151
|
Nishikawa M, Machida H, Shimizu Y, Kariyasu T, Morisaka H, Adachi T, Nakai T, Sakaguchi K, Saito S, Matsumoto S, Koyanagi M, Yokoyama K. Image quality and radiologists' subjective acceptance using model-based iterative and deep learning reconstructions as adjuncts to ultrahigh-resolution CT in low-dose contrast-enhanced abdominopelvic CT: phantom and clinical pilot studies. Abdom Radiol (NY) 2022; 47:891-902. [PMID: 34914007 PMCID: PMC8807451 DOI: 10.1007/s00261-021-03373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022]
Abstract
Purpose In contrast-enhanced abdominopelvic CT (CE-APCT) for oncologic follow-up, ultrahigh-resolution CT (UHRCT) may improve depiction of fine lesions and low-dose scans are desirable for minimizing the potential adverse effects by ionizing radiation. We compared image quality and radiologists’ acceptance of model-based iterative (MBIR) and deep learning (DLR) reconstructions of low-dose CE-APCT by UHRCT. Methods Using our high-resolution (matrix size: 1024) and low-dose (tube voltage 100 kV; noise index: 20–40 HU) protocol, we scanned phantoms to compare the modulation transfer function and noise power spectrum between MBIR and DLR and assessed findings in 36 consecutive patients who underwent CE-APCT (noise index: 35 HU; mean CTDIvol: 4.2 ± 1.6 mGy) by UHRCT. We used paired t-test to compare objective noise and contrast-to-noise ratio (CNR) and Wilcoxon signed-rank test to compare radiologists’ subjective acceptance regarding noise, image texture and appearance, and diagnostic confidence between MBIR and DLR using our routine protocol (matrix size: 512; tube voltage: 120 kV; noise index: 15 HU) for reference. Results Phantom studies demonstrated higher spatial resolution and lower low-frequency noise by DLR than MBIR at equal doses. Clinical studies indicated significantly worse objective noise, CNR, and subjective noise by DLR than MBIR, but other subjective characteristics were better (P < 0.001 for all). Compared with the routine protocol, subjective noise was similar or better by DLR, and other subjective characteristics were similar or worse by MBIR. Conclusion Image quality, except regarding noise characteristics, and acceptance by radiologists were better by DLR than MBIR in low-dose CE-APCT by UHRCT. Graphical abstract ![]()
Collapse
|
152
|
Mikayama R, Shirasaka T, Kojima T, Sakai Y, Yabuuchi H, Kondo M, Kato T. Deep-learning reconstruction for ultra-low-dose lung CT: Volumetric measurement accuracy and reproducibility of artificial ground-glass nodules in a phantom study. Br J Radiol 2022; 95:20210915. [PMID: 34908478 PMCID: PMC8822562 DOI: 10.1259/bjr.20210915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES The lung nodule volume determined by CT is used for nodule diagnoses and monitoring tumor responses to therapy. Increased image noise on low-dose CT degrades the measurement accuracy of the lung nodule volume. We compared the volumetric accuracy among deep-learning reconstruction (DLR), model-based iterative reconstruction (MBIR), and hybrid iterative reconstruction (HIR) at an ultra-low-dose setting. METHODS Artificial ground-glass nodules (6 mm and 10 mm diameters, -660 HU) placed at the lung-apex and the middle-lung field in chest phantom were scanned by 320-row CT with the ultra-low-dose setting of 6.3 mAs. Each scan data set was reconstructed by DLR, MBIR, and HIR. The volumes of nodules were measured semi-automatically, and the absolute percent volumetric error (APEvol) was calculated. The APEvol provided by each reconstruction were compared by the Tukey-Kramer method. Inter- and intraobserver variabilities were evaluated by a Bland-Altman analysis with limits of agreements. RESULTS DLR provided a lower APEvol compared to MBIR and HIR. The APEvol of DLR (1.36%) was significantly lower than those of the HIR (8.01%, p = 0.0022) and MBIR (7.30%, p = 0.0053) on a 10-mm-diameter middle-lung nodule. DLR showed narrower limits of agreement compared to MBIR and HIR in the inter- and intraobserver agreement of the volumetric measurement. CONCLUSIONS DLR showed higher accuracy compared to MBIR and HIR for the volumetric measurement of artificial ground-glass nodules by ultra-low-dose CT. ADVANCES IN KNOWLEDGE DLR with ultra-low-dose setting allows a reduction of dose exposure, maintaining accuracy for the volumetry of lung nodule, especially in patients which deserve a long-term follow-up.
Collapse
Affiliation(s)
- Ryoji Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Takashi Shirasaka
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | - Yuki Sakai
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Kondo
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
153
|
Evaluation of Apparent Noise on CT Images Using Moving Average Filters. J Digit Imaging 2022; 35:77-85. [PMID: 34761322 PMCID: PMC8854541 DOI: 10.1007/s10278-021-00531-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023] Open
Abstract
This study aims to devise a simple method for evaluating the magnitude of texture noise (apparent noise) observed on computed tomography (CT) images scanned at a low radiation dose and reconstructed using iterative reconstruction (IR) and deep learning reconstruction (DLR) algorithms, and to evaluate the apparent noise in CT images reconstructed using the filtered back projection (FBP), IR, and two types of DLR (AiCE Body and AiCE Body Sharp) algorithms. We set a square region of interest (ROI) on CT images of standard- and obese-sized low-contrast phantoms, slid different-sized moving average filters in the ROI vertically and horizontally in steps of 1 pixel, and calculated the standard deviation (SD) of the mean CT values for each filter size. The SD of the mean CT values was fitted with a curve inversely proportional to the filter size, and an apparent noise index was determined from the curve-fitting formula. The apparent noise index of AiCE Body Sharp images for a given mAs value was approximately 58, 23, and 18% lower than that of the FBP, AIDR 3D, and AiCE Body images, respectively. The apparent noise index was considered to reflect noise power spectrum values at lower spatial frequency. Moreover, the apparent noise index was inversely proportional to the square roots of the mAs values. Thus, the apparent noise index could be a useful indicator to quantify and compare texture noise on CT images obtained with different scan parameters and reconstruction algorithms.
Collapse
|
154
|
Jungblut L, Blüthgen C, Polacin M, Messerli M, Schmidt B, Euler A, Alkadhi H, Frauenfelder T, Martini K. First Performance Evaluation of an Artificial Intelligence-Based Computer-Aided Detection System for Pulmonary Nodule Evaluation in Dual-Source Photon-Counting Detector CT at Different Low-Dose Levels. Invest Radiol 2022; 57:108-114. [PMID: 34324462 DOI: 10.1097/rli.0000000000000814] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the image quality (IQ) and performance of an artificial intelligence (AI)-based computer-aided detection (CAD) system in photon-counting detector computed tomography (PCD-CT) for pulmonary nodule evaluation at different low-dose levels. MATERIALS AND METHODS An anthropomorphic chest-phantom containing 14 pulmonary nodules of different sizes (range, 3-12 mm) was imaged on a PCD-CT and on a conventional energy-integrating detector CT (EID-CT). Scans were performed with each of the 3 vendor-specific scanning modes (QuantumPlus [Q+], Quantum [Q], and High Resolution [HR]) at decreasing matched radiation dose levels (volume computed tomography dose index ranging from 1.79 to 0.31 mGy) by adapting IQ levels from 30 to 5. Image noise was measured manually in the chest wall at 8 different locations. Subjective IQ was evaluated by 2 readers in consensus. Nodule detection and volumetry were performed using a commercially available AI-CAD system. RESULTS Subjective IQ was superior in PCD-CT compared with EID-CT (P < 0.001), and objective image noise was similar in the Q+ and Q-mode (P > 0.05) and superior in the HR-mode (PCD 55.8 ± 11.7 HU vs EID 74.8 ± 5.4 HU; P = 0.01). High resolution showed the lowest image noise values among PCD modes (P = 0.01). Overall, the AI-CAD system delivered comparable results for lung nodule detection and volumetry between PCD- and dose-matched EID-CT (P = 0.08-1.00), with a mean sensitivity of 95% for PCD-CT and of 86% for dose-matched EID-CT in the lowest evaluated dose level (IQ5). Q+ and Q-mode showed higher false-positive rates than EID-CT at lower-dose levels (IQ10 and IQ5). The HR-mode showed a sensitivity of 100% with a false-positive rate of 1 even at the lowest evaluated dose level (IQ5; CDTIvol, 0.41 mGy). CONCLUSIONS Photon-counting detector CT was superior to dose-matched EID-CT in subjective IQ while showing comparable to lower objective image noise. Fully automatized AI-aided nodule detection and volumetry are feasible in PCD-CT, but attention has to be paid to false-positive findings.
Collapse
Affiliation(s)
- Lisa Jungblut
- From the Institute of Diagnostic and Interventional Radiology
| | | | | | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Andre Euler
- From the Institute of Diagnostic and Interventional Radiology
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology
| | | | | |
Collapse
|
155
|
Park HJ, Choi SY, Lee JE, Lim S, Lee MH, Yi BH, Cha JG, Min JH, Lee B, Jung Y. Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study. Eur Radiol 2022; 32:3974-3984. [DOI: 10.1007/s00330-021-08459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
|
156
|
High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses. Eur Radiol 2022; 32:2912-2920. [DOI: 10.1007/s00330-021-08424-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
|
157
|
Greffier J, Dabli D, Hamard A, Belaouni A, Akessoul P, Frandon J, Beregi JP. Effect of a new deep learning image reconstruction algorithm for abdominal computed tomography imaging on image quality and dose reduction compared with two iterative reconstruction algorithms: a phantom study. Quant Imaging Med Surg 2022; 12:229-243. [PMID: 34993074 DOI: 10.21037/qims-21-215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 11/06/2022]
Abstract
Background New reconstruction algorithms based on deep learning have been developed to correct the image texture changes related to the use of iterative reconstruction algorithms. The purpose of this study was to evaluate the impact of a new deep learning image reconstruction [Advanced intelligent Clear-IQ Engine (AiCE)] algorithm on image-quality and dose reduction compared to a hybrid iterative reconstruction (AIDR 3D) algorithm and a model-based iterative reconstruction (FIRST) algorithm. Methods Acquisitions were carried out using the ACR 464 phantom (and its body ring) at six dose levels (volume computed tomography dose index 15/10/7.5/5/2.5/1 mGy). Raw data were reconstructed using three levels (Mild/Standard/Strong) of AIDR 3D, of FIRST and AiCE. Noise-power-spectrum (NPS) and task-based transfer function (TTF) were computed. Detectability index was computed to model the detection of a small calcification (1.5-mm diameter and 500 HU) and a large mass in the liver (25-mm diameter and 120 HU). Results NPS peaks were lower with AiCE than with AIDR 3D (-41%±6% for all levels) or FIRST (-15%±6% for Strong level and -41%±11% for both other levels). The average NPS spatial frequency was lower with AICE than AIDR 3D (-9%±2% using Mild and -3%±2% using Strong) but higher than FIRST for Standard (6%±3%) and Strong (25%±3%) levels. For acrylic insert, values of TTF at 50 percent were higher with AICE than AIDR 3D and FIRST, except for Mild level (-6%±6% and -13%±3%, respectively). For bone insert, values of TTF at 50 percent were higher with AICE than AIDR 3D but lower than FIRST (-19%±14%). For both simulated lesions, detectability index values were higher with AICE than AIDR 3D and FIRST (except for Strong level and for the small feature; -21%±14%). Using the Standard level, dose could be reduced by -79% for the small calcification and -57% for the large mass using AICE compared to AIDR 3D. Conclusions The new deep learning image reconstruction algorithm AiCE generates an image-quality with less noise and/or less smudged/smooth images and a higher detectability than the AIDR 3D or FIRST algorithms. The outcomes of our phantom study suggest a good potential of dose reduction using AiCE but it should be confirmed clinically in patients.
