151
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012; 13:339. [PMID: 22827734 PMCID: PMC3443642 DOI: 10.1186/1471-2164-13-339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012. [PMID: 22827734 DOI: 10.1186/1471‐2164‐13‐339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization. PLoS One 2012; 7:e40214. [PMID: 22815731 PMCID: PMC3398029 DOI: 10.1371/journal.pone.0040214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/06/2012] [Indexed: 11/23/2022] Open
Abstract
To explore the feasibility of constructing a whole genome radiation hybrid (WGRH) map in plant species with large genomes, asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Bupleurum scorzonerifolium Willd. was performed. The protoplasts of wheat were irradiated with ultraviolet light (UV) and gamma-ray and rescued by protoplast fusion using B. scorzonerifolium as the recipient. Assessment of SSR markers showed that the radiation hybrids have the average marker retention frequency of 15.5%. Two RH panels (RHPWI and RHPWII) that contained 92 and 184 radiation hybrids, respectively, were developed and used for mapping of 68 SSR markers in chromosome 5A of wheat. A total of 1557 and 2034 breaks were detected in each panel. The RH map of chromosome 5A based on RHPWII was constructed. The distance of the comprehensive map was 2103 cR and the approximate resolution was estimated to be ∼501.6 kb/break. The RH panels evaluated in this study enabled us to order the ESTs in a single deletion bin or in the multiple bins cross the chromosome. These results demonstrated that RH mapping via protoplast fusion is feasible at the whole genome level for mapping purposes in wheat and the potential value of this mapping approach for the plant species with large genomes.
Collapse
|
154
|
Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Incerti O, Simeone R, Colasuonno P, Nigro D, Valè G, Cattivelli L, Stanca M, Blanco A. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum). Genome 2012; 55:417-27. [PMID: 22624876 DOI: 10.1139/g2012-028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aims of the present study were to provide deletion maps for wheat ( Triticum aestivum L.) chromosomes 5A and 5B and a detailed genetic map of chromosome 5A enriched with popular microsatellite markers, which could be compared with other existing maps and useful for mapping major genes and quantitative traits loci (QTL). Physical mapping of 165 gSSR and EST-SSR markers was conducted by amplifying each primer pair on Chinese Spring, aneuploid lines, and deletion lines for the homoeologous group 5 chromosomes. A recombinant inbred line (RIL) mapping population that is recombinant for only chromosome 5A was obtained by crossing the wheat cultivar Chinese Spring and the disomic substitution line Chinese Spring-5A dicoccoides and was used to develop a genetic linkage map of chromosome 5A. A total of 67 markers were found polymorphic between the parental lines and were mapped in the RIL population. Sixty-three loci and the Q gene were clustered in three linkage groups ordered at a minimum LOD score of 5, while four loci remained unlinked. The whole genetic 5A chromosome map covered 420.2 cM, distributed among three linkage groups of 189.3, 35.4, and 195.5 cM. The EST sequences located on chromosomes 5A and 5B were used for comparative analysis against Brachypodium distachyon (L.) P. Beauv. and rice ( Oryza sativa L.) genomes to resolve orthologous relationships among the genomes of wheat and the two model species.
Collapse
Affiliation(s)
- A Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 - Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T. Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:911-22. [PMID: 22159825 DOI: 10.1007/s00122-011-1756-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/05/2011] [Indexed: 05/18/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F(2) progenies and F(6) recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F(2) mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F(6) RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F(2) population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.
Collapse
Affiliation(s)
- Weilong Xie
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
156
|
Distelfeld A, Pearce SP, Avni R, Scherer B, Uauy C, Piston F, Slade A, Zhao R, Dubcovsky J. Divergent functions of orthologous NAC transcription factors in wheat and rice. PLANT MOLECULAR BIOLOGY 2012; 78:515-24. [PMID: 22278768 PMCID: PMC4773031 DOI: 10.1007/s11103-012-9881-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 01/10/2012] [Indexed: 05/18/2023]
Abstract
The wheat GPC-B1 gene located on chromosome 6B is an early regulator of senescence and affects remobilization of protein and minerals to the grain. GPC-B1 is a NAC transcription factor and has a paralogous copy on chromosome 2B in wheat, GPC-B2. The closest rice homolog to both wheat GPC genes is Os07g37920 which is located on rice chromosome 7 and is colinear with GPC-B2. Since rice is a diploid species with a sequenced genome, we initiated the study of Os07g37920 to develop a simpler model to study senescence and mineral remobilization in cereals. We developed eleven independent RNA interference transgenic rice lines (Os07g37920-RNAi) and 10 over-expressing transgenic lines (Os07g37920-OE), but none of them showed differences in senescence. Transgenic Os07g37920-RNAi rice plants had reduced proportions of viable pollen grains and were male-sterile, but were able to produce seeds by cross pollination. Analysis of the flower morphology of the transgenic rice plants showed that anthers failed to dehisce. Transgenic Os07g37920-OE lines showed no sterility or anther dehiscence problems. Os07g37920 transcript levels were higher in stamens compared to leaves and significantly reduced in the transgenic Os07g37920-RNAi plants. Wheat GPC genes showed the opposite transcription profile (higher transcript levels in leaves than in flowers) and plants carrying knock-out mutations of all GPC-1 and GPC-2 genes exhibited delayed senescence but normal anther dehiscence and fertility. These results indicate a functional divergence of the homologous wheat and rice NAC genes and suggest the need for separate studies of the function and targets of these transcription factors in wheat and rice.
Collapse
Affiliation(s)
- Assaf Distelfeld
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
- Faculty of Life Sciences, Dept. of Molecular Biology and Ecology of Plants, Tel Aviv University, Israel
| | - Stephen P. Pearce
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Raz Avni
- Faculty of Life Sciences, Dept. of Molecular Biology and Ecology of Plants, Tel Aviv University, Israel
| | - Beatrice Scherer
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Cristobal Uauy
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fernando Piston
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ann Slade
- Arcadia Biosciences Inc., Davis, CA, 95616, USA
| | - Rongrong Zhao
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Jorge Dubcovsky
- Dept. of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute and Gordon & Betty Moore Foundation
| |
Collapse
|
157
|
Friesen TL, Faris JD. Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. Methods Mol Biol 2012; 835:191-207. [PMID: 22183655 DOI: 10.1007/978-1-61779-501-5_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently, great strides have been made in the area of host-pathogen interactions involving necrotrophic fungi. In this article we describe a method to identify, produce, and characterize effectors that are important in host-necrotrophic fungal pathogen interactions, and to genetically characterize the interactions. The main strength of this method is the combined use of pathogen inoculation, a pathogen culture filtrate bioassay, and genetic analysis of susceptibility and sensitivity in segregating host-mapping populations. These methods have been successfully used to identify several Stagonospora nodorum necrotrophic effectors and to characterize the genetic and phenotypic effects of individual host-effector interactions in the wheat-S. nodorum system. S. nodorum isolates that induce a differential response on two lines are used to produce culture filtrates that contain necrotrophic effectors while the wheat lines differing in reaction to the pathogen are used to develop a mapping population. The wheat population is used to develop DNA marker-based genetic linkage maps and culture filtrates are infiltrated across the mapping population. Linkage and quantitative trait loci (QTL) analysis is used to identify regions of the wheat genome harboring genes that govern sensitivity to necrotrophic effectors. The same populations are inoculated with the effector-producing isolate to determine the significance and proportion of disease explained by individual host gene-effector interactions. Additionally, from this information, differential lines that are sensitive to single effectors are developed for further purification and characterization of the effectors, eventually resulting in the identification, molecular cloning, and characterization of the effector genes.
