taxa, suggesting close genetic relationship between Lythraceae and Trapaceae. Notably, two small-seed species (T. incisa and T. maximowiczii) showed the smallest genome size with 155,453 and 155,477 bp, respectively. Each cp genome contained the same 130 genes consisting of 85 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Trapa species/taxa showed 37 (T. incisa and T. maximowiczii) to 41 (T. sibirica) long repeats, including forward, palindromic, reversed and complementary repeats. There were 110 (T. quadrispinosa) to 123 (T. incisa and T. maximowiczii) SSR (simple sequence repeat) loci in Trapa chloroplast genomes. Comparative analyses revealed that two hotspot regions (atpA-atpF and rps2-rpoC2) in Trapa chloroplast genomes could be served as potential molecular markers. Three phylogenetic analyses (ML, MP and BI) consistently showed that there were two clusters within Trapa, including large- and small-seed species/taxa, respectively; for the large-seed Trapa, they clustered according to their geographical origin and tubercle morphology on the surface of seeds. CONCLUSION In summary, we have acquired the sequences of 13 Trapa chloroplast genomes, and performed the comparative analyses within Trapa for the first time. The results have helped us better identify the Trapa species/taxa and deepen the understanding of genetic basis and phylogenetic relationship of Trapa, which will facilitate the effective management and utilization of the important genetic resources in the future.
Collapse
Affiliation(s)
- Xiangrong Fan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- College of Science, Tibet University, Lhasa, 850000, People's Republic of China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, People's Republic of China
| | - Wuchao Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Godfrey K Wagutu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Xiuling Li
- College of Life Science, Linyi University, Linyi, 276000, People's Republic of China.
| | - Yuanyuan Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
173
|
Wang YH, Chen G. Complete chloroplast genome sequence of Pithecellobium clypearia (Jack) Benth. Mitochondrial DNA B Resour 2022; 7:719-721. [PMID: 35528251 PMCID: PMC9067968 DOI: 10.1080/23802359.2022.2068974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pithecellobium clypearia (Jack) Benth. 1844 belongs to the genus Pithecellobium in the family Fabaceae. The complete chloroplast genome of P. clypearia was sequenced and analyzed by Illumina sequencing in this study. The full length of the complete chloroplast genome is 176,770 bp, containing a pair of inverted repeat regions of 39,693 bp (IRa and IRb) separated by a large single-copy (LSC) region of 92,500 bp and a small single-copy (SSC) region of 4,884 bp. The P. clypearia chloroplast genome encodes 137 genes, comprising 92 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis based on complete chloroplast genomes revealed that P. clypearia is closely related to Archidendron lucyi and Pithecellobium flexicaule. This study provides useful resources for further study and development of this species.
Collapse
Affiliation(s)
- Ying-hua Wang
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Gang Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| |
Collapse
|
174
|
Zhang M, Chen N. Comparative analysis of Thalassionema chloroplast genomes revealed hidden biodiversity. BMC Genomics 2022; 23:327. [PMID: 35477350 PMCID: PMC9044688 DOI: 10.1186/s12864-022-08532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
The cosmopolitan Thalassionema species are often dominant components of the plankton diatom flora and sediment diatom assemblages in all but the Polar regions, making important ecological contribution to primary productivity. Historical studies concentrated on their indicative function for the marine environment based primarily on morphological features and essentially ignored their genomic information, hindering in-depth investigation on Thalassionema biodiversity. In this project, we constructed the complete chloroplast genomes (cpDNAs) of seven Thalassionema strains representing three different species, which were also the first cpDNAs constructed for any species in the order Thalassionematales that includes 35 reported species and varieties. The sizes of these Thalassionema cpDNAs, which showed typical quadripartite structures, varied from 124,127 bp to 140,121 bp. Comparative analysis revealed that Thalassionema cpDNAs possess conserved gene content inter-species and intra-species, along with several gene losses and transfers. Besides, their cpDNAs also have expanded inverted repeat regions (IRs) and preserve large intergenic spacers compared to other diatom cpDNAs. In addition, substantial genome rearrangements were discovered not only among different Thalassionema species but also among strains of a same species T. frauenfeldii, suggesting much higher diversity than previous reports. In addition to confirming the phylogenetic position of Thalassionema species, this study also estimated their emergence time at approximately 38 Mya. The availability of the Thalassionema species cpDNAs not only helps understand the Thalassionema species, but also facilitates phylogenetic analysis of diatoms.
Collapse
Affiliation(s)
- Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, 10039, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
175
|
Characterization and Phylogenetic Analyses of the Complete Mitochondrial Genome of Sugarcane (Saccharum spp. Hybrids) Line A1. DIVERSITY 2022. [DOI: 10.3390/d14050333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Modern sugarcane cultivars are highly polyploid with complex nuclear genomic genetic background, while their mitochondrion (mt) genomes are much simpler, smaller and more manageable and could provide useful phylogenetic information. In this study, the mt genome of a modern commercial cultivar A1 was sequenced via Illumina Hiseq XTen and PacBio Sequel platform. The assembled and annotated mitochondrial genomes of A1 were composed of two circular DNA molecules, one large and one small, which were named Chromosome 1 and Chromosome 2. The two distinct circular chromosomes of mitogenome construct is consisted with other sugarcane cultivars i.e., Saccharum officinarum Khon Kaen 3 and Saccharum spp. hybrids ROC22 and FN15. The Chromosome 1 of A1 mitogenome is 300,822 bp in length with the GC content of 43.94%, and 7.14% of Chromosome 1 sequences (21,468 nucleotides) are protein coding genes (PCGs) while 92.86% (279,354 nucleotides) are intergenic region. The length of Chromosome 2 is 144,744 bp with the GC content of 43.57%, and 8.20% of Chromosome 2 sequences (11,865 nucleotides) are PCGs while 91.80% (132,879 nucleotides) are intergenic region. A total of 43 genes are located on Chromosome 1, which contains 22 PCGs (six nad genes, four rps genes, four atp genes, three ccm genes, three cox genes, one mat gene and one mtt gene) and 21 non-coding genes including 15 tRNAs and 6 rRNAs. Chromosome 2 includes 18 genes in total, which contains 13 PCGs (four nad genes, three rps genes, two atp genes, one ccm gene, one cob gene, one cox gene and one rpl gene) and five non-coding genes (tRNA genes). Analysis of codon usage of 35 PCGs showed that codon ending in A/U was preferred. Investigation of gene composition indicated that the types and copy numbers of CDS genes, tRNAs and rRNAs of A1 and FN15 were identical. The cox1 gene has two copies and the trnP gene has one copy in A1, FN15 and ROC22 three lines, while there is only one copy of cox1 and two copies of trnP in S. officinarum Khon Kaen 3. In addition, S. officinarum Khon Kaen 3 have no nad1 gene and rps7 gene. 100 sequence repeats, 38 SSRs and 444 RNA editing sites in A1 mt genome were detected. Moreover, the maximum likelihood phylogenetic analysis found that A1 were more closely related to S. spp. hybrid (ROC22 and FN15) and S. officinarum (Khon Kaen 3). Herein, the complete mt genome of A1 will provide essential DNA molecular information for further phylogenetic and evolutionary analysis for Saccharum and Poaceae.