Collapse
Affiliation(s)
- Joël Greffier
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Djamel Dabli
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Aymeric Hamard
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Asmaa Belaouni
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Philippe Akessoul
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Julien Frandon
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| | - Jean-Paul Beregi
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nîmes, EA 2992, Nîmes, France
| |
Collapse
|
158
|
Xu Y, Lou J, Gao Z, Zhan M. Computed Tomography Image Features under Deep Learning Algorithm Applied in Staging Diagnosis of Bladder Cancer and Detection on Ceramide Glycosylation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7979523. [PMID: 35035524 PMCID: PMC8759889 DOI: 10.1155/2022/7979523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
The research is aimed at investigating computed tomography (CT) image based on deep learning algorithm and the application value of ceramide glycosylation in diagnosing bladder cancer. The images of ordinary CT detection were improved. In this study, 60 bladder cancer patients were selected and performed with ordinary CT detection, and the detection results were processed by CT based on deep learning algorithms and compared with pathological diagnosis. In addition, Western Blot technology was used to detect the expression of glucose ceramide synthase (GCS) in the cell membrane of tumor tissues and normal tissues of bladder. The comparison results found that, in simple CT clinical staging, the coincidence rates of T1 stage, T2a stage, T2b stage, T3 stage, and T4 stage were 28.56%, 62.51%, 78.94%, 84.61%, and 74.99%, respectively; and the total coincidence rate of CT clinical staging was 63.32%, which was greatly different from the clinical staging of pathological diagnosis (P < 0.05). In the clinical staging of algorithm-based CT test results, the coincidence rates of T1 stage and T2a stage were 50.01% and 91.65%, respectively; and those of T2b stage, T3 stage, and T4 stage were 100.00%; and the total coincidence rate was 96.69%, which was not obviously different from the clinical staging of pathological diagnosis (P > 0.05). Therefore, it could be concluded that the algorithm-based CT detection results were more accurate, and the use of CT scans based on deep learning algorithms in the preoperative staging and clinical treatment of bladder cancer showed reliable guiding significance and clinical value. In addition, it was found that the expression level of GCS in normal bladder tissues was much lower than that in bladder cancer tissues. This indicated that the changes in GCS were closely related to the development and prognosis of bladder cancer. Therefore, it was believed that GCS may be an effective target for the treatment of bladder cancer in the future, and further research was needed for specific conditions.
Collapse
Affiliation(s)
- Yisheng Xu
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Jianghua Lou
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Zhiqin Gao
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Ming Zhan
- Department of Radiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311201, China
| |
Collapse
|
159
|
Bornet PA, Villani N, Gillet R, Germain E, Lombard C, Blum A, Gondim Teixeira PA. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment. Eur Radiol 2022; 32:3161-3172. [PMID: 34989850 DOI: 10.1007/s00330-021-08410-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To evaluate the image quality and clinical acceptance of a deep learning reconstruction (DLR) algorithm compared to traditional iterative reconstruction (IR) algorithms. METHODS CT acquisitions were performed with two phantoms and a total of nine dose levels. Images were reconstructed with two types of IR algorithms, DLR and filtered-back projection. Spatial resolution, image texture, mean noise value, and objective and subjective low-contrast detectability were compared. Ten senior radiologists evaluated the clinical acceptance of these algorithms by scoring ten CT exams reconstructed with the DLR and IR algorithms evaluated. RESULTS Compared to MBIR, DLR yielded a lower noise and a higher low-contrast detectability index at low doses (CTDIvol ≤ 2.2 and ≤ 4.5 mGy, respectively). Spatial resolution and detectability at higher doses were better with MBIR. Compared to HIR, DLR yielded a higher spatial resolution, a lower noise, and a higher detectability index. Despite these differences in algorithm performance, significant differences in subjective low-contrast performance were not found (p ≥ 0.005). DLR texture was finer than that of MBIR and closer to that of HIR. Radiologists preferred DLR images for all criteria assessed (p < 0.0001), whereas MBIR was rated worse than HIR (p < 0.0001) in all criteria evaluated, except for noise (p = 0.044). DLR reconstruction time was 12 times faster than that of MBIR. CONCLUSION DLR yielded a gain in objective detection and noise at lower dose levels with the best clinical acceptance among the evaluated reconstruction algorithms. KEY POINTS • DLR yielded improved objective low-contrast detection and noise at lower dose levels. • Despite the differences in objective detectability among the algorithms evaluated, there were no differences in subjective detectability. • DLR presented significantly higher clinical acceptability scores compared to MBIR and HIR.
Collapse
Affiliation(s)
- Pierre-Antoine Bornet
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France.
| | - Nicolas Villani
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Romain Gillet
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Edouard Germain
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Charles Lombard
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Alain Blum
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| |
Collapse
|
160
|
Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective. Pediatr Radiol 2022; 52:2120-2130. [PMID: 34471961 PMCID: PMC8409695 DOI: 10.1007/s00247-021-05146-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/22/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Artificial intelligence (AI) applications for chest radiography and chest CT are among the most developed applications in radiology. More than 40 certified AI products are available for chest radiography or chest CT. These AI products cover a wide range of abnormalities, including pneumonia, pneumothorax and lung cancer. Most applications are aimed at detecting disease, complemented by products that characterize or quantify tissue. At present, none of the thoracic AI products is specifically designed for the pediatric population. However, some products developed to detect tuberculosis in adults are also applicable to children. Software is under development to detect early changes of cystic fibrosis on chest CT, which could be an interesting application for pediatric radiology. In this review, we give an overview of current AI products in thoracic radiology and cover recent literature about AI in chest radiography, with a focus on pediatric radiology. We also discuss possible pediatric applications.
Collapse
|
161
|
Sun J, Li H, Li H, Li M, Gao Y, Zhou Z, Peng Y. Application of deep learning image reconstruction algorithm to improve image quality in CT angiography of children with Takayasu arteritis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:177-184. [PMID: 34806646 DOI: 10.3233/xst-211033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND The inflammatory indexes of children with Takayasu arteritis (TAK) usually tend to be normal immediately after treatment, therefore, CT angiography (CTA) has become an important method to evaluate the status of TAK and sometime is even more sensitive than laboratory test results. OBJECTIVE To evaluate image quality improvement in CTA of children diagnosed with TAK using a deep learning image reconstruction (DLIR) in comparison to other image reconstruction algorithms. METHODS hirty-two TAK patients (9.14±4.51 years old) underwent neck, chest and abdominal CTA using 100 kVp were enrolled. Images were reconstructed at 0.625 mm slice thickness using Filtered Back-Projection (FBP), 50%adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers. RESULTS There was no significant difference in CT number across images reconstructed using different algorithms. Image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 using FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P > 0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P < 0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, however, only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). CONCLUSION DLIR-H improves CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.
Collapse
Affiliation(s)
- Jihang Sun
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Haoyan Li
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Haiyun Li
- School of Biomedical Engineering, Capital Medical University, Fengtai District, Beijing, China
| | - Michelle Li
- Department of Human Biology, Stanford University, Stanford, CA, USA
| | - Yingzi Gao
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zuofu Zhou
- Department of Radiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Gulou District, Fujian, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
162
|
Njølstad T, Jensen K, Dybwad A, Salvesen Ø, Andersen HK, Schulz A. Low-contrast detectability and potential for radiation dose reduction using deep learning image reconstruction—A 20-reader study on a semi-anthropomorphic liver phantom. Eur J Radiol Open 2022; 9:100418. [PMID: 35391822 PMCID: PMC8980706 DOI: 10.1016/j.ejro.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background A novel deep learning image reconstruction (DLIR) algorithm for CT has recently been clinically approved. Purpose To assess low-contrast detectability and dose reduction potential for CT images reconstructed with the DLIR algorithm and compare with filtered back projection (FBP) and hybrid iterative reconstruction (IR). Material and methods A customized upper-abdomen phantom containing four cylindrical liver inserts with low-contrast lesions was scanned at CT dose indexes of 5, 10, 15, 20 and 25 mGy. Images were reconstructed with FBP, 50% hybrid IR (IR50), and DLIR of low strength (DLL), medium strength (DLM) and high strength (DLH). Detectability was assessed by 20 independent readers using a two-alternative forced choice approach. Dose reduction potential was estimated separately for each strength of DLIR using a fitted model, with the detectability performance of FBP and IR50 as reference. Results For the investigated dose levels of 5 and 10 mGy, DLM improved detectability compared to FBP by 5.8 and 6.9 percentage points (p.p.), and DLH improved detectability by 9.6 and 12.3 p.p., respectively (all p < .007). With IR50 as reference, DLH improved detectability by 5.2 and 9.8 p.p. for the 5 and 10 mGy dose level, respectively (p < .03). With respect to this low-contrast detectability task, average dose reduction potential relative to FBP was estimated to 39% for DLM and 55% for DLH. Relative to IR50, average dose reduction potential was estimated to 21% for DLM and 42% for DLH. Conclusions: Low-contrast detectability performance is improved when applying a DLIR algorithm, with potential for radiation dose reduction. Deep learning image reconstruction improves low-contrast detectability in CT. Performance improved with increasing strength of deep learning image reconstruction. Results suggest potential for CT radiation dose reduction.
Collapse
|
163
|
The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. Eur Radiol 2021; 32:2921-2929. [PMID: 34913104 PMCID: PMC9038933 DOI: 10.1007/s00330-021-08438-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the difference in CT values and image quality of abdominal CT images reconstructed by filtered back-projection (FBP), hybrid iterative reconstruction (IR), and deep learning reconstruction (DLR). METHODS PubMed and Embase were systematically searched for articles regarding CT densitometry in the abdomen and the image reconstruction techniques FBP, hybrid IR, and DLR. Mean differences in CT values between reconstruction techniques were analyzed. A comparison between signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of FBP, hybrid IR, and DLR was made. A comparison of diagnostic confidence between hybrid IR and DLR was made. RESULTS Sixteen articles were included, six being suitable for meta-analysis. In the liver, the mean difference between hybrid IR and DLR was - 0.633 HU (p = 0.483, SD ± 0.902 HU). In the spleen, the mean difference between hybrid IR and DLR was - 0.099 HU (p = 0.925, SD ± 1.061 HU). In the pancreas, the mean difference between hybrid IR and DLR was - 1.372 HU (p = 0.353, SD ± 1.476 HU). In 14 articles, CNR was described. In all cases, DLR showed a significantly higher CNR. In 9 articles, SNR was described. In all cases but one, DLR showed a significantly higher SNR. In all cases, DLR showed a significantly higher diagnostic confidence. CONCLUSIONS There were no significant differences in CT values reconstructed by FBP, hybrid IR, and DLR in abdominal organs. This shows that these reconstruction techniques are consistent in reconstructing CT values. DLR images showed a significantly higher SNR and CNR, compared to FBP and hybrid IR. KEY POINTS CT values of abdominal CT images are similar between deep learning reconstruction (DLR), filtered back-projection (FBP), and hybrid iterative reconstruction (IR). DLR results in improved image quality in terms of SNR and CNR compared to FBP and hybrid IR images. DLR can thus be safely implemented in the clinical setting resulting in improved image quality without affecting CT values.