Collapse
Affiliation(s)
- Timothy L Friesen
- Cereal Crops Research Unit, Northern Crop Science Laboratory, USDA-ARS, Fargo, ND, USA.
| | | |
Collapse
|
158
|
Diepeveen D, Clarke G, Ryan K, Tarr A, Ma W, Appels R. Molecular genetic mapping of NIR spectra variation. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2011.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
159
|
Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:125-42. [PMID: 21912855 PMCID: PMC3249545 DOI: 10.1007/s00122-011-1692-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 08/18/2011] [Indexed: 05/04/2023]
Abstract
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28-31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12-32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs.
Collapse
Affiliation(s)
- S. Mahmod Tabib Ghaffary
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
- Present Address: Safiabad Agricultural Research Centre, P.O. Box 333, Dezfoul, Iran
| | - Justin D. Faris
- Northern Crop Science Laboratory, USDA-ARS Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765 USA
| | - Timothy L. Friesen
- Northern Crop Science Laboratory, USDA-ARS Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765 USA
| | - Richard G. F. Visser
- Department of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Theo A. J. van der Lee
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Olivier Robert
- Bioplante, Florimond Desprez, BP41, 59242 Cappelle-en-Pévèle, France
| | - Gert H. J. Kema
- Plant Research International, Biointeractions and Plant Health, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
160
|
Abeysekara NS, Faris JD, Chao S, McClean PE, Friesen TL. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. PHYTOPATHOLOGY 2012; 102:94-104. [PMID: 21864084 DOI: 10.1094/phyto-02-11-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Necrotrophic effectors (also known as host-selective toxins) are important determinants of disease in the wheat-Stagonospora nodorum pathosystem. To date, five necrotrophic effector-host gene interactions have been identified in this system. Most of these interactions have additive effects while some are epistatic. The Snn4-SnTox4 interaction was originally identified in a recombinant-inbred population derived from a cross between the Swiss winter wheat cultivars 'Arina' and 'Forno' using the S. nodorum isolate Sn99CH 1A7a. Here, we used a recombinant-inbred population consisting of 121 lines developed from a cross between the hexaploid land race Salamouni and the hexaploid wheat 'Katepwa' (SK population). The SK population was used for the construction of linkage maps and quantitative trait loci (QTL) detection using the Swiss S. nodorum isolate Sn99CH 1A7a. The linkage maps developed in the SK population spanned 3,228 centimorgans (cM) and consisted of 441 simple-sequence repeats, 9 restriction fragment length polymorphisms, 29 expressed sequence tag sequence-tagged site markers, and 5 phenotypic markers. The average marker density was 6.7 cM/marker. Two QTL, designated QSnb.fcu-1A and QSnb.fcu-7A on chromosome arms 1AS and 7AS, respectively, were associated with disease caused by the S. nodorum isolate Sn99CH 1A7a. The effects of QSnb.fcu-1A were determined by the Snn4-SnTox4 interaction and accounted for 23.5% of the phenotypic variation in this population, whereas QSnb.fcu-7A accounted for 16.4% of the phenotypic variation for disease but was not associated with any known effector sensitivity locus. The effects of both QTL were largely additive and collectively accounted for 35.7% of the total phenotypic variation. The results of this research validate the effects of a compatible Snn4-SnTox4 interaction in a different genetic background, and it provides knowledge regarding genomic regions and molecular markers that can be used to improve Stagonospora nodorum blotch resistance in wheat germplasm.
Collapse
|
161
|
Huang XQ, Röder MS. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica 2011; 139:1179-87. [PMID: 22143458 DOI: 10.1007/s10709-011-9620-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022]
Abstract
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F(2) and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the '1S0.8 gene-rich region', a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.
Collapse
Affiliation(s)
- Xiu-Qiang Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
162
|
Hao Y, Chen Z, Wang Y, Bland D, Buck J, Brown-Guedira G, Johnson J. Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1401-11. [PMID: 21830107 DOI: 10.1007/s00122-011-1675-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/26/2011] [Indexed: 05/21/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of soft red winter wheat in the eastern region of the USA. Pioneer 26R61 has provided effective resistance to stripe rust for 10 years. To elucidate the genetic basis of the resistance, a mapping population of 178 recombinant inbred lines (RILs) was developed using single-seed descent from a cross between Pioneer 26R61 and the susceptible cultivar AGS 2000. A genetic map with 895 markers covering all 21 chromosomes was used for QTL analysis. One major QTL was detected, explaining up to 56.0% of the mean phenotypic variation, flanked by markers Xbarc124 and Xgwm359, and assigned to the distal 22% of the short arm of wheat chromosome 2A. Evidence showed that it was different from Yr17 derived from Ae. ventricosa, the only formally named Yr gene in 2AS, and the QTL was temporarily designated as YrR61. In addition, a minor QTL, QYr.uga-6AS, probably conditioned high-temperature adult plant resistance. The QTL explained 6-7% of the trait variation. Preliminary test of the flanking markers for YrR61, in two cultivars and two promising breeding lines with Pioneer 26R61 in their pedigree, indicated that YrR61 was present in these cultivars and lines, and these markers could therefore be used in marker-assisted selection.
Collapse
Affiliation(s)
- Yuanfeng Hao
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA 30223, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J. Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS One 2011; 6:e27708. [PMID: 22132127 PMCID: PMC3223179 DOI: 10.1371/journal.pone.0027708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/22/2011] [Indexed: 01/20/2023] Open
Abstract
This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - András Cseh
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| |
Collapse
|
164
|
Chu C, Niu Z, Zhong S, Chao S, Friesen TL, Halley S, Elias EM, Dong Y, Faris JD, Xu SS. Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1107-19. [PMID: 21833554 DOI: 10.1007/s00122-011-1652-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/28/2011] [Indexed: 05/23/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Novel sources of resistance are critical for improving FHB resistance levels in wheat. From a large-scale evaluation of germplasm for reactions to FHB, we identified one wheat accession (PI 277012) that consistently showed a high level of resistance in both greenhouse and field experiments. To characterize the FHB resistance in this accession, we developed a doubled haploid (DH) mapping population consisting of 130 lines from the cross between PI 277012 and the hard red spring wheat cultivar 'Grandin'. The DH population was then evaluated for reactions to FHB in three greenhouse seasons and five field environments. Based on a linkage map that consisted of 340 SSR markers spanning 2,703 cM of genetic distance, two major quantitative trait loci (QTLs) for FHB resistance were identified on chromosome arms 5AS and 5AL, with each explaining up to 20 and 32% of the variation in FHB severity, respectively. The two QTLs also showed major effects on reducing the percentage of Fusarium damaged kernels (FDK) and deoxynivalenol (DON) accumulation in seeds. FHB resistance has not previously been reported to be associated with this particular genomic region of chromosome arm 5AL, thus indicating the novelty of FHB resistance in PI 277012. Plant maturity was not associated with FHB resistance and the effects of plant height on FHB resistance were minor. Therefore, these results suggest that PI 277012 is an excellent source for improving FHB resistance in wheat. The markers identified in this research are being used for marker-assisted introgression of the QTLs into adapted durum and hard red spring wheat cultivars.