Collapse
|
176
|
Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant Isodon rubescens. PLoS One 2022; 17:e0266546. [PMID: 35385539 PMCID: PMC8985940 DOI: 10.1371/journal.pone.0266546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Isodon rubescens (Hemsley) H. Hara (Lamiaceae) is a traditional Chinese medicine plant that has been used to treat various human diseases and conditions such as inflammation, respiratory and gastrointestinal bacterial infections, and malignant tumors. However, the contents of the main active components of I. rubescens from different origins differ significantly, which greatly affected its quality. Therefore, a molecular method to identify and classify I. rubescens is needed. Here, we report the DNA sequence of the chloroplast genome of I. rubescens collected from Lushan, Henan province. The genome is 152,642 bp in length and has a conserved structure that includes a pair of IR regions (25,726 bp), a LSC region (83,527 bp) and a SSC region (17,663 bp). The chloroplast genome contains 113 unique genes, four rRNA genes, 30 tRNA genes, and 79 protein-coding genes, 23 of which contain introns. The protein-coding genes account for a total of 24,412 codons, and most of them are A/T biased usage. We identified 32 simple sequence repeats (SSRs) and 48 long repeats. Furthermore, we developed valuable chloroplast molecular resources by comparing chloroplast genomes from three Isodon species, and both mVISTA and DnaSP analyses showed that rps16-trnQ, trnS-trnG, and ndhC-trnM are candidate regions that will allow the identification of intraspecific differences within I. rubescens. Also 14 candidate fragments can be used to identify interspecific differences between species in Isodon. A phylogenetic analysis of the complete chloroplast genomes of 24 species in subfamily Nepetoideae was performed using the maximum likelihood method, and shows that I. rubescens clustered closer to I. serra than I. lophanthoides. Interestingly, our analysis showed that I. rubescens (MW018469.1) from Xianyang, Shaanxi Province (IR-X), is closer to I. serra than to the other two I. rubescens accessions. These results strongly indicate that intraspecific diversity is present in I. rubescens. Therefore, our results provide further insight into the phylogenetic relationships and interspecific diversity of species in the genus Isodon.
Collapse
|
177
|
Smilax weniae, a New Species of Smilacaceae from Limestone Areas Bordering Guizhou and Guangxi, China. PLANTS 2022; 11:plants11081032. [PMID: 35448760 PMCID: PMC9028124 DOI: 10.3390/plants11081032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
A new species, Smilax weniae (Smilacaceae), from Southwest China, is described and illustrated. The new species bears peltate leaves, which was previously a unique feature of S. luei. However, it differs from the latter by having a broad ovate leaf blade, longer peduncle, and sexual dimorphic flowers. Further phylogenetic analyses revealed that the new species were placed in a unique position in a subclade of Old World Smilax based on ptDNA and nrITS sequences. Combining detailed morphological comparisons and molecular evidence, we validated that S. weniae is an undescribed new species. Moreover, the plastome characteristics of S. weniae are reported.
Collapse
|
178
|
Fonseca LHM, Nazareno AG, Thode VA, Zuntini AR, Lohmann LG. Putting small and big pieces together: a genome assembly approach reveals the largest Lamiid plastome in a woody vine. PeerJ 2022; 10:e13207. [PMID: 35415013 PMCID: PMC8995027 DOI: 10.7717/peerj.13207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
The plastid genome of flowering plants generally shows conserved structural organization, gene arrangement, and gene content. While structural reorganizations are uncommon, examples have been documented in the literature during the past years. Here we assembled the entire plastome of Bignonia magnifica and compared its structure and gene content with nine other Lamiid plastomes. The plastome of B. magnifica is composed of 183,052 bp and follows the canonical quadripartite structure, synteny, and gene composition of other angiosperms. Exceptionally large inverted repeat (IR) regions are responsible for the uncommon length of the genome. At least four events of IR expansion were observed among the seven Bignoniaceae species compared, suggesting multiple expansions of the IRs over the SC regions in the family. A comparison with 6,231 other complete plastomes of flowering plants available on GenBank revealed that the plastome of B. magnifica is the longest Lamiid plastome described to date. The newly generated plastid genome was used as a source of selected genes. These genes were combined with orthologous regions sampled from other species of Bignoniaceae and all gene alignments concatenated to infer a phylogeny of the family. The tree recovered is consistent with known relationships within the Bignoniaceae.
Collapse
Affiliation(s)
- Luiz Henrique M. Fonseca
- Instituto de Biocências, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, Ghent University, Ghent, Flanders, Belgium
| | - Alison G. Nazareno
- Instituto de Biocências, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Verônica A. Thode
- Instituto de Biocências, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre R. Zuntini
- Instituto de Biocências, Universidade de São Paulo, São Paulo, Brazil
- Royal Botanic Gardens, Kew, London, United Kingdom
| | - Lúcia G. Lohmann
- Instituto de Biocências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
179
|
Chen M, Yang J, He H, Chen Y, Chen Z, Liang R. The complete mitochondrial genome of Pomadasys kaakan (Perciformes: Haemulidae). Mitochondrial DNA B Resour 2022; 7:573-574. [PMID: 35386633 PMCID: PMC8979522 DOI: 10.1080/23802359.2021.1993458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pomadasys kaakan (Cuvier 1830) is a fish found in coastal waters that is widely distributed in the Western Indo-Pacific Ocean and plays an important role in commercial fisheries. The complete mitochondrial genome of P. kaakan was determined for the first time in this study. The genome was 16,808 bp in length and consisted of 13 protein coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one noncoding control region. The overall base composition was estimated to be A: 27.1%; T: 24.7%; C: 31.7%; and G: 16.5%, with an AT bias of 51.8%. Molecular phylogenetic analysis suggested that P. kaakan was clustered with species of genera Plectorhinchus, Diagramma, and Parapristipoma, which also belonged to the Haemulidae family. Furthermore, the Haemulidae family was closely related to the group containing Oplegnathidae, Kyphosidae, Teraponidae, and Lutjanidae. These results may provide molecular information for the species evolution and phylogenetic status of P. kaakan in the suborder Percoidei.