Collapse
|
164
|
Onoda H, Tanabe M, Higashi M, Kawano Y, Ihara K, Miyoshi K, Ito K. Assessment of gastric wall structure using ultra-high-resolution computed tomography. Eur J Radiol 2021; 146:110067. [PMID: 34847396 DOI: 10.1016/j.ejrad.2021.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate the image quality of ultra-high-resolution CT (U-HRCT) in the comparison among four different reconstruction methods, focusing on the gastric wall structure, and to compare the conspicuity of a three-layered structure of the gastric wall between conventional HRCT (C-HRCT) and U-HRCT. METHOD Our retrospective study included 48 patients who underwent contrast-enhanced U-HRCT. Quantitative analyses were performed to compare image noise of U-HRCT between deep-learning reconstruction (DLR) and other three methods (filtered back projection: FBP, hybrid iterative reconstruction: Hybrid-IR, and Model-based iterative reconstruction: MBIR). The mean overall image quality scores were also compared between the DLR and other three methods. In addition, the mean conspicuity scores for the three-layered structure of the gastric wall at five regions were compared between C-HRCT and U-HRCT. RESULTS The mean noise of U-HRCT with DLR was significantly lower than that with the other three methods (P < 0.001). The mean overall image quality scores with DLR images were significantly higher than those with the other three methods (P < 0.001). Regarding the comparison between C-HRCT and U-HRCT, the mean conspicuity scores for the three-layered structure of the gastric wall on U-HRCT were significantly better than those on C-HRCT in the fornix (5 [5-5] vs. 3.5 [3-4], P < 0.001), body (4 [3.25-5] vs. 4 [3-4], P = 0.039), angle (5 [4-5] vs. 3 [2-4], P < 0.001), and antral posterior (4 [3.25-5] vs. 2 [2-4], P < 0.001), except for antral anterior (4 [3-5] vs. 3 [3-4], P = 0.230) CONCLUSION: U-HRCT using DLR improved the image noise and overall image quality of the gastric wall as well as the conspicuity of the three-layered structure, suggesting its utility for the evaluation of the anatomical details of the gastric wall structure.
Collapse
Affiliation(s)
- Hideko Onoda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yosuke Kawano
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Keisuke Miyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
165
|
Tanabe N, Sakamoto R, Kozawa S, Oguma T, Shima H, Shiraishi Y, Koizumi K, Sato S, Nakamoto Y, Hirai T. Deep learning-based reconstruction of chest ultra-high-resolution computed tomography and quantitative evaluations of smaller airways. Respir Investig 2021; 60:167-170. [PMID: 34824028 DOI: 10.1016/j.resinv.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
The full-iterative model reconstruction generates ultra-high-resolution computed tomography (U-HRCT) images comprising a 1024 × 1024 matrix and 0.25 mm thickness while suppressing image noises, allowing evaluating small airways 1-2 mm in diameter. However, this technique imposes huge computational burdens and requires a long reconstruction time. This study evaluated whether a recently-established deep learning-based reconstruction, Advanced intelligent Clear-IQ Engine (AiCE), allows quantitative morphological analyses of smaller airways with equal or better quality than the full-iterative model reconstruction while shortening the reconstruction time. In phantom tubes mimicking small airways, the measurement error of 0.5-mm-thickness wall was smaller on the AiCE-based than the full-iterative model-based U-HRCT. Moreover, in five patients with chronic obstructive pulmonary disease, the AiCE-based U-HRCT decreased the reconstruction time approximately by 90% with a modest improvement in image noise, contrast, and sharpness compared to the full-iterative model-based U-HRCT. Therefore, the AiCE-based U-HRCT can be readily used clinically for morphologically evaluating peripheral small airways.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Kozawa
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koji Koizumi
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
166
|
Image quality in liver CT: low-dose deep learning vs standard-dose model-based iterative reconstructions. Eur Radiol 2021; 32:2865-2874. [PMID: 34821967 DOI: 10.1007/s00330-021-08380-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To compare the overall image quality and detectability of significant (malignant and pre-malignant) liver lesions of low-dose liver CT (LDCT, 33.3% dose) using deep learning denoising (DLD) to standard-dose CT (SDCT, 100% dose) using model-based iterative reconstruction (MBIR). METHODS In this retrospective study, CT images of 80 patients with hepatic focal lesions were included. For noninferiority analysis of overall image quality, a margin of - 0.5 points (scored in a 5-point scale) for the difference between scan protocols was pre-defined. Other quantitative or qualitative image quality assessments were performed. Additionally, detectability of significant liver lesions was compared, with 64 pairs of CT, using the jackknife alternative free-response ROC analysis, with noninferior margin defined by the lower limit of 95% confidence interval (CI) of the difference of figure-of-merit less than - 0.1. RESULTS The mean overall image quality scores with LDCT and SDCT were 3.77 ± 0.38 and 3.94 ± 0.34, respectively, demonstrating a difference of - 0.17 (95% CI: - 0.21 to - 0.12), which did not cross the predefined noninferiority margin of - 0.5. Furthermore, LDCT showed significantly superior quantitative results of liver lesion contrast to noise ratio (p < 0.05). However, although LDCT scored higher than the average score in qualitative image quality assessments, they were significantly lower than those of SDCT (p < 0.05). Figure-of-merit for lesion detection was 0.859 for LDCT and 0.878 for SDCT, showing noninferiority (difference: - 0.019, 95% CI: - 0.058 to 0.021). CONCLUSION LDCT using DLD with 67% radiation dose reduction showed non-inferior overall image quality and lesion detectability, compared to SDCT. KEY POINTS • Low-dose liver CT using deep learning denoising (DLD), at 67% dose reduction, provided non-inferior overall image quality compared to standard-dose CT using model-based iterative reconstruction (MBIR). • Low-dose CT using DLD showed significantly less noise and higher CNR lesion to liver than standard-dose CT using MBIR and demonstrated at least average image quality score among all readers, albeit with lower scores than standard-dose CT using MBIR. • Low-dose liver CT showed noninferior detectability for malignant and pre-malignant liver lesions, compared to standard-dose CT.
Collapse
|
167
|
Gassenmaier S, Küstner T, Nickel D, Herrmann J, Hoffmann R, Almansour H, Afat S, Nikolaou K, Othman AE. Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present? Diagnostics (Basel) 2021; 11:2181. [PMID: 34943418 PMCID: PMC8700442 DOI: 10.3390/diagnostics11122181] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Deep learning technologies and applications demonstrate one of the most important upcoming developments in radiology. The impact and influence of these technologies on image acquisition and reporting might change daily clinical practice. The aim of this review was to present current deep learning technologies, with a focus on magnetic resonance image reconstruction. The first part of this manuscript concentrates on the basic technical principles that are necessary for deep learning image reconstruction. The second part highlights the translation of these techniques into clinical practice. The third part outlines the different aspects of image reconstruction techniques, and presents a review of the current literature regarding image reconstruction and image post-processing in MRI. The promising results of the most recent studies indicate that deep learning will be a major player in radiology in the upcoming years. Apart from decision and diagnosis support, the major advantages of deep learning magnetic resonance imaging reconstruction techniques are related to acquisition time reduction and the improvement of image quality. The implementation of these techniques may be the solution for the alleviation of limited scanner availability via workflow acceleration. It can be assumed that this disruptive technology will change daily routines and workflows permanently.
Collapse
Affiliation(s)
- Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Thomas Küstner
- Department of Diagnostic and Interventional Radiology, Medical Image and Data Analysis (MIDAS.lab), Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany;
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany;
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
- Department of Neuroradiology, University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
168
|
Noda Y, Nakamura F, Kawamura T, Kawai N, Kaga T, Miyoshi T, Kato H, Hyodo F, Matsuo M. Deep-learning image-reconstruction algorithm for dual-energy CT angiography with reduced iodine dose: preliminary results. Clin Radiol 2021; 77:e138-e146. [PMID: 34782114 DOI: 10.1016/j.crad.2021.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023]
Abstract
AIM To evaluate the computed tomography (CT) attenuation values, background noise, arterial depiction, and image quality in whole-body dual-energy CT angiography (DECTA) at 40 keV with a reduced iodine dose using deep-learning image reconstruction (DLIR) and compare them with hybrid iterative reconstruction (IR). MATERIAL AND METHODS Whole-body DECTA with a reduced iodine dose (200 mg iodine/kg) was performed in 22 patients, and DECTA data at 1.25-mm section thickness with 50% overlap were reconstructed at 40 keV using 40% adaptive statistical iterative reconstruction with Veo (hybrid-IR group), and DLIR at medium and high levels (DLIR-M and DLIR-H groups). The CT attenuation values of the thoracic and abdominal aortas and iliac artery and background noise were measured. Arterial depiction and image quality on axial, multiplanar reformatted (MPR), and volume-rendered (VR) images were assessed by two readers. Quantitative and qualitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H groups. RESULTS The vascular CT attenuation values were almost comparable between the three groups (p=0.013-0.97), but the background noise was significantly lower in the DLIR-H group than in the hybrid-IR and DLIR-M groups (p<0.001). The arterial depictions on axial and MPR images and in almost all arteries on VR images were comparable (p=0.14-1). The image quality of axial, MPR, and VR images was significantly better in the DLIR-H group (p<0.001-0.015). CONCLUSION DLIR significantly reduced background noise and improved image quality in DECTA at 40 keV compared with hybrid-IR, while maintaining the arterial depiction in almost all arteries.
Collapse
Affiliation(s)
- Y Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - F Nakamura
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Kawamura
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - N Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - H Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - M Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
169
|
In Vitro Study of the Precision and Accuracy of Measurement of the Vascular Inner Diameter on Computed Tomography Angiography Using Deep Learning Image Reconstruction. J Comput Assist Tomogr 2021; 46:17-22. [DOI: 10.1097/rct.0000000000001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
170
|
Heinrich A, Streckenbach F, Beller E, Groß J, Weber MA, Meinel FG. Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta. Diagnostics (Basel) 2021; 11:diagnostics11112037. [PMID: 34829383 PMCID: PMC8622129 DOI: 10.3390/diagnostics11112037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
To evaluate the impact of a novel, deep-learning-based image reconstruction (DLIR) algorithm on image quality in CT angiography of the aorta, we retrospectively analyzed 51 consecutive patients who underwent ECG-gated chest CT angiography and non-gated acquisition for the abdomen on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction (ASIR-V) and DLIR. Intravascular image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were quantified for the ascending aorta, the descending thoracic aorta, the abdominal aorta and the iliac arteries. Two readers scored subjective image quality on a five-point scale. Compared to ASIR-V, DLIR reduced the median image noise by 51–54% for the ascending aorta and the descending thoracic aorta. Correspondingly, median CNR roughly doubled for the ascending aorta and descending thoracic aorta. There was a 38% reduction in image noise for the abdominal aorta and the iliac arteries, with a corresponding improvement in CNR. Median subjective image quality improved from good to excellent at all anatomical levels. In CT angiography of the aorta, DLIR substantially improved objective and subjective image quality beyond what can be achieved by state-of-the-art iterative reconstruction. This can pave the way for further radiation or contrast dose reductions.
Collapse
Affiliation(s)
- Andra Heinrich
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
| | - Felix Streckenbach
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18057 Rostock, Germany
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
| | - Justus Groß
- Division of Vascular Surgery, Department of Surgery, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
| | - Felix G. Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, 18057 Rostock, Germany; (A.H.); (F.S.); (E.B.); (M.-A.W.)