Collapse
Affiliation(s)
- Chenggen Chu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1099-106. [PMID: 21755339 DOI: 10.1007/s00122-011-1651-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/28/2011] [Indexed: 05/21/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most serious wheat diseases. The rapid evolution of the pathogen's virulence, due to the heavy use of resistance genes, necessitates the expansion of resistance gene diversity. The common wheat line D57 is highly resistant to powdery mildew. A genetic analysis using an F(2) population derived from the cross of D57 with the susceptible cultivar Yangmai 158 and the derived F(2:3) lines indicated that D57 carries two dominant powdery mildew resistance genes. Based on mapping information of polymorphic markers identified by bulk segregant analysis, these two genes were assigned to chromosomes 5DS and 6DS. Using the F(2:3) lines that segregated in a single-gene mode, closely linked PCR-based markers were identified for both genes, and their chromosome assignments were confirmed through linkage mapping. The gene on chromosome 5DS was flanked by Xgwm205 and Xmag6176, with a genetic distance of 8.3 cM and 2.8 cM, respectively. This gene was 3.3 cM from a locus mapped by the STS marker MAG6137, converted from the RFLP marker BCD1871, which was 3.5 cM from Pm2. An evaluation with 15 pathogen isolates indicated that this gene and Pm2 were similar in their resistance spectra. The gene on chromosome 6DS was flanked by co-segregating Xcfd80 and Xmag6139 on one side and Xmag6140 on the other, with a genetic distance of 0.7 cM and 2.7 cM, respectively. This is the first powdery mildew resistance gene identified on chromosome 6DS, and plants that carried this gene were highly resistant to all of the 15 tested pathogen isolates. This gene was designated Pm45. The new resistance gene in D57 could easily be transferred to elite cultivars due to its common wheat origin and the availability of closely linked molecular markers.
Collapse
Affiliation(s)
- Hongqi Ma
- Crop Genomics and Bioinformatics Centre and National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
166
|
Rousset M, Bonnin I, Remoué C, Falque M, Rhoné B, Veyrieras JB, Madur D, Murigneux A, Balfourier F, Le Gouis J, Santoni S, Goldringer I. Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:907-26. [PMID: 21761163 DOI: 10.1007/s00122-011-1636-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 06/13/2011] [Indexed: 05/18/2023]
Abstract
Earliness is very important for the adaptation of wheat to environmental conditions and the achievement of high grain yield. A detailed knowledge of key genetic components of the life cycle would enable an easier control by the breeders. The objective of the study was to investigate the effect of candidate genes on flowering time. Using a collection of hexaploid wheat composed of 235 lines from diverse geographical origins, we conducted an association study for six candidate genes for flowering time and its components (vernalization sensitivity and earliness per se). The effect on the variation of earliness components of polymorphisms within the copies of each gene was tested in ANOVA models accounting for the underlying genetic structure. The collection was structured in five groups that minimized the residual covariance. Vernalization requirement and lateness tend to increase according to the mean latitude of each group. Heading date for an autumnal sowing was mainly determined by the earliness per se. Except for the Constans (CO) gene orthologous of the barley HvCO3, all gene polymorphisms had a significant impact on earliness components. The three traits used to quantify vernalization requirement were primarily associated with polymorphisms at Vrn-1 and then at Vrn-3 and Luminidependens (LD) genes. We found a good correspondence between spring/winter types and genotypes at the three homeologous copies of Vrn-1. Earliness per se was mainly explained by polymorphisms at Vrn-3 and to a lesser extent at Vrn-1, Hd-1 and Gigantea (GI) genes. Vernalization requirement and earliness as a function of geographical origin, as well as the possible role of the breeding practices in the geographical distribution of the alleles and the hypothetical adaptive value of the candidate genes, are discussed.
Collapse
Affiliation(s)
- Michel Rousset
- UMR de Génétique Végétale, INRA/CNRS/AgroParisTech/Univ. Paris XI, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M. Characterization of a new 4BS.7HL wheat–barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 2011; 54:795-804. [DOI: 10.1139/g11-044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A spontaneous interspecific Robertsonian translocation was revealed by genomic in situ hybridization (GISH) in the progenies of a monosomic 7H addition line originating from a new wheat ‘Asakaze komugi’ × barley ‘Manas’ hybrid. Fluorescence in situ hybridization (FISH) with repetitive DNA sequences (Afa family, pSc119.2, and pTa71) allowed identification of all wheat chromosomes, including wheat chromosome arm 4BS involved in the translocation. FISH using barley telomere- and centromere-specific repetitive DNA probes (HvT01 and (AGGGAG)n) confirmed that one of the arms of barley chromosome 7H was involved in the translocation. Simple sequence repeat (SSR) markers specific to the long (L) and short (S) arms of barley chromosome 7H identified the translocated chromosome segment as 7HL. Further analysis of the translocation chromosome clarified the physical position of genetically mapped SSRs within 7H, with a special focus on its centromeric region. The presence of the HvCslF6 gene, responsible for (1,3;1,4)-β-d-glucan production, was revealed in the centromeric region of 7HL. An increased (1,3;1,4)-β-d-glucan level was also detected in the translocation line, demonstrating that the HvCslF6 gene is of potential relevance for the manipulation of wheat (1,3;1,4)-β-d-glucan levels.
Collapse
Affiliation(s)
- A. Cseh
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - K. Kruppa
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - I. Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - M. Rakszegi
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - J. Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - M. Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| |
Collapse
|
168
|
Liu W, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 2011; 19:669-82. [DOI: 10.1007/s10577-011-9226-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/27/2011] [Accepted: 06/16/2011] [Indexed: 02/05/2023]
|
169
|
Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML. Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:239-50. [PMID: 21476042 DOI: 10.1007/s00122-011-1580-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/21/2011] [Indexed: 05/09/2023]
Abstract
Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F(7) Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.
Collapse
Affiliation(s)
- A Supriya
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Liu W, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1537-45. [PMID: 21347655 DOI: 10.1007/s00122-011-1553-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/05/2011] [Indexed: 05/23/2023]
Abstract
The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3S(s), 3B/3S(s) and 3D/3S(s)) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3S(s)S, T3BL·3S(s)S and T3DL·3S(s)S) and one recombinant (T3DS-3S(s)S·3S(s)L) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3S(s)S-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3S(s)S-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3S(s)S of Ae. searsii are currently under way.
Collapse
Affiliation(s)
- Wenxuan Liu
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | | | |
Collapse
|
171
|
Lu S, Friesen TL, Faris JD. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Mol Genet Genomics 2011; 285:485-503. [PMID: 21516334 DOI: 10.1007/s00438-011-0618-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/30/2011] [Indexed: 12/30/2022]
Abstract
The group 1 pathogenesis-related (PR-1) proteins, known as hallmarks of defense pathways, are encoded by multigene families in plants as evidenced by the presence of 22 and 32 PR-1 genes in the finished Arabidopsis and rice genomes, respectively. Here, we report the initial characterization and mapping of 23 PR-1-like (TaPr-1) genes in hexaploid wheat (Triticum aestivum L.), which possesses one of the largest (>16,000 megabases) genomes among monocot crop plants. Sequence analysis revealed that the 23 TaPr-1 genes all contain intron-free open reading frames that encode a signal peptide at the N-terminus and a conserved PR-1-like domain. Phylogenetic analysis indicated that TaPr-1 genes form three major monophyletic groups along with their counterparts in other monocots; each group consists of genes encoding basic, basic with a C-terminal extension, and acidic PR-1 proteins, respectively, suggesting diversity and conservation of PR-1 gene functions in monocot plants. Mapping analysis assisted by untranslated region-specified discrimination (USD) markers and various cytogenetic stocks located the 23 TaPr-1 genes to seven different chromosomes, with the majority mapping to chromosomes of homoeologous groups 5 and 7. Reverse transcriptase (RT)-PCR analysis revealed that 12 TaPr-1 genes were induced or up-regulated upon pathogen challenge. Together, this study provides insights to the origin, evolution, homoeologous relationships, and expression patterns of the TaPr-1 genes. The data presented provide critical information for further genome-wide characterization of the wheat PR-1 gene family and the USD markers developed will facilitate genetic and functional analysis of PR-1 genes associated with plant defense and/or other important traits.