Collapse
Affiliation(s)
- Ming Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, China
| | - Jieluan Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haobin He
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yupei Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhenhan Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rishen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, China
| |
Collapse
|
180
|
Fan J, Chen Y, Luo M, Liang Z, Nong X. The chloroplast genome characteristics, comparative genomics and gene resource mining of Celtis sinensis (Persoon, 1805). Mitochondrial DNA B Resour 2022; 7:698-704. [PMID: 35493710 PMCID: PMC9045777 DOI: 10.1080/23802359.2022.2067013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Celtis is a large genus in Cannabaceae family, with more than 70 species in the world. However, the intraspecific variabilities of morphological features make it difficult for some species to be distinguished based on their morphological characteristics. To supply the chloroplast (cp) genome resources of Celtis for species identification, the plastome of Celtis sinensis Persoon 1805 was newly sequenced and comparative genomics was analyzed. The chloroplast genome was 159,085 bp in length and had a quadripartite structure consisting of two inverted repeats (IRs) separated by a small single copy (SSC) and a large single copy (LSC) region. A total of 133 genes were annotated, including 88 protein-coding genes, eight rRNA genes, and 37 tRNA genes. Among the protein-coding genes, the frequency of the leucine codon is the highest and that of the cysteine codon is the lowest. Comparative genomic analysis showed that the IRS region was more conservative than the LSC and SSC regions, with most sequence variations located in the intergenic spacer rather than the protein-coding region. Moreover, sixteen highly divergent hotspots were identified. The ML phylogenetic tree showed that all involved Celtis species were clustered together, and the plastome reported in this paper has high enough resolution to distinguish C. sinensis (Pers.) from other Celtis plants. This study provides useful genetic resources for the identification of C. sinensis (Pers.) and is also of great significance for the phylogeny study of Celtis plants in the future.
Collapse
Affiliation(s)
- Jing Fan
- College of Life Sciences, Leshan Normal University, Leshan, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - MingHua Luo
- School of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Zi Liang
- College of Life Sciences, Leshan Normal University, Leshan, China
| | - Xiang Nong
- College of Life Sciences, Leshan Normal University, Leshan, China
| |
Collapse
|
181
|
Wang H, Gan C, Luo X, Dong C, Zhou S, Xiong Q, Weng Q, Hu X, Du X, Zhu B. Complete chloroplast genome features of the model heavy metal hyperaccumulator Arabis paniculata Franch and its phylogenetic relationships with other Brassicaceae species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:775-789. [PMID: 35592481 PMCID: PMC9110617 DOI: 10.1007/s12298-022-01151-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Arabis paniculata Franch (Brassicaceae) has been widely used for the phytoremediation of heavy mental, owing to its hyper tolerance of extreme Pb, Zn, and Cd concentrations. However, studies on its genome or plastid genome are scarce. In the present study, we obtained the complete chloroplast (cp) genome of A. paniculata via de novo assembly through the integration of Illumina reads and PacBio subreads. The cp genome presents a typical quadripartite cycle with a length of 153,541 bp, and contains 111 unigenes, with 79 protein-coding genes, 28 tRNAs and 4 rRNAs. Codon usage analysis showed that the codons for leucine were the most frequent codons and preferentially ended with A/U. Synonymous (Ks) and non-synonymous (Ka) substitution rate analysis indicated that the unigenes, ndhF and rpoC2, related to "NADH-dehydrogenase" and "RNA polymerase" respectively, underwent the lowest purifying selection pressure. Phylogenetic analysis demonstrated that Arabis flagellosa and A. hirsuta are more similar to each other than to A. paniculata, and Arabis is the closest relative of Draba among all Brassicaceae genera. These findings provide valuable information for the optimal exploitation of this model species as a heavy-metal hyperaccumulator. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01151-1.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Chenchen Gan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Xi Luo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Changyu Dong
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Shijun Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Qin Xiong
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A&F University, Lin’an Hangzhou, People’s Republic of China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
182
|
Yang X, Yu X, Zhang X, Guo H, Xing Z, Xu L, Wang J, Shen Y, Yu J, Lv P, Wang Y, Liu M, Tian X. Development of Mini-Barcode Based on Chloroplast Genome and Its Application in Metabarcoding Molecular Identification of Chinese Medicinal Material Radix Paeoniae Rubra (Chishao). FRONTIERS IN PLANT SCIENCE 2022; 13:819822. [PMID: 35432422 PMCID: PMC9009180 DOI: 10.3389/fpls.2022.819822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Radix Paeoniae Rubra (Chishao), a typical multi-origin Chinese medicinal material, originates from the dried roots of Paeonia lactiflora or P. veitchii. The previous study suggested that these two commonly used Chishao showed variation in their chemical compositions and clinical efficacies. Therefore, accurate identification of different Chishao species was of great significance for the guide of clinical medication, and timely treatment of patients. In this study, the chloroplast genome sequences of P. lactiflora and P. veitchii were obtained by next-generation sequencing (NGS) technology, and then the hypervariable regions were selected to design two mini-barcode candidates for species identification. Combined with DNA metabarcoding technology, we performed qualitative and quantitative analysis on the artificially mixed samples of P. lactiflora and P. veitchii and evaluated the identification ability of these mini-barcode candidates. Furtherly, the mini-barcode with good performance was applied to distinguish the Chinese patent medicine "cerebral thrombosis tablets" containing Chishao. The results indicated that the chloroplast genomes of P. lactiflora and P. veitchii were 152,750 and 152,527 bp, respectively. As published previously, they exhibited a typical quadripartite structure including a large single-copy region (LSC), a small single-copy region (SSC) and a pair of inverted repeat regions (IRs). The nucleotide polymorphism analysis revealed seven variable protein-coding regions as petL, psaI, psbJ, rpl16, ycf1b, psaC, and ndhF, and two mini-barcodes were developed from ycf1b and ndhF respectively. The result suggested that both two mini-barcodes performed well distinguishing P. lactiflora from P. veitchii. Besides, P. lactiflora was the only raw material of Chishao in all collected "cerebral thrombosis tablets" samples. In general, this study has established a method to realize the qualitative and quantitative identification of Chishao as multi-origin Chinese medicinal materials, which can be applied to Chinese patent medicines containing Chishao.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolei Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hua Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhimei Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liuwei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Wang
- Tianjin Tongrentang Group Co., Ltd., Tianjin, China
| | - Yuyan Shen
- Tianjin Tongrentang Group Co., Ltd., Tianjin, China
| | - Jie Yu
- Tianjin Tongrentang Group Co., Ltd., Tianjin, China
| | - Pengfei Lv
- Tianjin Tongrentang Group Co., Ltd., Tianjin, China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
183