- Correspondence: ; Tel.: +49-381-494-9275
| |
Collapse
|
171
|
Parakh A, Cao J, Pierce TT, Blake MA, Savage CA, Kambadakone AR. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Eur Radiol 2021; 31:8342-8353. [PMID: 33893535 DOI: 10.1007/s00330-021-07952-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the image quality and perception of a sinogram-based deep learning image reconstruction (DLIR) algorithm for single-energy abdominal CT compared to standard-of-care strength of ASIR-V. METHODS In this retrospective study, 50 patients (62% F; 56.74 ± 17.05 years) underwent portal venous phase. Four reconstructions (ASIR-V at 40%, and DLIR at three strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H)) were generated. Qualitative and quantitative image quality analysis was performed on the 200 image datasets. Qualitative scores were obtained for image noise, contrast, small structure visibility, sharpness, and artifact by three blinded radiologists on a 5-point scale (1, excellent; 5, very poor). Radiologists also indicated image preference on a 3-point scale (1, most preferred; 3, least preferred). Quantitative assessment was performed by measuring image noise and contrast-to-noise ratio (CNR). RESULTS DLIR had better image quality scores compared to ASIR-V. Scores on DLIR-H for noise (1.40 ± 0.53), contrast (1.41 ± 0.55), small structure visibility (1.51 ± 0.61), and sharpness (1.60 ± 0.54) were the best (p < 0.05) followed by DLIR-M (1.85 ± 0.52, 1.66 ± 0.57, 1.69 ± 0.59, 1.68 ± 0.46), DLIR-L (2.29 ± 0.58, 1.96 ± 0.61, 1.90 ± 0.65, 1.86 ± 0.46), and ASIR-V (2.86 ± 0.67, 2.55 ± 0.58, 2.34 ± 0.66, 2.01 ± 0.36). Ratings for artifacts were similar for all reconstructions (p > 0.05). DLIRs did not influence subjective textural perceptions and were preferred over ASIR-V from the beginning. All DLIRs had a higher CNR (26.38-102.30%) and lower noise (20.64-48.77%) than ASIR-V. DLIR-H had the best objective scores. CONCLUSION Sinogram-based deep learning image reconstructions were preferred over iterative reconstruction subjectively and objectively due to improved image quality and lower noise, even in large patients. Use in clinical routine may allow for radiation dose reduction. KEY POINTS • Deep learning image reconstructions (DLIRs) have a higher contrast-to-noise ratio compared to medium-strength hybrid iterative reconstruction techniques. • DLIR may be advantageous in patients with large body habitus due to a lower image noise. • DLIR can enable further optimization of radiation doses used in abdominal CT.
Collapse
Affiliation(s)
- Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Theodore T Pierce
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Michael A Blake
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Cristy A Savage
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Avinash R Kambadakone
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
172
|
Sandino CM, Cole EK, Alkan C, Chaudhari AS, Loening AM, Hyun D, Dahl J, Imran AAZ, Wang AS, Vasanawala SS. Upstream Machine Learning in Radiology. Radiol Clin North Am 2021; 59:967-985. [PMID: 34689881 PMCID: PMC8549864 DOI: 10.1016/j.rcl.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Machine learning (ML) and Artificial intelligence (AI) has the potential to dramatically improve radiology practice at multiple stages of the imaging pipeline. Most of the attention has been garnered by applications focused on improving the end of the pipeline: image interpretation. However, this article reviews how AI/ML can be applied to improve upstream components of the imaging pipeline, including exam modality selection, hardware design, exam protocol selection, data acquisition, image reconstruction, and image processing. A breadth of applications and their potential for impact is shown across multiple imaging modalities, including ultrasound, computed tomography, and MRI.
Collapse
Affiliation(s)
- Christopher M Sandino
- Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA
| | - Elizabeth K Cole
- Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA
| | - Cagan Alkan
- Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA
| | - Akshay S Chaudhari
- Department of Biomedical Data Science, 1201 Welch Road, Stanford, CA 94305, USA; Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Andreas M Loening
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Dongwoon Hyun
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Jeremy Dahl
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | | | - Adam S Wang
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Shreyas S Vasanawala
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA.
| |
Collapse
|
173
|
Yoon H, Kim J, Lim HJ, Lee MJ. Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction. BMC Med Imaging 2021; 21:146. [PMID: 34629049 PMCID: PMC8503996 DOI: 10.1186/s12880-021-00677-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images. METHODS This retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1-18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests. RESULTS DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture. CONCLUSION Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength.
Collapse
Affiliation(s)
- Haesung Yoon
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jisoo Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyun Ji Lim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Mi-Jung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
174
|
Improvement of Image Quality Using Hybrid Iterative Reconstruction with Noise Power Spectrum Model in Computed Tomography During Hepatic Arteriography. J Belg Soc Radiol 2021; 105:43. [PMID: 34611577 PMCID: PMC8447979 DOI: 10.5334/jbsr.2444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: In CT during hepatic arteriography (CTHA), the addition of a noise power spectrum (NPS) model to conventional hybrid iterative reconstruction (HIR) may improve spatial resolution and reduce image noise. This study aims at assessing the image quality provided by HIR with a NPS model at CTHA. Methods: This institutional review board-approved retrospective analysis included 26 patients with hepatocellular carcinomas (HCCs) who underwent CTHA. In all acquisitions, images were reconstructed with filtered back projection (FBP), adaptive iterative dose reduction 3D (AIDR), and AIDR enhanced (eAIDR) with the NPS model. Four radiologists analyzed the signal-to-noise ratio (SNR) of HCC nodules and its associated feeding arteries. The radiologists used a semiquantitative scale (–3 to +3) to rate the subjective image quality comparing both the FBP and eAIDR images with the AIDR images. Results: The feeding arteries’ attenuation was significantly higher in eAIDR compared to AIDR [514.3 ± 121.4 and 448.3 ± 107.3 Hounsfield units (HU), p < 0.05]. The image noise of eAIDR was significantly lower than that of FBP (15.2 ± 2.2 and 28.5 ± 4.8 HU, p < 0.05) and comparable to that of AIDR. The SNR of feeding arteries on eAIDR was significantly higher than on AIDR (34.1 ± 7.9 and 27.4 ± 6.3, p < 0.05). Subjective assessment scores showed that eAIDR provided better visibility of feeding arteries and overall image quality compared to AIDR (p < 0.05). The HCC nodule visibility was not significantly different among the three reconstructions. Conclusion: In CTHA, eAIDR improved the visibility of feeding arteries associated with HCC nodules without compromising nodule detection.
Collapse
|
175
|
Nagayama Y, Sakabe D, Goto M, Emoto T, Oda S, Nakaura T, Kidoh M, Uetani H, Funama Y, Hirai T. Deep Learning-based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations. Radiographics 2021; 41:1936-1953. [PMID: 34597178 DOI: 10.1148/rg.2021210105] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optimizing the CT acquisition parameters to obtain diagnostic image quality at the lowest possible radiation dose is crucial in the radiosensitive pediatric population. The image quality of low-dose CT can be severely degraded by increased image noise with filtered back projection (FBP) reconstruction. Iterative reconstruction (IR) techniques partially resolve the trade-off relationship between noise and radiation dose but still suffer from degraded noise texture and low-contrast detectability at considerably low-dose settings. Furthermore, sophisticated model-based IR usually requires a long reconstruction time, which restricts its clinical usability. With recent advances in artificial intelligence technology, deep learning-based reconstruction (DLR) has been introduced to overcome the limitations of the FBP and IR approaches and is currently available clinically. DLR incorporates convolutional neural networks-which comprise multiple layers of mathematical equations-into the image reconstruction process to reduce image noise, improve spatial resolution, and preserve preferable noise texture in the CT images. For DLR development, numerous network parameters are iteratively optimized through an extensive learning process to discriminate true attenuation from noise by using low-dose training and high-dose teaching image data. After rigorous validations of network generalizability, the DLR engine can be used to generate high-quality images from low-dose projection data in a short reconstruction time in a clinical environment. Application of the DLR technique allows substantial dose reduction in pediatric CT performed for various clinical indications while preserving the diagnostic image quality. The authors present an overview of the basic concept, technical principles, and image characteristics of DLR and its clinical feasibility for low-dose pediatric CT. ©RSNA, 2021.
Collapse
Affiliation(s)
- Yasunori Nagayama
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Daisuke Sakabe
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Makoto Goto
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Takafumi Emoto
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Seitaro Oda
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Takeshi Nakaura
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Masafumi Kidoh
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Hiroyuki Uetani
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Yoshinori Funama
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| | - Toshinori Hirai
- From the Department of Diagnostic Radiology, Graduate School of Medical Sciences (Y.N., S.O., T.N., M.K., H.U., T.H.), and Department of Medical Radiation Sciences, Faculty of Life Sciences (Y.F.), Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; and Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan (D.S., M.G., T.E.)
| |
Collapse
|
176
|
Ultrahigh-Resolution Computed Tomography Improves Preoperative Computed Tomography Angiography for Deep Inferior Epigastric Artery Perforator Flap Reconstruction. J Comput Assist Tomogr 2021; 46:29-33. [PMID: 34581707 DOI: 10.1097/rct.0000000000001235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to compare computed tomography (CT) angiography (CTA) imaging of deep inferior epigastric artery perforator (DIEP) using the ultrahigh-resolution CT (UHRCT) and conventional multidetector CT (MDCT). METHODS This retrospective study enrolled 20 patients who underwent CTA of DIEP flap with UHRCT and MDCT. Computed tomography values were measured at 4 large vessels (thoracic aorta, abdominal aorta, common iliac artery, and external iliac artery) and 5 peripheral vessels (proximal and distal internal thoracic artery, proximal and distal deep inferior epigastric artery, and DIEP). RESULTS There were no significant differences in mean CT values of the major vessel between UHRCT and MDCT. Ultrahigh-resolution CT shows higher CT values of the peripheral vessels than MDCT (P < 0.05 for all). The median CT values of the DIEP in UHRCT were approximately 3 times higher than those in MDCT (P < 0.001). CONCLUSIONS Ultrahigh-resolution CT provides higher-quality CTA of DIEP compared with MDCT.
Collapse
|
177
|
Greffier J, Frandon J, Si-Mohamed S, Dabli D, Hamard A, Belaouni A, Akessoul P, Besse F, Guiu B, Beregi JP. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data. Diagn Interv Imaging 2021; 103:21-30. [PMID: 34493475 DOI: 10.1016/j.diii.2021.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The purpose of this study was to compare the effect of two deep learning image reconstruction (DLR) algorithms in chest computed tomography (CT) with different clinical indications. MATERIAL AND METHODS Acquisitions on image quality and anthropomorphic phantoms were performed at six dose levels (CTDIvol: 10/7.5/5/2.5/1/0.5mGy) on two CT scanners equipped with two different DLR algorithms (TrueFidelityTM and AiCE). Raw data were reconstructed using the filtered back-projection (FBP) and the lowest/intermediate/highest DLR levels (L-DLR/M-DLR/H-DLR) of each algorithm. Noise power spectrum, task-based transfer function (TTF) and detectability index (d') were computed: d' modelled detection of a soft tissue mediastinal nodule, ground-glass opacity, or high-contrast pulmonary lesion. Subjective image quality of anthropomorphic phantom images was analyzed by two radiologists. RESULTS For the L-DLR/M-DLR levels, the noise magnitude was lower with TrueFidelityTM than with AiCE from 2.5 to 10 mGy. For H-DLR, noise magnitude was lower with AiCE . For L-DLR and M-DLR, the average NPS spatial frequency (fav) values were greater for AiCE except for 0.5 mGy. For H-DLR levels, fav was greater for TrueFidelityTM than for AiCE. TTF50% values were greater with AiCE for the air insert, and lower than TrueFidelityTM for the polyethylene insert. From 2.5 to10 mGy, d' was greater for AiCE than for TrueFidelityTM for H-DLR for all lesions, but similar for L-DLR and M-DLR. Image quality was rated clinically appropriate for all levels of both algorithms, for dose from 2.5 to 10 mGy, except for L-DLR of AiCE. CONCLUSION DLR algorithms reduce the image-noise and improve lesion detectability. Their operations and properties impacted both noise-texture and spatial resolution.