Collapse
Affiliation(s)
- Shunwen Lu
- USDA-ARS, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA.
| | | | | |
Collapse
|
172
|
Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 2011; 187:1011-21. [PMID: 21242535 PMCID: PMC3070511 DOI: 10.1534/genetics.110.123588] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/11/2011] [Indexed: 11/18/2022] Open
Abstract
Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87-9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.
Collapse
Affiliation(s)
- Zhixia Niu
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daryl L. Klindworth
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Timothy L. Friesen
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Shiaoman Chao
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Yue Jin
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Xiwen Cai
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Steven S. Xu
- Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58102-2765, Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, Minnesota 55108 and Departments of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050
| |
Collapse
|
173
|
Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupta V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 2011; 51:421-9. [PMID: 21063060 DOI: 10.1007/bf03208872] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kernel size and morphology influence the market value and milling yield of bread wheat (Triticum aestivum L.). The objective of this study was to identify quantitative trait loci (QTLs) controlling kernel traits in hexaploid wheat. We recorded 1000-kernel weight, kernel length, and kernel width for 185 recombinant inbred lines from the cross Rye Selection 111 × Chinese Spring grown in 2 agro-climatic regions in India for many years. Composite interval mapping (CIM) was employed for QTL detection using a linkage map with 169 simple sequence repeat (SSR) markers. For 1000-kernel weight, 10 QTLs were identified on wheat chromosomes 1A, 1D, 2B, 2D, 4B, 5B, and 6B, whereas 6 QTLs for kernel length were detected on 1A, 2B, 2D, 5A, 5B and 5D. Chromosomes 1D, 2B, 2D, 4B, 5B and 5D had 9 QTLs for kernel width. Chromosomal regions with QTLs detected consistently for multiple year-location combinations were identified for each trait. Pleiotropic QTLs were found on chromosomes 2B, 2D, 4B, and 5B. The identified genomic regions controlling wheat kernel size and shape can be targeted during further studies for their genetic dissection.
Collapse
Affiliation(s)
- P Ramya
- Plant Molecular Biology Group, Division of Biochemical Sciences, National Chemical Laboratory, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Admassu B, Perovic D, Friedt W, Ordon F. Genetic mapping of the stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:643-8. [PMID: 20838760 DOI: 10.1007/s00122-010-1433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 08/25/2010] [Indexed: 05/20/2023]
Abstract
Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known for its high virulence variability and ability to evolve new virulence to resistance genes. Thus, pyramiding of several resistance genes in a single line is the best strategy for a sustainable control of wheat stem rust. Sr13 is one of the few resistance genes that are effective against wide ranging P. graminis f. sp. tritici races, including the pestilent race Ug99. Its effectiveness to Ug99 makes it a valuable source for resistance to stem rust. Molecular markers play a pivotal role in the genetic characterization of the new sources of resistance as well as in stacking two or more resistance genes in a single line. Therefore, the aim of this study was to develop molecular markers for Sr13 facilitating efficient pyramiding of Sr genes. Based on the 158 F(2) individuals derived from a cross of Khapstein/9*LMPG × Morocco and SSR analyses, the Sr13 locus was mapped on chromosome 6A of wheat, and a genetic map comprising about 90 cM was constructed with the closest marker barc37 being located 4.0 cM distally of Sr13. Of the nine mapped markers, barc37 amplified an allele specific for the presence of Sr13 as shown by testing different cultivars and breeding lines. These newly developed markers will increase the efficiency of incorporating Sr13 into cultivars that are widely adopted, but susceptible to hazardous Ug99 and/or assist for the development of new elite lines that are resistant to Ug99.
Collapse
Affiliation(s)
- Belayneh Admassu
- Plant Protection Research Center, Ethiopian Institute of Agricultural Research, Ambo, Ethiopia.
| | | | | | | |
Collapse
|
175
|
Barrero RA, Bellgard M, Zhang X. Diverse approaches to achieving grain yield in wheat. Funct Integr Genomics 2011; 11:37-48. [PMID: 21221697 DOI: 10.1007/s10142-010-0208-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/19/2010] [Indexed: 11/28/2022]
Abstract
Artificial selection (domestication and breeding) leaves a strong footprint in plant genomes. Second generation high throughput DNA sequencing technologies make it possible to sequence the gene complement of a plant genome within 3 to 5 months, and the costs of doing so are declining very quickly. This makes it practical to identify genomic regions that have undergone very strong selection. Available reference sequences of important crops such as rice, maize, and sorghum will promote the wide use of re-sequencing strategies in these crops. Marker/trait associations, especially haplotype (or haplotype block) association analyses, will help the precise mapping of important genomic regions and location of favored alleles or haplotypes for breeding. This mini-review examines a genomics approach to defining yield traits in wheat.
Collapse
Affiliation(s)
- Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | | | | |
Collapse
|
176
|
Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:27-38. [PMID: 21175887 DOI: 10.1111/j.1365-313x.2010.04407.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The pathogen Stagonospora nodorum produces multiple effectors, also known as host-selective toxins (HSTs), that interact with corresponding host sensitivity genes in an inverse gene-for-gene manner to cause the disease Stagonospora nodorum blotch (SNB) in wheat. In this study, a sensitivity gene was identified in Aegilops tauschii, the diploid D-genome donor of common wheat. The gene was mapped to the short arm of chromosome 5D and mediated recognition of the effector SnTox3, which was previously shown to be recognized by the wheat gene Snn3 on chromosome arm 5BS. Comparative mapping suggested that Snn3 and the gene on 5DS are probably homoeologous and derived from a common ancestor. Therefore, we propose to designate these genes as Snn3-B1 and Snn3-D1, respectively. Compatible Snn3-D1-SnTox3 interactions resulted in more severe necrosis in both effector infiltration and spore inoculation experiments than compatible Snn3-B1-SnTox3 interactions, indicating that Snn3-B1 and Snn3-D1 may have different affinities in SnTox3 recognition or signal transduction. Wheat bin-mapped expressed sequence tags and good levels of collinearity among the wheat Snn3 regions, rice (Oryza sativa), and Brachypodium distachyon were exploited for saturation and fine mapping of the Snn3-D1 locus. Markers delineating the Snn3-D1 locus to a 1.4 cM interval will be useful for initiating positional cloning. Further characterization of how these homoeologous genes mediate recognition of the same pathogen effector should enhance understanding of host manipulation by necrotrophic pathogens in causing disease.
Collapse
Affiliation(s)
- Zengcui Zhang
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Timothy L Friesen
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Steven S Xu
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Gongjun Shi
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Zhaohui Liu
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| | - Justin D Faris
- Department of Plant Pathology, Walster Hall, North Dakota State University, Fargo, ND 58102, USAUSDA-Agricultural Research Service, Cereal Crops Research Unit, 1307 18th Street North, Fargo, ND 58102-2765, USA
| |
Collapse
|
177
|
Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1613-21. [PMID: 20686747 DOI: 10.1007/s00122-010-1414-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/19/2010] [Indexed: 05/24/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F(2) segregating population and F(3) families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59-0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST-STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.