|
Tang D, Lin Y, Wei F, Quan C, Wei K, Wei Y, Cai Z, Kashif MH, Miao J. Characteristics and comparative analysis of Mesona chinensis Benth chloroplast genome reveals DNA barcode regions for species identification. Funct Integr Genomics 2022; 22:467-479. [PMID: 35318559 DOI: 10.1007/s10142-022-00846-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Mesona chinensis Benth (MCB) is an important medicinal and edible plant in Southern China and Southeast Asian countries. Chloroplast (cp) genome is usually used for plant phylogeny, species identification, and chloroplast genetic engineering. To characterize the cp genome and determine the evolutionary position and perform the genetic diversity analysis of MCB, we sequence and characterize the MCB cp genome. The results show that the cp genome of MCB is a single circular molecule with a length of 152,635 bp. It is a typical quadripartite structure, comprising a large single-copy region (LSC, 83,514 bp) and a small single-copy region (SSC, 17,751 bp) separated by two inverted repeat regions (IRs, 51,370 bp). It encodes 129 unique genes, including 84 protein-coding genes (PCGs), 37 transfer RNAs (tRNAs), and 8 ribosomal RNAs (rRNAs). Altogether 127 simple sequence repeats (SSRs) are identified in the MCB cp genome with 86.61% of mononucleotide repeats. Phylogenetic analysis reveals that MCB is most closely related to Ocimum basilicum based on the whole cp genomes. Several highly divergent regions are found, such as trnH_psbA, rps16_trnQ, trnS_trnG, trnE_trnT, psaA_ycf3, rpl32_trnL, ccsA_ndhD, ndhG_ndhI, and rps15_ycf1, which can be proposed for use as DNA barcode regions. Genetic diversity analysis unveils a relatively narrow genetic basis of MCB germplasm resources. Therefore, the innovative breeding of MCB is very urgent and necessary in future research.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China. .,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Yang Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yanyan Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhongquan Cai
- College of Agriculture, Guangxi University, Nanning, China
| | | | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China. .,Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| |
Collapse
|
184
|
Li X, Ding Z, Miao H, Bao J, Tian X. Complete chloroplast genome studies of different apple varieties indicated the origin of modern cultivated apples from Malus sieversii and Malus sylvestris. PeerJ 2022; 10:e13107. [PMID: 35321410 PMCID: PMC8935992 DOI: 10.7717/peerj.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Apple is one of the most important temperate deciduous fruit trees worldwide, with a wide range of cultivation. In this study, we assessed the variations and phylogenetic relationships between the complete chloroplast genomes of wild and cultivated apples (Malus spp.). Method We obtained the complete chloroplast genomes of 24 apple varieties using next-generation sequencing technology and compared them with genomes of (downloaded from NCBI) the wild species. Result The chloroplast genome of Malus is highly conserved, with a genome length of 160,067-160,290 bp, and all have a double-stranded circular tetrad structure. The gene content and sequences of genomes of wild species and cultivated apple were almost the same, but several mutation hotspot regions (psbI-atpA, psbM-psbD, and ndhC-atpE) were detected in these genomes. These regions can provide valuable information for solving specific molecular markers in taxonomic research. Phylogenetic analysis revealed that Malus formed a new clade and four cultivated varieties clustered into a branch with M. sylvestris and M. sieversii, which indicated that M. sylvestris and M. sieversii were the ancestor species of the cultivated apple.
Collapse
|
185
|
Yu J, Xia M, Wang Y, Chi X, Xu H, Chen S, Zhang F. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
186
|
Liu CK, Lei JQ, Jiang QP, Zhou SD, He XJ. The complete plastomes of seven Peucedanum plants: comparative and phylogenetic analyses for the Peucedanum genus. BMC PLANT BIOLOGY 2022; 22:101. [PMID: 35255817 PMCID: PMC8900453 DOI: 10.1186/s12870-022-03488-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/02/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND The Peucedanum genus is the backbone member of Apiaceae, with many economically and medically important plants. Although the previous studies on Peucedanum provide us with a good research basis, there are still unclear phylogenetic relationships and many taxonomic problems in Peucedanum, and a robust phylogenetic framework of this genus still has not been obtained, which severely hampers the improvement and revision of taxonomic system for this genus. The plastid genomes possessing more variable characters have potential for reconstructing a robust phylogeny in plants. RESULTS In the current study, we newly sequenced and assembled seven Peucedanum plastid genomes. Together with five previously published plastid genomes of Peucedanum, we performed a comprehensively comparative analyses for this genus. Twelve Peucedanum plastomes were similar in terms of genome structure, codon bias, RNA editing sites, and SSRs, but varied in genome size, gene content and arrangement, and border of SC/IR. Fifteen mutation hotspot regions were identified among plastid genomes that can serve as candidate DNA barcodes for species identification in Peucedanum. Our phylogenetic analyses based on plastid genomes generated a phylogeny with high supports and resolutions for Peucedanum that robustly supported the non-monophyly of genus Peucedanum. CONCLUSION The plastid genomes of Peucedanum showed both conservation and diversity. The plastid genome data were efficient and powerful for improving the supports and resolutions of phylogeny for the complex Peucedanum genus. In summary, our study provides new sights into the plastid genome evolution, taxonomy, and phylogeny for Peucedanum species.
Collapse
Affiliation(s)
- Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
187
|
Comparative Chloroplast Genome Analysis of Wax Gourd (Benincasa hispida) with Three Benincaseae Species, Revealing Evolutionary Dynamic Patterns and Phylogenetic Implications. Genes (Basel) 2022; 13:genes13030461. [PMID: 35328015 PMCID: PMC8954987 DOI: 10.3390/genes13030461] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Benincasa hispida (wax gourd) is an important Cucurbitaceae crop, with enormous economic and medicinal importance. Here, we report the de novo assembly and annotation of the complete chloroplast genome of wax gourd with 156,758 bp in total. The quadripartite structure of the chloroplast genome comprises a large single-copy (LSC) region with 86,538 bp and a small single-copy (SSC) region with 18,060 bp, separated by a pair of inverted repeats (IRa and IRb) with 26,080 bp each. Comparison analyses among B. hispida and three other species from Benincaseae presented a significant conversion regarding nucleotide content, genome structure, codon usage, synonymous and non-synonymous substitutions, putative RNA editing sites, microsatellites, and oligonucleotide repeats. The LSC and SSC regions were found to be much more varied than the IR regions through a divergent analysis of the species within Benincaseae. Notable IR contractions and expansions were observed, suggesting a difference in genome size, gene duplication and deletion, and the presence of pseudogenes. Intronic gene sequences, such as trnR-UCU–atpA and atpH–atpI, were observed as highly divergent regions. Two types of phylogenetic analysis based on the complete cp genome and 72 genes suggested sister relationships between B. hispida with the Citrullus, Lagenaria, and Cucumis. Variations and consistency with previous studies regarding phylogenetic relationships are discussed. The cp genome of B. hispida provides valuable genetic information for the detection of molecular markers, research on taxonomic discrepancies, and the inference of the phylogenetic relationships of Cucurbitaceae.