Collapse
Affiliation(s)
- Joël Greffier
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France.
| | - Julien Frandon
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France
| | - Salim Si-Mohamed
- Department of Radiology, Hospices Civils de Lyon, 69500 Lyon, France
| | - Djamel Dabli
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France
| | - Aymeric Hamard
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France
| | - Asmaa Belaouni
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France
| | - Philippe Akessoul
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France
| | - Francis Besse
- Department of Radiology Centre Cardiologique Nord, 93200 Saint Denis, France
| | - Boris Guiu
- Department of Radiology Saint-Eloi University Hospital, 34295 Montpellier, France
| | - Jean-Paul Beregi
- Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France
| |
Collapse
|
178
|
Noda Y, Iritani Y, Kawai N, Miyoshi T, Ishihara T, Hyodo F, Matsuo M. Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction. Abdom Radiol (NY) 2021; 46:4238-4244. [PMID: 33973060 DOI: 10.1007/s00261-021-03111-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate image quality, image noise, and conspicuity of pancreatic ductal adenocarcinoma (PDAC) in pancreatic low-dose computed tomography (LDCT) reconstructed using deep learning image reconstruction (DLIR) and compare with those of images reconstructed using hybrid iterative reconstruction (IR). METHODS Our institutional review board approved this prospective study. Written informed consent was obtained from all patients. Twenty-eight consecutive patients with PDAC undergoing chemotherapy (14 men and 14 women; mean age, 68.4 years) underwent pancreatic LDCT for therapy evaluation. The LDCT images were reconstructed using 40% adaptive statistical iterative reconstruction-Veo (hybrid-IR) and DLIR at medium and high levels (DLIR-M and DLIR-H). The image noise, diagnostic acceptability, and conspicuity of PDAC were qualitatively assessed using a 5-point scale. CT numbers of the abdominal aorta, portal vein, pancreas, PDAC, background noise, signal-to-noise ratio (SNR) of the anatomical structures, and tumor-to-pancreas contrast-to-noise ratio (CNR) were calculated. Qualitative and quantitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H images. RESULTS CT dose-index volumes and dose-length product in pancreatic LDCT were 2.3 ± 1.0 mGy and 74.9 ± 37.0 mGy•cm, respectively. The image noise, diagnostic acceptability, and conspicuity of PDAC were significantly better in DLIR-H than those in hybrid-IR and DLIR-M (all P < 0.001). The background noise was significantly lower in the DLIR-H images (P < 0.001) and resulted in improved SNRs (P < 0.001) and CNR (P < 0.001) compared with those in the hybrid-IR and DLIR-M images. CONCLUSION DLIR significantly reduced image noise and improved image quality in pancreatic LDCT images compared with hybrid-IR.
Collapse
|
179
|
Li GY, Wang CY, Lv J. Current status of deep learning in abdominal image reconstruction. Artif Intell Med Imaging 2021; 2:86-94. [DOI: 10.35711/aimi.v2.i4.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Guang-Yuan Li
- School of Computer and Control Engineering, Yantai University, Yantai 264000, Shandong Province, China
| | - Cheng-Yan Wang
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Jun Lv
- School of Computer and Control Engineering, Yantai University, Yantai 264000, Shandong Province, China
| |
Collapse
|
180
|
Greffier J, Dabli D, Frandon J, Hamard A, Belaouni A, Akessoul P, Fuamba Y, Le Roy J, Guiu B, Beregi JP. Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study. Med Phys 2021; 48:5743-5755. [PMID: 34418110 DOI: 10.1002/mp.15180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To compare the impact on CT image quality and dose reduction of two versions of a Deep Learning Image Reconstruction algorithm. MATERIAL AND METHODS Acquisitions on the CT ACR 464 phantom were performed at five dose levels (CTDIvol : 10/7.5/5/2.5/1 mGy) using chest or abdomen pelvis protocol parameters. Raw data were reconstructed using the filtered-back projection (FBP), the enhanced level of AIDR 3D (AIDR 3De), and the three levels of AiCE (Mild, Standard, and Strong) for the two versions (AiCE V8 vs AiCE V10). The noise power spectrum (NPS) and task-based transfer function (TTF) for bone (high-contrast insert) and acrylic (low-contrast insert) inserts were computed. To quantify the changes of noise magnitude and texture, the square root of the area under the NPS curve and the average spatial frequency (fav ) of the NPS curve were measured. The detectability index (d') was computed to model the detectability of either a large mass in the liver or lung, or a small calcification or high contrast tissue boundaries. RESULTS The noise magnitude was lower with both AiCE versions than with AIDR 3De. The noise magnitude was lower with AiCE V10 than with AiCE V8 (-4 ± 6% for Mild, -13 ± 3% for Standard, and -48 ± 0% for Strong levels). fav and TTF50% values for both inserts shifted towards higher frequencies with AiCE than with AIDR 3De. Compared to AiCE V08, fav shifted towards higher frequencies with AiCE V10 (45 ± 4%, 36 ± 3%, and 5 ± 4% for all levels, respectively). The TTF50% values shifted towards higher frequencies with AiCE V10 as compared with AiCE V8 for both inserts, except for the Strong level for the acrylic insert. Whatever the dose and AiCE levels, d' values were higher with AiCE V10 than with AiCE V8 for the small object/calcification and for the large object/lesion. CONCLUSION As compared to AIDR 3De, lower noise magnitude and higher spatial resolution and detectability index were found with both versions of AiCE. As compared to AiCE V8, AiCE V10 reduced noise and improved spatial resolution and detectability without changing the noise texture in a simple geometric phantom, except for the Strong level. AiCE V10 seems to have a greater potential for dose reduction than AiCE V8.
Collapse
Affiliation(s)
- Joël Greffier
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Djamel Dabli
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Julien Frandon
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Aymeric Hamard
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Asmaa Belaouni
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Philippe Akessoul
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| | - Yannick Fuamba
- Computed Tomography Division, Canon Medical Systems France, Suresnes, France
| | - Julien Le Roy
- Medical Physics Department, Montpellier University Hospital, Montpellier, France
| | - Boris Guiu
- Saint-Eloi University Hospital, Montpellier, France
| | - Jean-Paul Beregi
- Department of medical imaging, CHU Nîmes, Nîmes Medical Imaging Group, Univ Montpellier, Nîmes, France
| |
Collapse
|
181
|
Delabie A, Bouzerar R, Pichois R, Desdoit X, Vial J, Renard C. Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis. Acta Radiol 2021; 63:1283-1292. [PMID: 34365803 DOI: 10.1177/02841851211035896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with urolithiasis undergo radiation overexposure from computed tomography (CT) scans. Improvement of image reconstruction is necessary for radiation dose reduction. PURPOSE To evaluate a deep learning-based reconstruction algorithm for CT (DLIR) in the detection of urolithiasis at low-dose non-enhanced abdominopelvic CT. MATERIAL AND METHODS A total of 75 patients who underwent low-dose abdominopelvic CT for urolithiasis were retrospectively included. Each examination included three reconstructions: DLIR; filtered back projection (FBP); and hybrid iterative reconstruction (IR; ASiR-V 70%). Image quality was subjectively and objectively assessed using attenuation and noise measurements in order to calculate the signal-to-noise ratio (SNR), absolute contrast, and contrast-to-noise ratio (CNR). Attenuation of the largest stones were also compared. Detectability of urinary stones was assessed by two observers. RESULTS Image noise was significantly reduced with DLIR: 7.2 versus 17 and 22 for ASiR-V 70% and FBP, respectively. Similarly, SNR and CNR were also higher compared to the standard reconstructions. When the structures had close attenuation values, contrast was lower with DLIR compared to ASiR-V. Attenuation of stones was also lowered in the DLIR series. Subjective image quality was significantly higher with DLIR. The detectability of all stones and stones >3 mm was excellent with DLIR for the two observers (intraclass correlation [ICC] = 0.93 vs. 0.96 and 0.95 vs. 0.99). For smaller stones (<3 mm), results were different (ICC = 0.77 vs. 0.86). CONCLUSION For low-dose abdominopelvic CT, DLIR reconstruction exhibited image quality superior to ASiR-V and FBP as well as an excellent detection of urinary stones.
Collapse
Affiliation(s)
- Aurélien Delabie
- Department of Radiology, Amiens University Hospital, Amiens Cedex, France
| | - Roger Bouzerar
- Medical Image Processing Unit, Amiens University Hospital, Amiens, France
| | - Raphaël Pichois
- Department of Radiology, Amiens University Hospital, Amiens Cedex, France
| | - Xavier Desdoit
- Department of Radiology, Amiens University Hospital, Amiens Cedex, France
| | - Jérémie Vial
- Department of Radiology, Amiens University Hospital, Amiens Cedex, France
| | - Cédric Renard
- Department of Radiology, Amiens University Hospital, Amiens Cedex, France
| |
Collapse
|
182
|
Heinrich A, Schenkl S, Buckreus D, Güttler FV, Teichgräber UKM. CT-based thermometry with virtual monoenergetic images by dual-energy of fat, muscle and bone using FBP, iterative and deep learning-based reconstruction. Eur Radiol 2021; 32:424-431. [PMID: 34327575 PMCID: PMC8660750 DOI: 10.1007/s00330-021-08206-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Objectives The aim of this study was to evaluate the sensitivity of CT-based thermometry for clinical applications regarding a three-component tissue phantom of fat, muscle and bone. Virtual monoenergetic images (VMI) by dual-energy measurements and conventional polychromatic 120-kVp images with modern reconstruction algorithms adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning image reconstruction (DLIR) were compared. Methods A temperature-regulating water circuit system was developed for the systematic evaluation of the correlation between temperature and Hounsfield units (HU). The measurements were performed on a Revolution CT with gemstone spectral imaging technology (GSI). Complementary measurements were performed without GSI (voltage 120 kVp, current 130–545 mA). The measured object was a tissue equivalent phantom in a temperature range of 18 to 50°C. The evaluation was carried out for VMI at 40 to 140 keV and polychromatic 120-kVp images. Results The regression analysis showed a significant inverse linear dependency between temperature and average HU regardless of ASIR-V and DLIR. VMI show a higher temperature sensitivity compared to polychromatic images. The temperature sensitivities were 1.25 HU/°C (120 kVp) and 1.35 HU/°C (VMI at 140 keV) for fat, 0.38 HU/°C (120 kVp) and 0.47 HU/°C (VMI at 40 keV) for muscle and 1.15 HU/°C (120 kVp) and 3.58 HU/°C (VMI at 50 keV) for bone. Conclusions Dual-energy with VMI enables a higher temperature sensitivity for fat, muscle and bone. The reconstruction with ASIR-V and DLIR has no significant influence on CT-based thermometry, which opens up the potential of drastic dose reductions. Key Points • Virtual monoenergetic images (VMI) enable a higher temperature sensitivity for fat (8%), muscle (24%) and bone (211%) compared to conventional polychromatic 120-kVp images. • With VMI, there are parameters, e.g. monoenergy and reconstruction kernel, to modulate the temperature sensitivity. In contrast, there are no parameters to influence the temperature sensitivity for conventional polychromatic 120-kVp images. • The application of adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning–based image reconstruction (DLIR) has no effect on CT-based thermometry, opening up the potential of drastic dose reductions in clinical applications.
Collapse
Affiliation(s)
- Andreas Heinrich
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| | - Sebastian Schenkl
- Institute of Forensic Medicine, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - David Buckreus
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix V Güttler
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Ulf K-M Teichgräber
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
183
|
Kitahara H, Nagatani Y, Otani H, Nakayama R, Kida Y, Sonoda A, Watanabe Y. A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset. Jpn J Radiol 2021; 40:38-47. [PMID: 34318444 PMCID: PMC8315896 DOI: 10.1007/s11604-021-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To improve the image quality of inflated fixed cadaveric human lungs by utilizing ultra-high-resolution computed tomography (U-HRCT) as a training dataset for super-resolution processing using deep learning (SR-DL). MATERIALS AND METHODS Image data of nine cadaveric human lungs were acquired using U-HRCT. Three different matrix images of U-HRCT images were obtained with two acquisition modes: normal mode (512-matrix image) and super-high-resolution mode (1024- and 2048-matrix image). SR-DL used 512- and 1024-matrix images as training data for deep learning. The virtual 2048-matrix images were acquired by applying SR-DL to the 1024-matrix images. Three independent observers scored normal anatomical structures and abnormal computed tomography (CT) findings of both types of 2048-matrix images on a 3-point scale compared to 1024-matrix images. The image noise values were quantitatively calculated. Moreover, the edge rise distance (ERD) and edge rise slope (ERS) were also calculated using the CT attenuation profile to evaluate margin sharpness. RESULTS The virtual 2048-matrix images significantly improved visualization of normal anatomical structures and abnormal CT findings, except for consolidation and nodules, compared with the conventional 2048-matrix images (p < 0.01). Quantitative noise values were significantly lower in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.001). ERD was significantly shorter in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.01). ERS was significantly higher in the virtual 2048-matrix images than in the conventional 2048-matrix images (p < 0.01). CONCLUSION SR-DL using original U-HRCT images as a training dataset might be a promising tool for image enhancement in terms of margin sharpness and image noise reduction. By applying trained SR-DL to U-HRCT SHR mode images, virtual ultra-high-resolution images were obtained which surpassed the image quality of unmodified SHR mode images.