Collapse
Affiliation(s)
- Hongtao Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Maxwell JJ, Lyerly JH, Srnic G, Parks R, Cowger C, Marshall D, Brown-Guedira G, Murphy JP. MlAB10
: A Triticum turgidum
Subsp. dicoccoides
Derived Powdery Mildew Resistance Gene Identified in Common Wheat. CROP SCIENCE 2010; 50:2261-2267. [PMID: 0 DOI: 10.2135/cropsci2010.04.0195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- J. J. Maxwell
- LDB-Independence; 2332 Henley Ave. Independence IA 50644
| | - J. H. Lyerly
- Dep. of Crop Science; North Carolina State Univ.; Raleigh NC 27695
| | - G. Srnic
- Pioneer- Hybrid International, Inc.; Via Madre Teresa Di Calcuta; 2/4, 26030 Pessina Cremonese CR Italy
| | - R. Parks
- USDA-ARS Plant Sciences Research; Dep. of Plant Pathology; North Carolina State Univ.; Raleigh NC 27695
| | - C. Cowger
- USDA-ARS Plant Sciences Research; Dep. of Plant Pathology; North Carolina State Univ.; Raleigh NC 27695
| | - D. Marshall
- USDA-ARS Plant Sciences Research; Dep. of Plant Pathology; North Carolina State Univ.; Raleigh NC 27695
| | - G. Brown-Guedira
- USDA-ARS Plant Sciences Research; Dep. of Crop Science; North Carolina State Univ.; Raleigh NC 27695
| | - J. P. Murphy
- Dep. of Crop Science; North Carolina State Univ.; Raleigh NC 27695
| |
Collapse
|
179
|
Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics 2010; 11:49-61. [PMID: 20821031 DOI: 10.1007/s10142-010-0188-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/04/2010] [Accepted: 08/16/2010] [Indexed: 11/26/2022]
Abstract
Sucrose synthase catalyzes the reaction sucrose + UDP → UDP-glucose + fructose, the first step in the conversion of sucrose to starch in endosperm. Previous studies identified two tissue-specific, yet functionally redundant, sucrose synthase (SUS) genes, Sus1 and Sus2. In the present study, the wheat Sus2 orthologous gene (TaSus2) series was isolated and mapped on chromosomes 2A, 2B, and 2D. Based on sequencing in 61 wheat accessions, three single-nucleotide polymorphisms (SNPs) were detected in TaSus2-2B. These formed two haplotypes (Hap-H and Hap-L), but no diversity was found in either TaSus2-2A or TaSus2-2D. Based on the sequences of the two haplotypes, we developed a co-dominant marker, TaSus2-2B ( tgw ), which amplified 423 or 381-bp fragments in different wheat accessions. TaSus2-2B ( tgw ) was located between markers Xbarc102.2 and Xbarc91 on chromosome 2BS in a RIL population from Xiaoyan 54 × Jing 411. Association analysis suggested that the two haplotypes were significantly associated with 1,000 grain weight (TGW) in 89 modern wheat varieties in the Chinese mini-core collection. Mean TGW difference between the two haplotypes over three cropping seasons was 4.26 g (varying from 3.71 to 4.94 g). Comparative genomics analysis detected major kernel weight QTLs not only in the chromosome region containing TaSus2-2B (tgw), but also in the collinear regions of TaSus2 on rice chromosome 7 and maize chromosome 9. The preferred Hap-H haplotype for high TGW underwent very strong positive selection in Chinese wheat breeding, but not in Europe. The geographic distribution of Hap-H was perhaps determined by both latitude and the intensity of selection in wheat breeding.
Collapse
Affiliation(s)
- Qiyan Jiang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|
180
|
Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T. Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:499-510. [PMID: 20407741 DOI: 10.1007/s00122-010-1326-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 03/12/2010] [Indexed: 05/04/2023]
Abstract
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F(2-3) and recombinant inbreed line (F(7)) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.
Collapse
Affiliation(s)
- Roi Ben-David
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
181
|
Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:589-97. [PMID: 20407740 DOI: 10.1007/s00122-010-1332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/01/2010] [Indexed: 05/07/2023]
Abstract
Thinopyrum bessarabicum (2n = 2x = 14, JJ or E(b)E(b)) is an important genetic resource for wheat improvement due to its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines will facilitate its practical utilization in wheat improvement. In this study, a novel wheat-Th. bessarabicum translocation line T2JS-2BS.2BL, which carries a segment of Th. bessarabicum chromosome arm 2JS was identified and further characterized using sequential chromosome C-banding, genomic in situ hybridization (GISH), dual-color fluorescent in situ hybridization (FISH) and DNA markers. The translocation breakpoint was mapped within bin C-2BS1-0.53 of chromosome 2B through marker analysis. Compared to the Chinese Spring (CS) parent and to CS-type lines, the translocation line has more fertile spikes per plant, longer spikes, more grains per spike and higher yield per plant, which suggests that the alien segment carries yield-related genes. However, plants with the translocation are also taller, head later and have lower 1,000-kernel weight than CS or CS-type lines. By using markers specific to the barley photoperiod response gene Ppd-H1, it was determined that the late heading date was conferred by a recessive allele located on the 2JS segment. In addition, four markers specific for the translocated segment were identified, which can be used for marker-aided screening.
Collapse
Affiliation(s)
- Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:717-30. [PMID: 20425103 DOI: 10.1007/s00122-010-1343-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 04/03/2010] [Indexed: 05/02/2023]
Abstract
Kernel characteristics, particularly kernel weight, kernel size, and grain protein content, are important components of grain yield and quality in wheat. Development of high performing wheat cultivars, with high grain yield and quality, is a major focus in wheat breeding programs worldwide. Here, we report chromosome regions harboring genes that influence kernel weight, kernel diameter, kernel size distribution, grain protein content, and grain yield in hard red spring wheat breeding lines adapted to the Upper Midwest region of the United States. A genetic linkage map composed of 531 SSR and DArT marker loci spanned a distance of 2,505 cM, covering all 21 chromosomes of wheat. Stable QTL clusters influencing kernel weight, kernel diameter, and kernel size distribution were identified on chromosomes 2A, 5B, and 7A. Phenotypic variation explained by individual QTL at these clusters varied from 5 to 20% depending on the trait. A QTL region on chromosome 2B confers an undesirable pleiotropic effect or a repulsion linkage between grain yield (LOD = 6.7; R (2) = 18%) and grain protein content (LOD = 6.2; R (2) = 13.3%). However, several grain protein and grain yield QTL independent of each other were also identified. Because some of the QTL identified in this study were consistent across environments, DNA markers will provide an opportunity for increasing the frequency of desirable alleles through marker-assisted selection.