Collapse
|
188
|
Zeb U, Wang X, AzizUllah A, Fiaz S, Khan H, Ullah S, Ali H, Shahzad K. Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species. Saudi J Biol Sci 2022; 29:1618-1627. [PMID: 35280541 PMCID: PMC8913380 DOI: 10.1016/j.sjbs.2021.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 10/31/2021] [Indexed: 01/02/2023] Open
Abstract
Genus Pinus is a widely dispersed genus of conifer plants in the Northern Hemisphere. However, the inadequate accessibility of genomic knowledge limits our understanding of molecular phylogeny and evolution of Pinus species. In this study, the evolutionary features of complete plastid genome and the phylogeny of the Pinus genus were studied. A total of thirteen divergent hotspot regions (trnk-UUU, matK, trnQ-UUG, atpF, atpH, rpoC1, rpoC2, rpoB, ycf2, ycf1, trnD-GUC, trnY-GUA, and trnH-GUG) were identified that would be utilized as possible genetic markers for determination of phylogeny and population genetics analysis of Pinus species. Furthermore, seven genes (petD, psaI, psaM, matK, rps18, ycf1, and ycf2) with positive selection site in Pinus species were identified. Based on the whole genome this phylogenetic study showed that twenty-four Pinus species form a significant genealogical clade. Divergence time showed that the Pinus species originated about 100 million years ago (MYA) (95% HPD, 101.76.35–109.79 MYA), in lateral stages of Cretaceous. Moreover, two of the subgenera are consequently originated in 85.05 MYA (95% HPD, 81.04–88.02 MYA). This study provides a phylogenetic relationship and a chronological framework for the future study of the molecular evolution of the Pinus species.
Collapse
Affiliation(s)
- Umar Zeb
- Department of Biology, The University of Haripur, 22620, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, Shaanxi, China
- Corresponding authors.
| | | | - Sajid Fiaz
- Department of Plant Breeding anf Genetics, The University of Haripur, 22620 Haripur, Pakistan
- Corresponding authors.
| | - Hanif Khan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Shariat Ullah
- Department of Botany University of Malakand, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Khurram Shahzad
- Department of Plant Breeding anf Genetics, The University of Haripur, 22620 Haripur, Pakistan
| |
Collapse
|
189
|
Wu L, Nie L, Guo S, Wang Q, Wu Z, Lin Y, Wang Y, Li B, Gao T, Yao H. Identification of Medicinal Bidens Plants for Quality Control Based on Organelle Genomes. Front Pharmacol 2022; 13:842131. [PMID: 35242042 PMCID: PMC8887618 DOI: 10.3389/fphar.2022.842131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bidens plants are annuals or perennials of Asteraceae and usually used as medicinal materials in China. They are difficult to identify by using traditional identification methods because they have similar morphologies and chemical components. Universal DNA barcodes also cannot identify Bidens species effectively. This situation seriously hinders the development of medicinal Bidens plants. Therefore, developing an accurate and effective method for identifying medicinal Bidens plants is urgently needed. The present study aims to use phylogenomic approaches based on organelle genomes to address the confusing relationships of medicinal Bidens plants. Illumina sequencing was used to sequence 12 chloroplast and eight mitochondrial genomes of five species and one variety of Bidens. The complete organelle genomes were assembled, annotated and analysed. Phylogenetic trees were constructed on the basis of the organelle genomes and highly variable regions. The organelle genomes of these Bidens species had a conserved gene content and codon usage. The 12 chloroplast genomes of the Bidens species were 150,489 bp to 151,635 bp in length. The lengths of the eight mitochondrial genomes varied from each other. Bioinformatics analysis revealed the presence of 50–71 simple sequence repeats and 46–181 long repeats in the organelle genomes. By combining the results of mVISTA and nucleotide diversity analyses, seven candidate highly variable regions in the chloroplast genomes were screened for species identification and relationship studies. Comparison with the complete mitochondrial genomes and common protein-coding genes shared by each organelle genome revealed that the complete chloroplast genomes had the highest discriminatory power for Bidens species and thus could be used as a super barcode to authenticate Bidens species accurately. In addition, the screened highly variable region trnS-GGA-rps4 could be also used as a potential specific barcode to identify Bidens species.
Collapse
Affiliation(s)
- Liwei Wu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Nie
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiying Guo
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Qing Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjun Wu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Yulin Lin
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoli Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Gao
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hui Yao
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
- *Correspondence: Hui Yao,
| |
Collapse
|
190
|
Characterization and phylogenetic analysis of the complete mitochondrial genome of the pathogenic fungus Ilyonectria destructans. Sci Rep 2022; 12:2359. [PMID: 35149731 PMCID: PMC8837645 DOI: 10.1038/s41598-022-05428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ilyonectria destructans is a pathogenic fungus causing root rot and other symptoms on trees and many crops. This paper analyses the mitochondrial genome of I. destructans and compares it with other published Nectriaceae mitogenomes. The I. destructans mitogenome appears as a circular DNA molecule of 42,895 bp and an overall GC content of 28.23%. It contains 28 protein-coding genes (15 core protein genes and 13 free-standing ORFs), two rRNAs and 27 tRNAs. The gene content and order were found to be conserved in the mitogenome of I. destructans and other Nectriaceae, although the genome size varies because of the variation in the number and length of intergenic regions and introns. For most core protein-coding genes in Nectriaceae species, Ka/Ks < 1 indicates purifying selection. Among some Nectriaceae representatives, only the rps3 gene was found under positive selection. Phylogenetic analyses based on nucleotide sequences of 15 protein-coding genes divided 45 Hypocreales species into six major clades matching the families Bionectriaceae, Cordycipitaceae, Clavicipitaceae, Ophiocordycipitaceae, Hypocreaceae and Nectriaceae. I. destructans appeared as a sister species to unidentified Ilyonectia sp., closely related to C. ilicicola, N. cinnabarina and a clad of ten Fusarium species and G. moniliformis. The complete mitogenome of I. destructans reported in the current paper will facilitate the study of epidemiology, biology, genetic diversity of the species and the evolution of family Nectriace and the Hypocreales order.