Collapse
Affiliation(s)
- Hitoshi Kitahara
- Department of Radiology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Hideji Otani
- Department of Radiology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Ryohei Nakayama
- Department of Electronic and Computer Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yukako Kida
- Department of Radiology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Akinaga Sonoda
- Department of Radiology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
184
|
Keller G, Götz S, Kraus MS, Grünwald L, Springer F, Afat S. Radiation Dose Reduction in CT Torsion Measurement of the Lower Limb: Introduction of a New Ultra-Low Dose Protocol. Diagnostics (Basel) 2021; 11:diagnostics11071209. [PMID: 34359292 PMCID: PMC8304839 DOI: 10.3390/diagnostics11071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022] Open
Abstract
This study analyzed the radiation exposure of a new ultra-low dose (ULD) protocol compared to a high-quality (HQ) protocol for CT-torsion measurement of the lower limb. The analyzed patients (n = 60) were examined in the period March to October 2019. In total, 30 consecutive patients were examined with the HQ and 30 consecutive patients with the new ULD protocol comprising automatic tube voltage selection, automatic exposure control, and iterative image reconstruction algorithms. Radiation dose parameters as well as the contrast-to-noise ratio (CNR) and diagnostic confidence (DC; rated by two radiologists) were analyzed and potential predictor variables, such as body mass index and body volume, were assessed. The new ULD protocol resulted in significantly lower radiation dose parameters, with a reduction of the median total dose equivalent to 0.17 mSv in the ULD protocol compared to 4.37 mSv in the HQ protocol (p < 0.001). Both groups showed no significant differences in regard to other parameters (p = 0.344–0.923). CNR was 12.2% lower using the new ULD protocol (p = 0.033). DC was rated best by both readers in every HQ CT and in every ULD CT. The new ULD protocol for CT-torsion measurement of the lower limb resulted in a 96% decrease of radiation exposure down to the level of a single pelvic radiograph while maintaining good image quality.
Collapse
Affiliation(s)
- Gabriel Keller
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (S.G.); (M.S.K.); (S.A.)
- Correspondence: (G.K.); (F.S.)
| | - Simon Götz
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (S.G.); (M.S.K.); (S.A.)
| | - Mareen Sarah Kraus
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (S.G.); (M.S.K.); (S.A.)
| | - Leonard Grünwald
- Department of Traumatology and Reconstructive Surgery, BG Trauma Center Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (S.G.); (M.S.K.); (S.A.)
- Department of Diagnostic Radiology, BG Trauma Center Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence: (G.K.); (F.S.)
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (S.G.); (M.S.K.); (S.A.)
| |
Collapse
|
185
|
Tamura A, Mukaida E, Ota Y, Kamata M, Abe S, Yoshioka K. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection. Br J Radiol 2021; 94:20201357. [PMID: 34142867 PMCID: PMC8248220 DOI: 10.1259/bjr.20201357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: This study aimed to conduct objective and subjective comparisons of image quality among abdominal computed tomography (CT) reconstructions with deep learning reconstruction (DLR) algorithms, model-based iterative reconstruction (MBIR), and filtered back projection (FBP). Methods: Datasets from consecutive patients who underwent low-dose liver CT were retrospectively identified. Images were reconstructed using DLR, MBIR, and FBP. Mean image noise and contrast-to-noise ratio (CNR) were calculated, and noise, artifacts, sharpness, and overall image quality were subjectively assessed. Dunnett’s test was used for statistical comparisons. Results: Ninety patients (67 ± 12.7 years; 63 males; mean body mass index [BMI], 25.5 kg/m2) were included. The mean noise in the abdominal aorta and hepatic parenchyma of DLR was lower than that in FBP and MBIR (p < .001). For FBP and MBIR, image noise was significantly higher for obese patients than for those with normal BMI. The CNR for the abdominal aorta and hepatic parenchyma was higher for DLR than for FBP and MBIR (p < .001). MBIR images were subjectively rated as superior to FBP images in terms of noise, artifacts, sharpness, and overall quality (p < .001). DLR images were rated as superior to MBIR images in terms of noise (p < .001) and overall quality (p = .03). Conclusions: Based on objective and subjective comparisons, the image quality of DLR was found to be superior to that of MBIR and FBP on low-dose abdominal CT. DLR was the only method for which image noise was not higher for obese patients than for those with a normal BMI. Advances in knowledge: This study provides previously unavailable information on the properties of DLR systems and their clinical utility.
Collapse
Affiliation(s)
- Akio Tamura
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Eisuke Mukaida
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yoshitaka Ota
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Masayoshi Kamata
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Shun Abe
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
186
|
Shirasaka T, Kojima T, Funama Y, Sakai Y, Kondo M, Mikayama R, Hamasaki H, Kato T, Ushijima Y, Asayama Y, Nishie A. Image quality improvement with deep learning-based reconstruction on abdominal ultrahigh-resolution CT: A phantom study. J Appl Clin Med Phys 2021; 22:286-296. [PMID: 34159736 PMCID: PMC8292685 DOI: 10.1002/acm2.13318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/15/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose In an ultrahigh‐resolution CT (U‐HRCT), deep learning‐based reconstruction (DLR) is expected to drastically reduce image noise without degrading spatial resolution. We assessed a new algorithm's effect on image quality at different radiation doses assuming an abdominal CT protocol. Methods For the normal‐sized abdominal models, a Catphan 600 was scanned by U‐HRCT with 100%, 50%, and 25% radiation doses. In all acquisitions, DLR was compared to model‐based iterative reconstruction (MBIR), filtered back projection (FBP), and hybrid iterative reconstruction (HIR). For the quantitative assessment, we compared image noise, which was defined as the standard deviation of the CT number, and spatial resolution among all reconstruction algorithms. Results Deep learning‐based reconstruction yielded lower image noise than FBP and HIR at each radiation dose. DLR yielded higher image noise than MBIR at the 100% and 50% radiation doses (100%, 50%, DLR: 15.4, 16.9 vs MBIR: 10.2, 15.6 Hounsfield units: HU). However, at the 25% radiation dose, the image noise in DLR was lower than that in MBIR (16.7 vs. 26.6 HU). The spatial frequency at 10% of the modulation transfer function (MTF) in DLR was 1.0 cycles/mm, slightly lower than that in MBIR (1.05 cycles/mm) at the 100% radiation dose. Even when the radiation dose decreased, the spatial frequency at 10% of the MTF of DLR did not change significantly (50% and 25% doses, 0.98 and 0.99 cycles/mm, respectively). Conclusion Deep learning‐based reconstruction performs more consistently at decreasing dose in abdominal ultrahigh‐resolution CT compared to all other commercially available reconstruction algorithms evaluated.
Collapse
Affiliation(s)
- Takashi Shirasaka
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Tsukasa Kojima
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshinori Funama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Sakai
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Masatoshi Kondo
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Ryoji Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroshi Hamasaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Asayama
- Department of Advanced Imaging and Interventional Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Nishie
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
187
|
Sun J, Li H, Gao J, Li J, Li M, Zhou Z, Peng Y. Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in "double low" chest CTA in children: a feasibility study. Radiol Med 2021; 126:1181-1188. [PMID: 34132926 DOI: 10.1007/s11547-021-01384-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Chest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium doses. Iterative Reconstruction algorithms are often used to reduce image noise but encounter limitations under low radiation dose and conventional 100 kVp tube voltage may not provide adequate enhancement under low contrast dose. PURPOSE To evaluate the performance of a deep learning image reconstruction (DLIR) algorithm in conjunction with lower tube voltage in chest CTA in children under reduced radiation and contrast medium (CM) dose. MATERIALS AND METHODS 46 Children (age 5.9 ± 4.2 years) in the study group underwent chest CTA with 70 kVp and CM dose of 0.8-1.2 ml/kg. Images were reconstructed at 0.625 mm using a high setting DLIR (DLIR-H). The control group consisted of 46 age-matching children scanned with 100 kVp, CM dose of 1.3-1.8 ml/kg and images reconstructed with 50% and 100% adaptive statistical iterative reconstruction-V. Two radiologists evaluated images subjectively for overall image noise, vessel contrast and vessel margin clarity separately on a 5-point scale (5, excellent and 1, not acceptable). CT value and image noise of aorta and erector spinae muscle were measured. RESULTS Compared to the control group, the study group reduced the dose-length-product by 11.2% (p = 0.01) and CM dose by 24% (p < 0.001), improved the enhancement in aorta (416.5 ± 113.1HU vs. 342.0 ± 57.6HU, p < 0.001) and reduced noise (15.1 ± 3.5HU vs. 18.6 ± 4.4HU, p < 0.001). The DLIR-H images provided acceptable scores on all 3 aspects of the qualitative evaluation. CONCLUSION "Double low" chest CTA in children using 70 kVp and DLIR provides high image quality with reduced noise and improved vessel enhancement for diagnosis while further reduces radiation and CM dose.
Collapse
Affiliation(s)
- Jihang Sun
- Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56, Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Haoyan Li
- Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56, Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Jun Gao
- Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56, Nanlishi Road, Xicheng District, Beijing, 100045, China
| | | | | | - Zuofu Zhou
- Department of Radiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fujian, 350000, China
| | - Yun Peng
- Imaging Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56, Nanlishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
188
|
Nakamura Y, Higaki T, Honda Y, Tatsugami F, Tani C, Fukumoto W, Narita K, Kondo S, Akagi M, Awai K. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med 2021; 126:925-935. [PMID: 33954894 DOI: 10.1007/s11547-021-01366-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth-most common cancer in the world, and hepatic dynamic CT studies are routinely performed for its evaluation. Ongoing studies are examining advanced imaging techniques that may yield better findings than are obtained with conventional hepatic dynamic CT scanning. Dual-energy CT-, perfusion CT-, and artificial intelligence-based methods can be used for the precise characterization of liver tumors, the quantification of treatment responses, and for predicting the overall survival rate of patients. In this review, the advantages and disadvantages of conventional hepatic dynamic CT imaging are reviewed and the general principles of dual-energy- and perfusion CT, and the clinical applications and limitations of these technologies are discussed with respect to HCC. Finally, we address the utility of artificial intelligence-based methods for diagnosing HCC.
Collapse
Affiliation(s)
- Yuko Nakamura
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fuminari Tatsugami
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chihiro Tani
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Fukumoto
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keigo Narita
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shota Kondo
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Motonori Akagi
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
189
|
Visualization of small visceral arteries on abdominal CT angiography using ultra-high-resolution CT scanner. Jpn J Radiol 2021; 39:889-897. [PMID: 33948788 PMCID: PMC8413175 DOI: 10.1007/s11604-021-01124-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE To evaluate the image quality and ability to delineate the small visceral arteries of high-resolution (HR) abdominal CT angiography (CTA) using an ultra-high-resolution computed tomography (UHR CT) scanner. MATERIALS AND METHODS Thirty-seven patients were enrolled who underwent abdominal CTA using a UHR CT scanner. The images were reconstructed with a matrix of 1024 × 1024 and 0.25 mm thickness for HR CTA and with a matrix of 512 × 512 and 0.5 mm thickness for normal resolution (NR) CTA. Maximum CT value, image quality, and delineation of the small arteries were compared between HR CTA and NR CTA. RESULTS HR CTA showed significantly higher maximum CT value, higher image quality, and better delineation of the small arteries than did NR CTA (P < .005). CONCLUSION HR CTA using a UHR CT scanner showed higher image quality than NR CTA and enhanced the delineation of visceral arteries.