Collapse
Affiliation(s)
- Toi J Tsilo
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
183
|
Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:147-56. [PMID: 20198469 DOI: 10.1007/s00122-010-1298-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/05/2010] [Indexed: 05/24/2023]
Abstract
Qfhi.nau-4B is a major quantitative trait locus (QTL) against Fusarium graminearum infection identified in the Fusarium head blight-resistant germplasm Wangshuibai. To fine map this QTL, a recombinant inbred line (RIL) population of 530 lines derived from Nanda2419 x Wangshuibai and the BC(3)F(2) population derived from the cross of a Qfhi.nau-4B near isogenic line (NIL) with susceptible cultivar Mianyang 99-323 as the recurrent parent were screened for recombinants occurred between microsatellite markers Xbarc20 and Xwmc349 that flank Qfhi.nau-4B. A total of 95 recombinants were obtained, including 45 RIL recombinants obtained through reverse-selection of Qfhi.nau-5A and 50 NIL recombinants from the BC(3)F(2) population. Genotyping these recombinant lines with 22 markers mapping to the Xbarc20 and Xwmc349 interval revealed fourteen genotypes of the RIL recombinants as well as of the NIL recombinants. Two-year field evaluation of their resistance to Fusarium infection showed that these lines could be clearly classified into two groups according to percentage of infected spikes. The more resistant class had over 60% less infection than the susceptible class and were common to have Wangshuibai chromatin in the 1.7-cM interval flanked by Xhbg226 and Xgwm149. None of the susceptible recombinants had this Wangshuibai chromatin. Qfhi.nau-4B was thus confined between Xhbg226 and Xgwm149 and named Fhb4. The interval harboring Fhb4 was mapped to 4BL5-0.86-1.00 bin using Chinese Spring deletion lines, a region with about 5.7 times higher recombination rate than the genome average. This study established the basis for map-based cloning of Fhb4.
Collapse
Affiliation(s)
- Shulin Xue
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centre, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Breen J, Li D, Dunn DS, Békés F, Kong X, Zhang J, Jia J, Wicker T, Mago R, Ma W, Bellgard M, Appels R. Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain. BMC PLANT BIOLOGY 2010; 10:99. [PMID: 20507562 PMCID: PMC2887456 DOI: 10.1186/1471-2229-10-99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/27/2010] [Indexed: 05/16/2023]
Abstract
BACKGROUND Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. RESULTS In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. CONCLUSIONS Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses. Accession Numbers: ctg11 =FN564426Survey sequences of TaEXPB11ws and TsEXPB11 are provided request.
Collapse
Affiliation(s)
- James Breen
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC), Murdoch University, South Street, Perth 6150, Australia
| | - Dora Li
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, Murdoch University, South Street, Perth 6150, Australia
| | - David S Dunn
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Centre for Clinical Immunology and Biomedical Statistics, Murdoch University, South Street, Perth WA 6150, Australia
| | - Ferenc Békés
- CSIRO Plant Industries, PO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Xiuying Kong
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, PR China
| | - Juncheng Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, PR China
| | - Jizeng Jia
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, PR China
| | - Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich, CH-8008 Switzerland
| | - Rohit Mago
- CSIRO Plant Industries, PO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Wujun Ma
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, Murdoch University, South Street, Perth 6150, Australia
- Department of Agriculture and Food, Western Australia (DAFWA), 3 Baron Hay Court, Perth, 6151 Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC), Murdoch University, South Street, Perth 6150, Australia
| | - Rudi Appels
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| |
Collapse
|
185
|
Breen J, Wicker T, Kong X, Zhang J, Ma W, Paux E, Feuillet C, Appels R, Bellgard M. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC PLANT BIOLOGY 2010; 10:98. [PMID: 20507561 PMCID: PMC3017796 DOI: 10.1186/1471-2229-10-98] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. RESULTS BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. CONCLUSION We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene island.Sequence data from this article have been deposited with the GenBank Data Libraries under accession no. GQ422824.
Collapse
Affiliation(s)
- James Breen
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC) Murdoch University, South Street, Perth 6150, Australia
| | - Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich, CH-8008 Switzerland
| | - Xiuying Kong
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juncheng Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Wujun Ma
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, South Street, Perth 6150, Australia
- Department of Agriculture and Food, Western Australia (DAFWA), 3 Baron Hay Court, Perth, 6151 Australia
| | - Etienne Paux
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, INRA Site de Crouël, 63100 Clermont-ferrand, France
| | - Catherine Feuillet
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, INRA Site de Crouël, 63100 Clermont-ferrand, France
| | - Rudi Appels
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| |
Collapse
|
186
|
Sun XC, Bockus W, Bai G. Quantitative trait loci for resistance to Pyrenophora tritici-repentis race 1 in a Chinese wheat. PHYTOPATHOLOGY 2010; 100:468-73. [PMID: 20373968 DOI: 10.1094/phyto-100-5-0468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is an economically important foliar disease of wheat worldwide. Eight races of the pathogen have been characterized on the basis of their ability to cause necrosis or chlorosis in a set of differential wheat lines. Race 1 produces two host-selective toxins, Ptr ToxA and Ptr ToxC, that induce necrosis and chlorosis, respectively, on leaves of sensitive wheat genotypes. A population of recombinant inbred lines was developed from a cross between Chinese landrace Wangshuibai (resistant) and Chinese breeding line Ning7840 (highly susceptible) to identify chromosome regions harboring quantitative trait loci (QTL) or genes for tan spot resistance. Plants were inoculated at the four-leaf stage in a greenhouse and percent leaf area diseased was scored 7 days after inoculation. Two QTL for resistance to race 1 were mapped to the short arms of chromosomes 1A and 2B in the population. The QTL on 1AS, designated as QTs.ksu-1AS, showed a major effect and accounted for 39% of the phenotypic variation; the QTL on 2BS, designated as QTs.ksu-2BS, explained 4% of the phenotypic variation for resistance. A toxin infiltration experiment demonstrated that both parents were insensitive to Ptr ToxA, suggesting that the population was most likely segregating for reaction to chlorosis, not necrosis. The markers closely linked to the QTL should be useful for marker-assisted selection in wheat-breeding programs.
Collapse
Affiliation(s)
- Xiao-Chun Sun
- Department of Anatomy, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
187
|
Mestiri I, Chagué V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. THE NEW PHYTOLOGIST 2010; 186:86-101. [PMID: 20149116 DOI: 10.1111/j.1469-8137.2010.03186.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To understand key mechanisms leading to stabilized allopolyploid species, we characterized the meiotic behaviour of wheat allohexaploids in relation to structural and genetic changes. For that purpose, we analysed first generations of synthetic allohexaploids obtained through interspecific hybridization, followed by spontaneous chromosome doubling, between several genotypes of Triticum turgidum and Aegilops tauschii wheat species, donors of AB and D genomes, respectively. As expected for these Ph1 (Pairing homoeologous 1) gene-carrying allopolyploids, chromosome pairing at metaphase I of meiosis essentially occurs between homologous chromosomes. However, the different synthetic allohexaploids exhibited progenitor-dependent meiotic irregularities, such as incomplete homologous pairing, resulting in univalent formation and leading to aneuploidy in the subsequent generation. Stability of the synthetic allohexaploids was shown to depend on the considered genotypes of both AB and D genome progenitors, where few combinations compare to the natural wheat allohexaploid in terms of regularity of meiosis and euploidy. Aneuploidy represents the only structural change observed in these synthetic allohexaploids, as no apparent DNA sequence elimination or rearrangement was observed when analysing euploid plants with molecular markers, developed from expressed sequence tags (ESTs) as well as simple sequence repeat (SSR) and transposable element sequences.