Collapse
|
191
|
Song W, Ji C, Chen Z, Cai H, Wu X, Shi C, Wang S. Comparative Analysis the Complete Chloroplast Genomes of Nine Musa Species: Genomic Features, Comparative Analysis, and Phylogenetic Implications. FRONTIERS IN PLANT SCIENCE 2022; 13:832884. [PMID: 35222490 PMCID: PMC8866658 DOI: 10.3389/fpls.2022.832884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/07/2022] [Indexed: 06/12/2023]
Abstract
Musa (family Musaceae) is monocotyledonous plants in order Zingiberales, which grows in tropical and subtropical regions. It is one of the most important tropical fruit trees in the world. Herein, we used next-generation sequencing technology to assemble and perform in-depth analysis of the chloroplast genome of nine new Musa plants for the first time, including genome structure, GC content, repeat structure, codon usage, nucleotide diversity and etc. The entire length of the Musa chloroplast genome ranged from 167,975 to 172,653 bp, including 113 distinct genes comprising 79 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. In comparative analysis, we found that the contraction and expansion of the inverted repeat (IR) regions resulted in the doubling of the rps19 gene. The several non-coding sites (psbI-atpA, atpH-atpI, rpoB-petN, psbM-psbD, ndhf-rpl32, and ndhG-ndhI) and three genes (ycf1, ycf2, and accD) showed significant variation, indicating that they have the potential of molecular markers. Phylogenetic analysis based on the complete chloroplast genome and coding sequences of 77 protein-coding genes confirmed that Musa can be mainly divided into two groups. These genomic sequences provide molecular foundation for the development and utilization of Musa plants resources. This result may contribute to the understanding of the evolution pattern, phylogenetic relationships as well as classification of Musa plants.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chuxuan Ji
- Department of Life Sciences, Imperial College London, Silwood Park, London, United Kingdom
| | - Zimeng Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Haohong Cai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaomeng Wu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
192
|
Sun Y, Zou P, Jiang N, Fang Y, Liu G. Comparative Analysis of the Complete Chloroplast Genomes of Nine Paphiopedilum Species. Front Genet 2022; 12:772415. [PMID: 35186004 PMCID: PMC8854857 DOI: 10.3389/fgene.2021.772415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Paphiopedilum is known as “lady’s or Venus” slipper orchids due to its prominent shoe-shaped labellum, with high ornamental value. Phylogenetic relationships among some species in Paphiopedilum genus cannot be effectively determined by morphological features alone or through the analysis of nuclear or chloroplast DNA fragments. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Paphiopedilum at chloroplast (cp) genome-scale level, the complete cp genomes of six Paphiopedilum species were newly sequenced in this study, and three other published cp genome sequences of Paphiopedilum were included in the comparative analyses. The cp genomes of the six Paphiopedilum species ranged from 154,908 bp (P. hirsutissimum) to 161,300 bp (P. victoria-mariae) in size, all constituting four-part annular structures. Analyses of the nucleotide substitutions, insertions/deletions, and simple sequence repeats in the cp genomes were conducted. Ten highly variable regions that could serve as potential DNA barcodes or phylogenetic markers for this diverse genus were identified. Sequence variations in the non-coding regions were greater than that in the conserved protein-coding regions, as well as in the large single copy (LSC) and small single copy (SSC) regions than in the inverted repeat (IR) regions. Phylogenetic analysis revealed that all Paphiopedilum species clustered in one monophyletic clade in the Cypripedioideae subfamily and then subdivided into seven smaller branches corresponding to different subgenus or sections of the genus, with high bootstrap supports, indicate that cp genome sequencing can be an effective means in resolving the complex relationship in Paphiopedilum.
Collapse
Affiliation(s)
- Yin Sun
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Peishan Zou
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Nannan Jiang
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Yifu Fang
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| |
Collapse
|
193
|
Wang N, Chen S, Xie L, Wang L, Feng Y, Lv T, Fang Y, Ding H. The complete chloroplast genomes of three Hamamelidaceae species: Comparative and phylogenetic analyses. Ecol Evol 2022; 12:e8637. [PMID: 35222983 PMCID: PMC8848467 DOI: 10.1002/ece3.8637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022] Open
Abstract
Hamamelidaceae is an important group that represents the origin and early evolution of angiosperms. Its plants have many uses, such as timber, medical, spice, and ornamental uses. In this study, the complete chloroplast genomes of Loropetalum chinense (R. Br.) Oliver, Corylopsis glandulifera Hemsl., and Corylopsis velutina Hand.-Mazz. were sequenced using the Illumina NovaSeq 6000 platform. The sizes of the three chloroplast genomes were 159,402 bp (C. glandulifera), 159,414 bp (C. velutina), and 159,444 bp (L. chinense), respectively. These chloroplast genomes contained typical quadripartite structures with a pair of inverted repeat (IR) regions (26,283, 26,283, and 26,257 bp), a large single-copy (LSC) region (88,134, 88,146, and 88,160 bp), and a small single-copy (SSC) region (18,702, 18,702, and 18,770 bp). The chloroplast genomes encoded 132-133 genes, including 85-87 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. The coding regions were composed of 26,797, 26,574, and 26,415 codons, respectively, most of which ended in A/U. A total of 37-43 long repeats and 175-178 simple sequence repeats (SSRs) were identified, and the SSRs contained a higher number of A + T than G + C bases. The genome comparison showed that the IR regions were more conserved than the LSC or SSC regions, while the noncoding regions contained higher variability than the gene coding regions. Phylogenetic analyses revealed that species in the same genus tended to cluster together. Chunia Hung T. Chang, Mytilaria Lecomte, and Disanthus Maxim. may have diverged early and Corylopsis Siebold & Zucc. was closely related to Loropetalum R. Br. This study provides valuable information for further species identification, evolution, and phylogenetic studies of Hamamelidaceae plants.
Collapse
Affiliation(s)
- NingJie Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - ShuiFei Chen
- Research Center for Nature Conservation and BiodiversityState Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi MountainsState Environmental Protection Key Laboratory on BiosafetyNanjing Institute of Environmental Sciences, Ministry of Ecology and EnvironmentNanjingChina
| | - Lei Xie
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - Lu Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - YueYao Feng
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - Ting Lv
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - YanMing Fang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentKey Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationNanjing Forestry UniversityNanjingChina
| | - Hui Ding
- Research Center for Nature Conservation and BiodiversityState Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi MountainsState Environmental Protection Key Laboratory on BiosafetyNanjing Institute of Environmental Sciences, Ministry of Ecology and EnvironmentNanjingChina
| |
Collapse
|
194
|
Guan YH, Liu WW, Duan BZ, Zhang HZ, Chen XB, Wang Y, Xia CL. The first complete chloroplast genome of Vicatia thibetica de Boiss.: genome features, comparative analysis, and phylogenetic relationships. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:439-454. [PMID: 35400891 PMCID: PMC8943076 DOI: 10.1007/s12298-022-01154-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/13/2021] [Accepted: 02/18/2022] [Indexed: 06/03/2023]
Abstract
UNLABELLED Vicatia thibetica de Boiss.: a herb in the family Apiaceae, has been used for over a hundred years as an essential medicinal and edible plant in the Bai ethnic group of Dali City. However, due to the lack of study on plastid genomes of V. thibetica, studies of comparison and phylogeny with other related species remain scarce. In the current study, we assembled, annotated, and characterized the entire chloroplast (cp) genome of V. thibetica through high-throughput sequencing for the first time, compared with published whole chloroplast genomes from the same family. A phylogenetic analysis of the chloroplast genome has also been performed. The whole chloroplast genome of V. thibetica was 145,796 in size and consisted of a large single-copy region (LSC; 92,186 bp), a small single-copy region (SSC; 17,452 bp), and a pair of inverted repeat regions (IRs; 18,079 bp) forming a circular quadripartite structure. Annotation resulted in 128 genes, including 84 protein-coding genes (PCGs), 35 transfer RNA genes (tRNAs), eight ribosomal genes (rRNAs), and one pseudogene. Repeat sequence analysis displayed V. thibetica plastid genome contains 75 simple repeats, 37 long repeats, and 29 tandem repeats. Compared with the cp genome of other Apiaceae species, a common feature was that the IR regions of the genome were more conservative compared to the LSC and SSC regions. Highly variable hotspots included rps16, ndhC-trnV-UAC, clpP, ycf1, and ndhB in the genomes, which supply valuable molecular markers for phylogeny, identification, and classification in the Apiaceae family. The results of phylogenetic analysis strongly supported the genus Vicatia as an independent genus in the family Apiaceae, in which the closest affinities to the related species of Angelica, Peucedanum, and Ligusticum were observed. In conclusion, the first chloroplast genome of Vicatia reported in this study may improve our understanding of phylogenetic relationship of different genera of Apiaceae. In addition, the current data will be valuable as chloroplast genomic resource for species identification and population genetics. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01154-y.