Collapse
|
190
|
Cardobi N, Dal Palù A, Pedrini F, Beleù A, Nocini R, De Robertis R, Ruzzenente A, Salvia R, Montemezzi S, D’Onofrio M. An Overview of Artificial Intelligence Applications in Liver and Pancreatic Imaging. Cancers (Basel) 2021; 13:2162. [PMID: 33946223 PMCID: PMC8124771 DOI: 10.3390/cancers13092162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) is one of the most promising fields of research in medical imaging so far. By means of specific algorithms, it can be used to help radiologists in their routine workflow. There are several papers that describe AI approaches to solve different problems in liver and pancreatic imaging. These problems may be summarized in four different categories: segmentation, quantification, characterization and image quality improvement. Segmentation is usually the first step of successive elaborations. If done manually, it is a time-consuming process. Therefore, the semi-automatic and automatic creation of a liver or a pancreatic mask may save time for other evaluations, such as quantification of various parameters, from organs volume to their textural features. The alterations of normal liver and pancreas structure may give a clue to the presence of a diffuse or focal pathology. AI can be trained to recognize these alterations and propose a diagnosis, which may then be confirmed or not by radiologists. Finally, AI may be applied in medical image reconstruction in order to increase image quality, decrease dose administration (referring to computed tomography) and reduce scan times. In this article, we report the state of the art of AI applications in these four main categories.
Collapse
Affiliation(s)
- Nicolò Cardobi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy; (R.D.R.); (S.M.)
| | - Alessandro Dal Palù
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43121 Parma, Italy;
| | - Federica Pedrini
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, 37129 Verona, Italy; (F.P.); (A.B.); (M.D.)
| | - Alessandro Beleù
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, 37129 Verona, Italy; (F.P.); (A.B.); (M.D.)
| | - Riccardo Nocini
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
| | - Riccardo De Robertis
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy; (R.D.R.); (S.M.)
| | - Andrea Ruzzenente
- Department of Surgery, General and Hepatobiliary Surgery, University Hospital G.B. Rossi, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, 37126 Verona, Italy;
| | - Stefania Montemezzi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy; (R.D.R.); (S.M.)
| | - Mirko D’Onofrio
- Department of Radiology, G.B. Rossi University Hospital, University of Verona, 37129 Verona, Italy; (F.P.); (A.B.); (M.D.)
| |
Collapse
|
191
|
Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study. Eur Radiol 2021; 31:8755-8764. [PMID: 33885958 DOI: 10.1007/s00330-021-07810-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/02/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES (1) To compare low-contrast detectability of a deep learning-based denoising algorithm (DLA) with ADMIRE and FBP, and (2) to compare image quality parameters of DLA with those of reconstruction methods from two different CT vendors (ADMIRE, IMR, and FBP). MATERIALS AND METHODS Using abdominal CT images of 100 patients reconstructed via ADMIRE and FBP, we trained DLA by feeding FBP images as input and ADMIRE images as the ground truth. To measure the low-contrast detectability, the randomized repeat scans of Catphan® phantom were performed under various conditions of radiation exposures. Twelve radiologists evaluated the presence/absence of a target on a five-point confidence scale. The multi-reader multi-case area under the receiver operating characteristic curve (AUC) was calculated, and non-inferiority tests were performed. Using American College of Radiology CT accreditation phantom, contrast-to-noise ratio, target transfer function, noise magnitude, and detectability index (d') of DLA, ADMIRE, IMR, and FBPs were computed. RESULTS The AUC of DLA in low-contrast detectability was non-inferior to that of ADMIRE (p < .001) and superior to that of FBP (p < .001). DLA improved the image quality in terms of all physical measurements compared to FBPs from both CT vendors and showed profiles of physical measurements similar to those of ADMIRE. CONCLUSIONS The low-contrast detectability of the proposed deep learning-based denoising algorithm was non-inferior to that of ADMIRE and superior to that of FBP. The DLA could successfully improve image quality compared with FBP while showing the similar physical profiles of ADMIRE. KEY POINTS • Low-contrast detectability in the images denoised using the deep learning algorithm was non-inferior to that in the images reconstructed using standard algorithms. • The proposed deep learning algorithm showed similar profiles of physical measurements to advanced iterative reconstruction algorithm (ADMIRE).
Collapse
|
192
|
Cheng Y, Han Y, Li J, Fan G, Cao L, Li J, Jia X, Yang J, Guo J. Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography. Br J Radiol 2021; 94:20201291. [PMID: 33571034 DOI: 10.1259/bjr.20201291] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES To compare the image quality of low-dose CT urography (LD-CTU) using deep learning image reconstruction (DLIR) with conventional CTU (C-CTU) using adaptive statistical iterative reconstruction (ASIR-V). METHODS This was a prospective, single-institutional study using the excretory phase CTU images for analysis. Patients were assigned to the LD-DLIR group (100kV and automatic mA modulation for noise index (NI) of 23) and C-ASIR-V group (100kV and NI of 10) according to the scan protocols in the excretory phase. Two radiologists independently assessed the overall image quality, artifacts, noise and sharpness of urinary tracts. Additionally, the mean CT attenuation, signal-to-noise ratio (SNR) and contrast-to-noise (CNR) in the urinary tracts were evaluated. RESULTS 26 patients each were included in the LD-DLIR group (10 males and 16 females; mean age: 57.23 years, range: 33-76 years) and C-ASIR-V group (14 males and 12 females; mean age: 60 years, range: 33-77 years). LD-DLIR group used a significantly lower effective radiation dose compared with the C-ASIR-V group (2.01 ± 0.44 mSv vs 6.9 ± 1.46 mSv, p < 0.001). LD-DLIR group showed good overall image quality with average score >4 and was similar to that of the C-ASIR-V group. Both groups had adequate and similar attenuation value, SNR and CNR in most segments of urinary tracts. CONCLUSION It is feasibility to provide comparable image quality while reducing 71% radiation dose in low-dose CTU with a deep learning image reconstruction algorithm compared to the conventional CTU with ASIR-V. ADVANCES IN KNOWLEDGE (1) CT urography with deep learning reconstruction algorithm can reduce the radiation dose by 71% while still maintaining image quality.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Yangyang Han
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Jianying Li
- GE Healthcare, Computed Tomography Research Center, Beijing, 100176, PR China
| | - Ganglian Fan
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Le Cao
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Junjun Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Xiaoqian Jia
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| | - Jianxin Guo
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi province, PR China
| |
Collapse
|
193
|
Njølstad T, Schulz A, Godt JC, Brøgger HM, Johansen CK, Andersen HK, Martinsen ACT. Improved image quality in abdominal computed tomography reconstructed with a novel Deep Learning Image Reconstruction technique - initial clinical experience. Acta Radiol Open 2021; 10:20584601211008391. [PMID: 33889427 PMCID: PMC8040588 DOI: 10.1177/20584601211008391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A novel Deep Learning Image Reconstruction (DLIR) technique for computed tomography has recently received clinical approval. PURPOSE To assess image quality in abdominal computed tomography reconstructed with DLIR, and compare with standardly applied iterative reconstruction. MATERIAL AND METHODS Ten abdominal computed tomography scans were reconstructed with iterative reconstruction and DLIR of medium and high strength, with 0.625 mm and 2.5 mm slice thickness. Image quality was assessed using eight visual grading criteria in a side-by-side comparative setting. All series were presented twice to evaluate intraobserver agreement. Reader scores were compared using univariate logistic regression. Image noise and contrast-to-noise ratio were calculated for quantitative analyses. RESULTS For 2.5 mm slice thickness, DLIR images were more frequently perceived as equal or better than iterative reconstruction across all visual grading criteria (for both DLIR of medium and high strength, p < 0.001). Correspondingly, DLIR images were more frequently perceived as better (as opposed to equal or in favor of iterative reconstruction) for visual reproduction of liver parenchyma, intrahepatic vascular structures as well as overall impression of image noise and texture (p < 0.001). This improved image quality was also observed for 0.625 mm slice images reconstructed with DLIR of high strength when directly comparing to traditional iterative reconstruction in 2.5 mm slices. Image noise was significantly lower and contrast-to-noise ratio measurements significantly higher for images reconstructed with DLIR compared to iterative reconstruction (p < 0.01). CONCLUSIONS Abdominal computed tomography images reconstructed using a DLIR technique shows improved image quality when compared to standardly applied iterative reconstruction across a variety of clinical image quality criteria.
Collapse
Affiliation(s)
- Tormund Njølstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Anselm Schulz
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Johannes C Godt
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Helga M Brøgger
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Cathrine K Johansen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Hilde K Andersen
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Anne Catrine T Martinsen
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
194
|
Tsuchiya J, Yokoyama K, Yamagiwa K, Watanabe R, Kimura K, Kishino M, Chan C, Asma E, Tateishi U. Deep learning-based image quality improvement of 18F-fluorodeoxyglucose positron emission tomography: a retrospective observational study. EJNMMI Phys 2021; 8:31. [PMID: 33765233 PMCID: PMC7994470 DOI: 10.1186/s40658-021-00377-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background Deep learning (DL)-based image quality improvement is a novel technique based on convolutional neural networks. The aim of this study was to compare the clinical value of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images obtained with the DL method with those obtained using a Gaussian filter. Methods Fifty patients with a mean age of 64.4 (range, 19–88) years who underwent 18F-FDG PET/CT between April 2019 and May 2019 were included in the study. PET images were obtained with the DL method in addition to conventional images reconstructed with three-dimensional time of flight-ordered subset expectation maximization and filtered with a Gaussian filter as a baseline for comparison. The reconstructed images were reviewed by two nuclear medicine physicians and scored from 1 (poor) to 5 (excellent) for tumor delineation, overall image quality, and image noise. For the semi-quantitative analysis, standardized uptake values in tumors and healthy tissues were compared between images obtained using the DL method and those obtained with a Gaussian filter. Results Images acquired using the DL method scored significantly higher for tumor delineation, overall image quality, and image noise compared to baseline (P < 0.001). The Fleiss’ kappa value for overall inter-reader agreement was 0.78. The standardized uptake values in tumor obtained by DL were significantly higher than those acquired using a Gaussian filter (P < 0.001). Conclusions Deep learning method improves the quality of PET images.
Collapse
Affiliation(s)
- Junichi Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Kota Yokoyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ken Yamagiwa
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ryosuke Watanabe
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Koichiro Kimura
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuhiro Kishino
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Chung Chan
- Canon Medical Research USA, Inc., 706 N. Deerpath Drive, Vernon Hills, IL, 60061, USA
| | - Evren Asma
- Canon Medical Research USA, Inc., 706 N. Deerpath Drive, Vernon Hills, IL, 60061, USA
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
195
|
Gorincour G, Monneuse O, Ben Cheikh A, Avondo J, Chaillot PF, Journe C, Youssof E, Lecomte JC, Thomson V. Management of abdominal emergencies in adults using telemedicine and artificial intelligence. J Visc Surg 2021; 158:S26-S31. [PMID: 33714710 DOI: 10.1016/j.jviscsurg.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The terms "telemedicine" and "artificial intelligence" (AI) are used today throughout all fields of medicine, with varying degrees of relevance. If telemedicine corresponds to practices currently being developed to supply a high quality response to medical provider shortages in the general provision of healthcare and to specific regional challenges. Through the possibilities of "scalability" and the "augmented physician" that it has helped to create, AI may also constitute a revolution in our practices. In the management of surgical emergencies, abdominal pain is one of the most frequent complaints of patients who present for emergency consultation, and up to 20% of patients prove to have an organic lesion that will require surgical management. In view of the very large number of patients concerned, the variety of clinical presentations, the potential seriousness of the etiological pathology that sometimes involves a life-threatening prognosis, healthcare workers responsible for these patients have logically been led to regularly rely on imaging examinations, which remain the critical key to subsequent management. Therefore, it is not surprising that articles have been published in recent years concerning the potential contributions of telemedicine (and teleradiology) to the diagnostic management of these patients, and also concerning the contribution of AI (albeit still in its infancy) to aid in diagnosis and treatment, including surgery. This review article presents the existing data and proposes a collaborative vision of an optimized patient pathway, giving medical meaning to the use of these tools.