Collapse
Affiliation(s)
- Imen Mestiri
- Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, 91057 Evry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Sepsi A, Molnár I, Molnár-Láng M. Physical mapping of a 7A.7D translocation in the wheat-Thinopyrum ponticum partial amphiploid BE-1 using multicolour genomic in situ hybridization and microsatellite marker analysis. Genome 2010; 52:748-54. [PMID: 19935922 DOI: 10.1139/g09-047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The absence of chromosome 7D in the wheat-Thinopyrum ponticum partial amphiploid BE-1 was detected previously by multicolour genomic in situ hybridization, sequential FISH (fluorescence in situ hybridization) using repetitive DNA probes, and SSR marker analysis. In the present study the previous cytogenetic and SSR marker analyses were expanded to include 25 other SSR markers assigned to wheat chromosomes 7A and 7D to confirm the presence of a 7A.7D translocation and to specify its composition. An almost complete chromosome 7A and a short chromosome segment derived from the terminal region of 7DL were detected, confirming the presence of a terminal translocation involving the distal regions of 7AL and 7DL. In both cases the position of the translocation breakpoint was different from that of known deletion lines. The identification of the 7AL.7DL translocation and its breakpoint position provides a new physical landmark for future physical mapping studies, opening up the possibility of more precise localization of genes or molecular markers within the terminal regions of 7DL and 7AL.
Collapse
Affiliation(s)
- A Sepsi
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvasar, P.O. Box 19, Hungary
| | | | | |
Collapse
|
189
|
Rhoné B, Vitalis R, Goldringer I, Bonnin I. Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection. Evolution 2010; 64:2110-25. [PMID: 20148950 DOI: 10.1111/j.1558-5646.2010.00970.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In annual plant species, flowering time is a major adaptive trait that synchronizes the initiation of reproduction with favorable environmental conditions. Here, we aimed at studying the evolution of flowering time in three experimental populations of bread wheat, grown in contrasting environments (Northern to Southern France) for 12 generations. By comparing the distribution of phenotypic and presumably neutral variation, we first showed that flowering time responded to selection during the 12 generations of the experiment. To get insight into the genetic architecture of that trait, we then tested whether the distribution of genetic polymorphisms at six candidate genes, presumably involved in the trait expression, departed from neutral expectation. To that end, we focused on the temporal variation during the course of the experiment, and on the spatial differentiation at the end of the experiment, using previously published methods adapted to our experimental design. Only those genes that were strongly associated with flowering time variation were detected as responding to selection. For genes that had low-to-moderate phenotypic effects, or when there was interaction across different genes, we did not find evidence of selection using methods based on the distribution of temporal or spatial variation. In such cases, it might be more informative to consider multilocus and multiallelic combinations across genes, which could be the targets of selection.
Collapse
Affiliation(s)
- Bénédicte Rhoné
- AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
190
|
Forrest KL, Bhave M. Physical mapping of wheat aquaporin genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:863-873. [PMID: 19924390 DOI: 10.1007/s00122-009-1217-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Aquaporins are water channel proteins that control the flow of water across cellular membranes and play vital roles in all aspects of plant-water relations. Our previous identification of 35 wheat PIP and TIP aquaporin genes showed they formed a large family with many conserved features that are thought to be important in structure and function. The present work focussed on determining the positions of these genes in the wheat genome in order to help investigate their functions in water uptake and transport. Genomic locations of wheat PIPs and TIPs were predicted using a number of reported rice-wheat comparative maps and additional in silico approaches. Physical mapping of select genes utilising aneuploid stocks and progenitor DNAs placed these on chromosomes 2B, 2D, 6B and 7B and helped to clarify the individual genes and homoeologues. The compilation of all in silico and physical mapping work confirmed many of the orthologous relationships between wheat and rice and/or barley genes, and synteny in the related areas of genome. These results further reinforce that wheat PIP and TIP proteins are most likely to have similar functions to those closely related in rice, including water permeability and abiotic stress response, and provide important tools for future investigations into the involvement of this complex gene family in traits related to plant-water relations and osmotic stress response.
Collapse
Affiliation(s)
- Kerrie L Forrest
- Faculty of Life and Social Sciences, Environment and Biotechnology Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | |
Collapse
|
191
|
Antonyuk MZ, Bodylyova MV, Ternovskaya TK. Genome structure of intro-gressive lines Triticum Aes-Tivum/Aegilops Sharonensis. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709060085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
192
|
LI GQ, FANG TL, ZHU J, GAO LL, LI S, XIE CJ, YANG ZM, SUN QX, LIU ZY. Molecular Identification of a Powdery Mildew Resistance Gene from Common Wheat Cultivar Brock. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01613] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
193
|
Dumur J, Branlard G, Tanguy AM, Dardevet M, Coriton O, Huteau V, Lemoine J, Jahier J. Homoeologous recombination within bread wheat to develop novel combinations of HMW-GS genes: transfer of the Glu-A1 locus to chromosome 1D. PLANTA 2009; 231:57-65. [PMID: 19820963 DOI: 10.1007/s00425-009-1027-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
In an attempt to improve the bread-making quality within hexaploid wheat by elaborating novel high-molecular weight glutenin subunits (HMW-GS) combinations useful in wheat-breeding programmes, a 1A chromosome fragment carrying the Glu-A1 locus encoding the subunit Ax2*, was translocated to the long arm of chromosome 1D. The partially isohomoeoallelic line, designated RR239, had a meiotic behaviour as regular as cv. Courtot. It was characterised using genomic in situ hybridization and microsatellite markers as well as biochemical and proteomic approaches. The translocated 1D chromosome had an interstitial 1AL segment representing in average 30% of the recombinant arm length that was confirmed by molecular analysis. The genetic length of the removed segment in chromosome 1DL was estimated to be at least 51 cM, and that of the interstitial 1AL translocation to be at least 33 cM. Proteome analysis performed on total endosperm proteins revealed variation in amounts, 8 spots and 1 spot being up- and downregulated, respectively. Quantitative variations in HMW-GS were observed for the Glu-A1 (Ax2*) and Glu-B1 (Bx7 + By8) loci in response to duplication of the Glu-A1 locus.
Collapse
Affiliation(s)
- Jérôme Dumur
- Amélioration des Plantes et Biotechnologies Végétales, INRA, UMR 118 INRA-Agrocampus Ouest-Université de Rennes I, 35000, Rennes, France.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Dobrovolskaya OB, Sourdille P, Bernard M, Salina EA. Chromosome synteny of the a genome of two evolutionary wheat lines. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409110118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
195
|
Maxwell JJ, Lyerly JH, Cowger C, Marshall D, Brown-Guedira G, Murphy JP. MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1489-1495. [PMID: 19760389 DOI: 10.1007/s00122-009-1150-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 08/30/2009] [Indexed: 05/28/2023]
Abstract
Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F(3) families derived from the cross NC06BGTAG12/'Jagger' and phenotypic evaluation of an F(2) population from the cross NC06BGTAG12/'Saluda' indicated that resistance to the 'Yuma' isolate of powdery mildew was controlled by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F(2) individuals in the cross NC06BGTAG12/'Axminster' (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation MlAG12.