Collapse
Affiliation(s)
- Yun-hui Guan
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Wen-wen Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237 China
| | - Bao-zhong Duan
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Hai-zhu Zhang
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Xu-bing Chen
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Ying Wang
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Cong-long Xia
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| |
Collapse
|
195
|
Asaf S, Ahmad W, Al-Harrasi A, Khan AL. Uncovering the first complete plastome genomics, comparative analyses, and phylogenetic dispositions of endemic medicinal plant Ziziphus hajarensis (Rhamnaceae). BMC Genomics 2022; 23:83. [PMID: 35086490 PMCID: PMC8796432 DOI: 10.1186/s12864-022-08320-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ziziphus hajarensis is an endemic plant species well-distributed in the Western Hajar mountains of Oman. Despite its potential medicinal uses, little is known regarding its genomic architecture, phylogenetic position, or evolution. Here we sequenced and analyzed the entire chloroplast (cp) genome of Z. hajarensis to understand its genetic organization, structure, and phylogenomic disposition among Rhamnaceae species. RESULTS The results revealed the genome of Z. hajarensis cp comprised 162,162 bp and exhibited a typical quadripartite structure, with a large single copy (LSC) region of 895,67 bp, a small single copy (SSC) region of 19,597 bp and an inverted repeat (IR) regions of 26,499 bp. In addition, the cp genome of Z. hajarensis comprises 126 genes, including 82 protein-coding genes, eight rRNA genes, and 36 tRNA genes. Furthermore, the analysis revealed 208 microsatellites, 96.6% of which were mononucleotides. Similarly, a total of 140 repeats were identified, including 11 palindromic, 24 forward, 14 reverse, and 104 tandem repeats. The whole cp genome comparison of Z. hajarensis and nine other species from family Rhamnaceae showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. Comparative phylogenetic analysis based on the complete cp genome, 66 shared genes and matK gene revealed that Z. hajarensis shares a clade with Z. jujuba and that the family Rhamnaceae is the closest family to Barbeyaceae and Elaeagnaceae. CONCLUSION All the genome features such as genome size, GC content, genome organization and gene order were highly conserved compared to the other related genomes. The whole cp genome of Z. hajarensis gives fascinating insights and valuable data that may be used to identify related species and reconstruct the phylogeny of the species.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Houston, TX, 77479, USA.
| |
Collapse
|
196
|
Han C, Ding R, Zong X, Zhang L, Chen X, Qu B. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae. BMC Genomics 2022; 23:84. [PMID: 35086477 PMCID: PMC8796522 DOI: 10.1186/s12864-022-08319-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Tulotis has been classified into the genus Platanthera in the present taxonomic studies since the morphological characteristics of this genus is very similar to that of Platanthera. Platanthera ussuriensis, formerly named as Tulotis ussuriensis, is a small terrestrial orchid species and has been listed as wild plant under State protection (category II) in China. An improved understanding of the genomic information will enable future applications of conservation strategy as well as phylogenetic studies for this rare orchid species. The objective of this research was to characterize and compare the chloroplast genome of P. ussuriensis with other closely related species of Orchidaceae. RESULTS The chloroplast genome sequence of P. ussuriensis is 155,016 bp in length, which included a pair of inverted repeats (IRs) of 26,548 bp that separated a large single copy (LSC) region of 83,984 bp and a small single copy (SSC) region of 17,936 bp. The annotation contained a total of 132 genes, including 86 protein-coding genes, 38 tRNA genes and 8 rRNA genes. The simple sequence repeat (SSR) analysis showed that there were 104 SSRs in the chloroplast genome of P. ussuriensis. RNA editing sites recognition indicated 72 RNA editing events occurred, and all codon changes were C to T conversions. Comparative genomics showed that the chloroplast sequence of Platanthera related species were relatively conserved, while there were still some high variation regions that could be used as molecular markers. Moreover, Platanthera related species showed similar IR/SSC and IR/LSC borders. The phylogenetic analysis suggested that P. ussuriensis had a closer evolutionary relationship with P. japonica followed by the remaining Platanthera species. CONCLUSION Orchidaceae is a key group of biodiversity protection and also a hot spot group in the plant taxonomy and evolution studies due to their characteristics of high specialization and rapid evolution. This research determined the complete chloroplast genome of P. ussuriensis for the first time, and compared the sequence with other closely related orchid species. These results provide a foundation for future genomic and molecular evolution of the Orchidaceae species, and provide insights into the development of conservation strategy for Platanthera species.
Collapse
Affiliation(s)
- Chenyang Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiaoyan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lijie Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
197
|
Gu L, Hou Y, Wang G, Liu Q, Ding W, Weng Q. Characterization of the chloroplast genome of Lonicera ruprechtiana Regel and comparison with other selected species of Caprifoliaceae. PLoS One 2022; 17:e0262813. [PMID: 35077482 PMCID: PMC8789150 DOI: 10.1371/journal.pone.0262813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Lonicera ruprechtiana Regel is widely used as a greening tree in China and also displays excellent pharmacological activities. The phylogenetic relationship between L. ruprechtiana and other members of Caprifoliaceae remains unclear. In this study, the complete cp genome of L. ruprechtiana was identified using high-throughput Illumina pair-end sequencing data. The circular cp genome was 154,611 bp long and has a large single-copy region of 88,182 bp and a small single-copy region of 18,713 bp, with the two parts separated by two inverted repeat (IR) regions (23,858 bp each). A total of 131 genes were annotated, including 8 ribosomal RNAs, 39 transfer RNAs, and 84 protein-coding genes (PCGs). In addition, 49 repeat sequences and 55 simple sequence repeat loci of 18 types were also detected. Codon usage analysis demonstrated that the Leu codon is preferential for the A/U ending. Maximum-likelihood phylogenetic analysis using 22 Caprifoliaceae species revealed that L. ruprechtiana was closely related to Lonicera insularis. Comparison of IR regions revealed that the cp genome of L. ruprechtiana was largely conserved with that of congeneric species. Moreover, synonymous (Ks) and non-synonymous (Ka) substitution rate analysis showed that most genes were under purifying selection pressure; ycf3, and some genes associated with subunits of NADH dehydrogenase, subunits of the cytochrome b/f complex, and subunits of the photosystem had been subjected to strong purifying selection pressure (Ka/Ks < 0.1). This study provides useful genetic information for future study of L. ruprechtiana evolution.