Collapse
Affiliation(s)
- G Gorincour
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Elsan, Clinique Bouchard, Marseille, France.
| | - O Monneuse
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Chirurgie d'Urgences et Chirurgie Générale, Lyon, France
| | - A Ben Cheikh
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Ramsay, Clinique la Sauvegarde, Lyon, France
| | | | - P-F Chaillot
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Groupe C2S, Clinique du Parc, Lyon, France
| | - C Journe
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Groupe C2S, Clinique du Parc, Lyon, France
| | - E Youssof
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Centre d'Imagerie Médicale Clinique du Parc/Pourcel/Bergson, Saint-Étienne, France
| | - J-C Lecomte
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Centre hospitalier de Saintonge, Saintes, France; Centre Aquitain d'Imagerie Médicale, Bordeaux, France
| | - V Thomson
- Imadis Téléradiologie, Lyon, Bordeaux, Marseille, France; Ramsay, Clinique la Sauvegarde, Lyon, France
| |
Collapse
|
196
|
Oostveen LJ, Meijer FJA, de Lange F, Smit EJ, Pegge SA, Steens SCA, van Amerongen MJ, Prokop M, Sechopoulos I. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Eur Radiol 2021; 31:5498-5506. [PMID: 33693996 PMCID: PMC8270865 DOI: 10.1007/s00330-020-07668-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Objectives To evaluate image quality and reconstruction times of a commercial deep learning reconstruction algorithm (DLR) compared to hybrid-iterative reconstruction (Hybrid-IR) and model-based iterative reconstruction (MBIR) algorithms for cerebral non-contrast CT (NCCT). Methods Cerebral NCCT acquisitions of 50 consecutive patients were reconstructed using DLR, Hybrid-IR and MBIR with a clinical CT system. Image quality, in terms of six subjective characteristics (noise, sharpness, grey-white matter differentiation, artefacts, natural appearance and overall image quality), was scored by five observers. As objective metrics of image quality, the noise magnitude and signal-difference-to-noise ratio (SDNR) of the grey and white matter were calculated. Mean values for the image quality characteristics scored by the observers were estimated using a general linear model to account for multiple readers. The estimated means for the reconstruction methods were pairwise compared. Calculated measures were compared using paired t tests. Results For all image quality characteristics, DLR images were scored significantly higher than MBIR images. Compared to Hybrid-IR, perceived noise and grey-white matter differentiation were better with DLR, while no difference was detected for other image quality characteristics. Noise magnitude was lower for DLR compared to Hybrid-IR and MBIR (5.6, 6.4 and 6.2, respectively) and SDNR higher (2.4, 1.9 and 2.0, respectively). Reconstruction times were 27 s, 44 s and 176 s for Hybrid-IR, DLR and MBIR respectively. Conclusions With a slight increase in reconstruction time, DLR results in lower noise and improved tissue differentiation compared to Hybrid-IR. Image quality of MBIR is significantly lower compared to DLR with much longer reconstruction times. Key Points • Deep learning reconstruction of cerebral non-contrast CT results in lower noise and improved tissue differentiation compared to hybrid-iterative reconstruction. • Deep learning reconstruction of cerebral non-contrast CT results in better image quality in all aspects evaluated compared to model-based iterative reconstruction. • Deep learning reconstruction only needs a slight increase in reconstruction time compared to hybrid-iterative reconstruction, while model-based iterative reconstruction requires considerably longer processing time. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07668-x.
Collapse
Affiliation(s)
- Luuk J Oostveen
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands.
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Ewoud J Smit
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Sjoert A Pegge
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Stefan C A Steens
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Martin J van Amerongen
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101 (route 766), 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
197
|
Radiologic Assessment of Osteosarcoma Lung Metastases: State of the Art and Recent Advances. Cells 2021; 10:cells10030553. [PMID: 33806513 PMCID: PMC7999261 DOI: 10.3390/cells10030553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
The lung is the most frequent site of osteosarcoma (OS) metastases, which are a critical point in defining a patient’s prognosis. Chest computed tomography (CT) represents the gold standard for the detection of lung metastases even if its sensitivity widely ranges in the literature since lung localizations are often atypical. ESMO guidelines represent one of the major references for the follow-up program of OS patients. The development of new reconstruction techniques, such as the iterative method and the deep learning-based image reconstruction (DLIR), has led to a significant reduction of the radiation dose with the low-dose CT. The improvement of these techniques has great importance considering the young-onset of the disease and the strict chest surveillance during follow-up programs. The use of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT is still controversial, while volume doubling time (VDT) and computer-aided diagnosis (CAD) systems are recent diagnostic tools that could support radiologists for lung nodules evaluation. Their use, well-established for other malignancies, needs to be further evaluated, focusing on OS patients.
Collapse
|
198
|
McLeavy CM, Chunara MH, Gravell RJ, Rauf A, Cushnie A, Staley Talbot C, Hawkins RM. The future of CT: deep learning reconstruction. Clin Radiol 2021; 76:407-415. [PMID: 33637310 DOI: 10.1016/j.crad.2021.01.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022]
Abstract
There have been substantial advances in computed tomography (CT) technology since its introduction in the 1970s. More recently, these advances have focused on image reconstruction. Deep learning reconstruction (DLR) is the latest complex reconstruction algorithm to be introduced, which harnesses advances in artificial intelligence (AI) and affordable supercomputer technology to achieve the previously elusive triad of high image quality, low radiation dose, and fast reconstruction speeds. The dose reductions achieved with DLR are redefining ultra-low-dose into the realm of plain radiographs whilst maintaining image quality. This review aims to demonstrate the advantages of DLR over other reconstruction methods in terms of dose reduction and image quality in addition to being able to tailor protocols to specific clinical situations. DLR is the future of CT technology and should be considered when procuring new scanners.
Collapse
Affiliation(s)
- C M McLeavy
- Department of Radiology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK
| | - M H Chunara
- Department of Radiology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK
| | - R J Gravell
- Department of Radiology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK
| | - A Rauf
- Department of Urology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK
| | - A Cushnie
- Department of Radiology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK
| | - C Staley Talbot
- Department of Radiology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK
| | - R M Hawkins
- Department of Radiology, Leighton Hospital, Middlewich Road, Crewe, CW1 4QJ, UK.
| |
Collapse
|
199
|
Noda Y, Kaga T, Kawai N, Miyoshi T, Kawada H, Hyodo F, Kambadakone A, Matsuo M. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection. Br J Radiol 2021; 94:20201329. [PMID: 33571010 DOI: 10.1259/bjr.20201329] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To evaluate image quality and lesion detection capabilities of low-dose (LD) portal venous phase whole-body computed tomography (CT) using deep learning image reconstruction (DLIR). METHODS The study cohort of 59 consecutive patients (mean age, 67.2 years) who underwent whole-body LD CT and a prior standard-dose (SD) CT reconstructed with hybrid iterative reconstruction (SD-IR) within one year for surveillance of malignancy were assessed. The LD CT images were reconstructed with hybrid iterative reconstruction of 40% (LD-IR) and DLIR (LD-DLIR). The radiologists independently evaluated image quality (5-point scale) and lesion detection. Attenuation values in Hounsfield units (HU) of the liver, pancreas, spleen, abdominal aorta, and portal vein; the background noise and signal-to-noise ratio (SNR) of the liver, pancreas, and spleen were calculated. Qualitative and quantitative parameters were compared between the SD-IR, LD-IR, and LD-DLIR images. The CT dose-index volumes (CTDIvol) and dose-length product (DLP) were compared between SD and LD scans. RESULTS The image quality and lesion detection rate of the LD-DLIR was comparable to the SD-IR. The image quality was significantly better in SD-IR than in LD-IR (p < 0.017). The attenuation values of all anatomical structures were comparable between the SD-IR and LD-DLIR (p = 0.28-0.96). However, background noise was significantly lower in the LD-DLIR (p < 0.001) and resulted in improved SNRs (p < 0.001) compared to the SD-IR and LD-IR images. The mean CTDIvol and DLP were significantly lower in the LD (2.9 mGy and 216.2 mGy•cm) than in the SD (13.5 mGy and 1011.6 mGy•cm) (p < 0.0001). CONCLUSION LD CT images reconstructed with DLIR enable radiation dose reduction of >75% while maintaining image quality and lesion detection rate and superior SNR in comparison to SD-IR. ADVANCES IN KNOWLEDGE Deep learning image reconstruction algorithm enables around 80% reduction in radiation dose while maintaining the image quality and lesion detection compared to standard-dose whole-body CT.
Collapse
Affiliation(s)
- Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuro Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Toshiharu Miyoshi
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroshi Kawada
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
200
|
Noda Y, Nakamura F, Yasuda N, Miyoshi T, Kawai N, Kawada H, Hyodo F, Matsuo M. Advantages and disadvantages of single-source dual-energy whole-body CT angiography with 50% reduced iodine dose at 40 keV reconstruction. Br J Radiol 2021; 94:20201276. [PMID: 33617294 DOI: 10.1259/bjr.20201276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the feasibility of whole-body dual-energy computed tomographic angiography (DECTA) at 40 keV with 50% reduced iodine dose protocol. METHODS Whole-body CTA was performed in 65 patients; 31 of these patients underwent 120 kVp single-energy computed tomographic angiography (SECTA) with standard iodine dose (600 mgI/kg) and 34 with 40 keV DECTA with 50% reduced iodine dose (300 mgI/kg). SECTA data were reconstructed with adaptive statistical iterative reconstruction of 40% (SECTA group), and DECTA data were reconstructed with adaptive statistical iterative reconstruction of 40% (DECTA-40% group) and 80% (DECTA-80% group). CT numbers of the thoracic and abdominal aorta, iliac artery, background noise, signal-to-noise ratio (SNR), and arterial depiction were compared among the three groups. The CT dose index volumes (CTDIvol) for the thorax, abdomen, and pelvis were compared between SECTA and DECTA protocols. RESULTS The vascular CT numbers and background noise were found to be significantly higher in DECTA groups than in the SECTA group (p < 0.001). SNR was significantly higher in the order corresponding to DECTA-80%, SECTA, and DECTA-40% (p < 0.001). The arterial depiction was comparable in almost all arteries; however, intrapelvic arterial depiction was significantly worse in DECTA groups than in the SECTA group (p < 0.0001-0.017). Unlike the pelvic region (p = 0.055), CTDIvol for the thorax (p < 0.0001) and abdomen (p = 0.0031) were significantly higher in the DECTA protocol than in the SECTA protocol. CONCLUSION DECTA at 40 keV with 50% reduced iodine dose provided higher vascular CT numbers and SNR than SECTA, and almost comparable arterial depiction, but had a degraded intrapelvic arterial depiction and required a larger radiation dose. ADVANCES IN KNOWLEDGE DECTA enables 50% reduction of iodine dose while maintaining image quality, arterial depiction in almost all arteries, vascular CT numbers, and SNR; however, it does not allow clear visualization of intrapelvic arteries, requiring a slightly larger radiation dose compared with SECTA with standard iodine dose.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu University, Gifu, Japan
| | | |
Collapse
|