Collapse
Affiliation(s)
- Judd J Maxwell
- Department of Crop Science, USDA-ARS Plant Sciences Research, North Carolina State University, Raleigh, NC, 27695, USA.
| | | | | | | | | | | |
Collapse
|
196
|
Mullan DJ, Mirzaghaderi G, Walker E, Colmer TD, Francki MG. Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium 'exclusion' during salinity stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1313-23. [PMID: 19727655 DOI: 10.1007/s00122-009-1136-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 08/12/2009] [Indexed: 05/09/2023]
Abstract
Lophopyrum elongatum (tall wheatgrass), a wild relative of wheat, can be used as a source of novel genes for improving salt tolerance of bread wheat. Sodium 'exclusion' is a major physiological mechanism for salt tolerance in a wheat-tall wheatgrass amphiploid, and a large proportion ( approximately 50%) for reduced Na(+) accumulation in the Xag leaf, as compared to wheat, was earlier shown to be contributed by genetic effects from substitution of chromosome 3E from tall wheatgrass for wheat chromosomes 3A and 3D. Homoeologous recombination between 3E and wheat chromosomes 3A and 3D was induced using the ph1b mutant, and putative recombinants were identified as having SSR markers specific for tall wheatgrass loci. As many as 14 recombinants with smaller segments of tall wheatgrass chromatin were identified and low-resolution breakpoint analysis was achieved using wheat SSR loci. Seven recombinants were identified to have leaf Na+ concentrations similar to those in 3E(3A) or 3E(3D) substitution lines, when grown in 200 mM NaCl in nutrient solution. Phenotypic analysis identified recombinants with introgressions at the distal end on the long arm of homoeologous group 3 chromosomes being responsible for Na(+) 'exclusion'. A total of 55 wheat SSR markers mapped to the long arm of homoeologous group 3 markers by genetic and deletion bin mapping were used for high resolution of wheat-tall wheatgrass chromosomal breakpoints in selected recombinants. Molecular marker analysis and genomic in situ hybridisation confirmed the 524-568 recombinant line as containing the smallest introgression of tall wheatgrass chromatin on the distal end of the long arm of wheat chromosome 3A and identified this line as suitable for developing wheat germplasm with Na(+) 'exclusion'.
Collapse
Affiliation(s)
- Daniel J Mullan
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | | | | | | | | |
Collapse
|
197
|
YIN GH, LI GY, HE ZH, LIU JJ, WANG H, XIA XC. Molecular Mapping of Powdery Mildew Resistance Gene in Wheat Cultivar Jimai 22. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01425] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
198
|
Lan C, Liang S, Wang Z, Yan J, Zhang Y, Xia X, He Z. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. PHYTOPATHOLOGY 2009; 99:1121-6. [PMID: 19740024 DOI: 10.1094/phyto-99-10-1121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adult-plant resistance (APR) is an effective means of controlling powdery mildew in wheat. In the present study, 406 simple-sequence repeat markers were used to map quantitative trait loci (QTLs) for APR to powdery mildew in a doubled-haploid (DH) population of 181 lines derived from the cross Bainong 64xJingshuang 16. The DH lines were planted in a randomized complete block design with three replicates in Beijing and Anyang during the 2005-06 and 2007-08 cropping seasons. Artificial inoculations were carried out in Beijing using the highly virulent Blumeria graminis f. sp. tritici isolate E20. Disease severities on penultimate leaves were scored twice in Beijing whereas, at Anyang, maximum disease severities (MDS) were recorded following natural infection. Broad-sense heritabilities of MDS and areas under the disease progress curve were 0.89 and 0.77, respectively, based on the mean values averaged across environments. Composite interval mapping detected four QTLs for APR to powdery mildew on chromosomes 1A, 4DL, 6BS, and 7A; these were designated QPm.caas-1A, QPm.caas-4DL, QPm.caas-6BS, and QPm.caas-7A, respectively, and explained 6.3 to 22.7% of the phenotypic variance. QTLs QPm.caas-4DL and QPm.caas-6BS were stable across environments with high genetic effects on powdery mildew response, accounting for 15.2 to 22.7% and 9.0 to 13.2% of the phenotypic variance, respectively. These results should be useful for the future improvement of powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Caixia Lan
- Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
199
|
Sui XX, Wang MN, Chen XM. Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. PHYTOPATHOLOGY 2009; 99:1209-15. [PMID: 19740035 DOI: 10.1094/phyto-99-10-1209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of wheat (Triticum aestivum) worldwide. Growing resistant cultivars is the best approach for control of the disease. Although the stripe rust resistance in spring wheat cv. Zak has been circumvented by a group of races of the pathogen predominant in the United States since 2000, the resistance genes in Zak were unknown. To identify and map the genes for resistance to stripe rust, Zak was crossed with susceptible wheat genotype 'Avocet Susceptible'. Seedlings of the parents and F1, F2, and F3 progeny were tested with P. striiformis f. sp. tritici races PST-43 and PST-45 under controlled greenhouse conditions. Genetic analysis determined that Zak has a single dominant gene, designated as YrZak, conferring race-specific all-stage resistance. Resistance gene analog polymorphism (RGAP), simple sequence repeat (SSR), and sequence-tagged site (STS) techniques were used to identify molecular markers linked to YrZak. A linkage group of three RGAP, three SSR, and three STS markers was constructed for YrZak using 205 F3 lines. Amplification of the complete set of Chinese Spring nulli-tetrasomic lines with RGAP marker Xwgp102 indicated that YrZak is present on chromosome 2B. The three SSR markers further mapped YrZak to the long arm of chromosome 2B. Amplification of chromosome 2B deletion lines with SSR marker Xgwm501 further confirmed that YrZak is on chromosome 2BL. To determine the genetic distance between YrZak and Yr5, which also is present on chromosome 2BL, 300 F2 plants from cross Zak/Yr5 were tested with PST-43. Six susceptible plants were identified from the F2 population, indicating that YrZak and Yr5 are approximately 42 centimorgans apart. The results of race reactions and chromosomal locations indicated that YrZak is different from previously identified genes for resistance to stripe rust. This gene should be useful in monitoring virulence changes in the pathogen population and in studying host-pathogen interactions.
Collapse
Affiliation(s)
- X X Sui
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | |
Collapse
|
200
|
Fontaine JX, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B, Le Gouis J. A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:645-62. [PMID: 19513687 DOI: 10.1007/s00122-009-1076-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/15/2009] [Indexed: 05/03/2023]
Abstract
To better understand the genetic variability for nitrogen use efficiency in winter wheat is a necessity in the frame of the present economic and ecological context. The objective of this work was to investigate the role of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH), and other nitrogen (N)-related physiological traits in the control of agronomic performance in wheat. A quantitative genetics approach was developed using the Arche x Récital population of doubled haploid lines grown for 3 years in the field. GS and GDH activities, ammonium, amino acid and protein contents were measured at different stages of plant development in different organs after flowering. Significant genotypic effects were observed for all measured physiological and agronomical traits. Heading date was negatively correlated with ammonium, amino acid, protein contents and GS activity in the flag leaf lamina. Grain protein content was positively correlated with both ammonium and amino acid content, and to a lesser extent with soluble protein content and GS activity. A total of 148 quantitative trait loci (QTLs) were detected, 104 QTLs for physiological traits and 44 QTLs for agronomic traits. Twenty-six QTLs were detected for GDH activity spread over 13 chromosomes and 25 QTLs for GS activity spread over 12 chromosomes. We found only a co-localization between a QTL for GS activity and GSe, a structural gene encoding cytosolic GS on chromosome 4B. A coincidence between a QTL for GDH activity and a gene encoding GDH was also found on chromosome 2B. QTL regions combining both physiological and agronomical QTLs were mainly identified on linkage groups 2A, 2B, 2D, 5A, 5B and 5D. This approach allowed us to propose possible functions of physiological traits to explain the variation observed for agronomic traits including yield and its components.
Collapse
Affiliation(s)
- Jean-Xavier Fontaine
- Faculté des sciences, UPJV EA3900 BioPI, Nitrogen Metabolism, 33 rue Saint Leu, 80039, Amiens Cedex, France
| | | | | | | | | | | | | |
Collapse
|