Collapse
Affiliation(s)
- Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Guangyi Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Ding
- Colleage of plant protection, Southwest University, Chongqing, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, China
- Qiannan Normal University for Nationalities, Duyun, China
- * E-mail:
| |
Collapse
|
198
|
Huang Y, Fan L, Huang J, Zhou G, Chen X, Chen J. Plastome Phylogenomics of Aucuba (Garryaceae). Front Genet 2022; 13:753719. [PMID: 35140747 PMCID: PMC8819091 DOI: 10.3389/fgene.2022.753719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Aucuba (Garryaceae), which includes approximately ten evergreen woody species, is a genus endemic to East Asia. Their striking morphological features give Aucuba species remarkable ornamental value. Owing to high levels of morphological divergence and plasticity, species definitions of Aucuba remain perplexing and problematic. Here, we sequenced and characterized the complete plastid genomes (plastomes) of three Aucuba species: Aucuba chlorascens, Aucuba eriobotryifolia, and Aucuba japonica. Incorporating Aucuba plastomes available in GenBank, a total of seven Aucuba plastomes, representing six out of ten species of Aucuba, were used for comparative plastome analysis, phylogenetic analysis and divergence time estimation in this study. Comparative analyses revealed that plastomes of Aucuba are highly conserved in size, structure, gene content, and organization, and exhibit high levels of sequence similarity. Phylogenetic reconstruction based on 68 plastid protein-coding genes strongly supported the monophyly of Garryales, Garryaceae and Aucuba. Aucuba eriobotryifolia was sister to the other Aucuba species examined, consistent with its unique fused anther locule. The divergence time of Aucuba was estimated to be approximately late Miocene. Extant Aucuba species derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and climatic fluctuations.
Collapse
Affiliation(s)
- Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, China
- *Correspondence: Yuan Huang, ; Jiahui Chen,
| | - Linyuan Fan
- Yunnan General Administration of Foresty Seeds and Seedlings, Kunming, China
| | - Jian Huang
- Yunnan General Administration of Foresty Seeds and Seedlings, Kunming, China
| | - Guohua Zhou
- Chinese Medicinal Resources Co. LTD, Yunnan Baiyao Group, Kunming, China
| | - Xiong Chen
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Yuan Huang, ; Jiahui Chen,
| |
Collapse
|
199
|
Trofimov D, Cadar D, Schmidt-Chanasit J, Rodrigues de Moraes PL, Rohwer JG. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex. Sci Rep 2022; 12:1120. [PMID: 35064146 PMCID: PMC8782842 DOI: 10.1038/s41598-021-04635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Ocotea (Lauraceae) includes about 450 species, of which about 90% are Neotropical, while the rest is from Macaronesia, Africa and Madagascar. In this study we present the first complete chloroplast genome sequences of seven Ocotea species, six Neotropical and one from Macaronesia. Genome sizes range from 152,630 (O. porosa) to 152,685 bp (O. aciphylla). All seven plastomes contain a total of 131 (114 unique) genes, among which 87 (80 unique) encode proteins. The order of genes (if present) is the same in all Lauraceae examined so far. Two hypervariable loci were found in the LSC region (psbA-trnH, ycf2), three in the SSC region (ycf1, ndhH, trnL(UAG)-ndhF). The pairwise cp genomic alignment between the taxa showed that the LSC and SSC regions are more variable compared to the IR regions. The protein coding regions comprise 25,503-25,520 codons in the Ocotea plastomes examined. The most frequent amino acids encoded in the plastomes were leucine, isoleucine, and serine. SSRs were found to be more frequent in the two dioecious Neotropical Ocotea species than in the four bisexual species and the gynodioecious species examined (87 vs. 75-84 SSRs). A preliminary phylogenetic analysis based on 69 complete plastomes of Lauraceae species shows the seven Ocotea species as sister group to Cinnamomum sensu lato. Sequence divergence among the Ocotea species appears to be much lower than among species of the most closely related, likewise species-rich genera Cinnamomum, Lindera and Litsea.
Collapse
Affiliation(s)
- Dimitrij Trofimov
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany.
- Institute of Ecology and Evolution, Universität Jena, Philosophenweg 16, 07743, Jena, Germany.
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Pedro Luís Rodrigues de Moraes
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. 24 A 1515, Bela Vista, Rio Claro, Caixa Postal 199, São Paulo, CEP 13506-900, Brazil
| | - Jens G Rohwer
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany.
| |
Collapse
|
200
|
Zeb U, Wang X, Fiaz S, Azizullah A, Shah AA, Ali S, Rahim F, Ullah H, Leghari UA, Wang W, Nawaz T. Novel insights into Pinus species plastids genome through phylogenetic relationships and repeat sequence analysis. PLoS One 2022; 17:e0262040. [PMID: 35045089 PMCID: PMC8769304 DOI: 10.1371/journal.pone.0262040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Pinus is one of the most economical and ecological important conifers, model specie for studying sequence divergence and molecular phylogeney of gymnosperms. The less availability of information for genome resources enable researchers to conduct evolutionary studies of Pinus species. To improve understanding, we firstly reported, previously released chloroplast genome of 72 Pinus species, the sequence variations, phylogenetic relationships and genome divergence among Pinus species. The results displayed 7 divergent hotspot regions (trnD-GUC, trnY-GUA, trnH-GUG, ycf1, trnL-CAA, trnK-UUU and trnV-GAC) in studied Pinus species, which holds potential to utilized as molecular genetic markers for future phylogenetic studies in Pinnus species. In addition, 3 types of repeats (tandem, palindromic and dispersed) were also studied in Pinus species under investigation. The outcome showed P. nelsonii had the highest, 76 numbers of repeats, while P. sabiniana had the lowest, 13 13 numbers of repeats. It was also observed, constructed phylogenetic tree displayed division into two significant diverged clades: single needle (soft pine) and double-needle (hard pine). Theoutcome of present investigation, based on the whole chloroplast genomes provided novel insights into the molecular based phylogeny of the genus Pinus which holds potential for its utilization in future studies focusing genetic diversity in Pinnus species.
Collapse
Affiliation(s)
- Umar Zeb
- Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Azizullah Azizullah
- Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajjad Ali
- Department of Botany, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Hafiz Ullah
- Departement of Botany, University of Chitral, Khyber Pakhtunkhwa, Pakistan
| | - Umed Ali Leghari
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi, Balochistan, Pakistan
| | - Weiqiang Wang
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Taufiq Nawaz
- Department of Food Science and Technology, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|