151
|
Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Bögemann M, Stegger L, Weckesser M, Schäfers M, Rahbar K. Targeting PSMA by radioligands in non-prostate disease—current status and future perspectives. Eur J Nucl Med Mol Imaging 2018; 45:860-877. [DOI: 10.1007/s00259-017-3922-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/25/2017] [Indexed: 12/11/2022]
|
152
|
Clinically Relevant Radioactive Dose Formulation of 177
Lu-Labeled Cetuximab-Fab Fragment for Potential Use in Cancer Theranostics. ChemistrySelect 2018. [DOI: 10.1002/slct.201702224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
153
|
Yu B, Wei H, He Q, Ferreira CA, Kutyreff CJ, Ni D, Rosenkrans ZT, Cheng L, Yu F, Engle JW, Lan X, Cai W. Efficient Uptake of 177 Lu-Porphyrin-PEG Nanocomplexes by Tumor Mitochondria for Multimodal-Imaging-Guided Combination Therapy. Angew Chem Int Ed Engl 2018; 57:218-222. [PMID: 29092090 PMCID: PMC5745268 DOI: 10.1002/anie.201710232] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/09/2022]
Abstract
The benefits to intracellular drug delivery from nanomedicine have been limited by biological barriers and to some extent by targeting capability. We investigated a size-controlled, dual tumor-mitochondria-targeted theranostic nanoplatform (Porphyrin-PEG Nanocomplexes, PPNs). The maximum tumor accumulation (15.6 %ID g-1 , 72 h p.i.) and ideal tumor-to-muscle ratio (16.6, 72 h p.i.) was achieved using an optimized PPN particle size of approximately 10 nm, as measured by using PET imaging tracing. The stable coordination of PPNs with 177 Lu enables the integration of fluorescence imaging (FL) and photodynamic therapy (PDT) with positron emission tomography (PET) imaging and internal radiotherapy (RT). Furthermore, the efficient tumor and mitochondrial uptake of 177 Lu-PPNs greatly enhanced the efficacies of RT and/or PDT. This work developed a facile approach for the fabrication of tumor-targeted multi-modal nanotheranostic agents, which enables precision and radionuclide-based combination tumor therapy.
Collapse
Affiliation(s)
- Bo Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Wei
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Carolina A Ferreira
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Christopher J Kutyreff
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | | | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA
| |
Collapse
|
154
|
Saxena SK, Kumar Y, Shaikh SH, Pandey U, Kumar SA, Dash A. Preparation of Radioactive Skin Patches Using Polyhydroxamic Acid-Grafted Cellulose Films Toward Applications in Treatment of Superficial Tumors. Cancer Biother Radiopharm 2017; 32:364-370. [PMID: 29265920 DOI: 10.1089/cbr.2017.2362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The primary objective of this investigation is the development of a strategy for the synthesis of polyhydroxamic acid (PHA)-grafted cellulose film, its characterization, and evaluation of its usefulness for the preparation of 177Lu skin patches for superficial brachytherapy applications. PHA-grafted cellulose films were synthesized and characterized by Fourier transformed infrared spectrometer analysis and visual color test with Fe(III) solution. Uptake of 177Lu on the PHA-grafted cellulose was investigated by varying the experimental conditions such as the pH of feed solution, amount of nonradioactive Lu carrier, time, and temperature of the reaction. Under the optimized conditions, >95% loading of 177Lu on the PHA-cellulose film could be achieved. Autoradiography studies of 177Lu-PHA-cellulose film confirmed the uniform distribution of 177Lu on the surface. Energy dispersive X-ray analysis of nonradioactive Lu-PHA-cellulose film confirmed the loading of Lu on PHA-cellulose film. The utility of PHA-functionalized cellulose films for the fabrication of radioactive sources for superficial brachytherapy applications could be successfully demonstrated.
Collapse
Affiliation(s)
- Sanjay Kumar Saxena
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Yogendra Kumar
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Samina H Shaikh
- 2 Analytical Chemistry Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Homi Bhabha National Institute , Mumbai, India
| | - Usha Pandey
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Homi Bhabha National Institute , Mumbai, India
| | - Sanjukta A Kumar
- 2 Analytical Chemistry Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Homi Bhabha National Institute , Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Homi Bhabha National Institute , Mumbai, India
| |
Collapse
|
155
|
Yu B, Wei H, He Q, Ferreira CA, Kutyreff CJ, Ni D, Rosenkrans ZT, Cheng L, Yu F, Engle JW, Lan X, Cai W. Efficient Uptake of 177
Lu-Porphyrin-PEG Nanocomplexes by Tumor Mitochondria for Multimodal-Imaging-Guided Combination Therapy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bo Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging; School of Biomedical Engineering, Health Science Center; Shenzhen University; Shenzhen 518060 China
- Departments of Radiology and Medical Physics; University of Wisconsin; Madison WI 53705 USA
- Key Laboratory for Green Chemical Process of Ministry of Education; School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| | - Hao Wei
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430073 China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging; School of Biomedical Engineering, Health Science Center; Shenzhen University; Shenzhen 518060 China
| | - Carolina A. Ferreira
- Departments of Radiology and Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | | | - Dalong Ni
- Departments of Radiology and Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | | | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM); Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education; School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| | - Jonathan W. Engle
- Departments of Radiology and Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430073 China
| | - Weibo Cai
- Departments of Radiology and Medical Physics; University of Wisconsin; Madison WI 53705 USA
- School of Pharmacy; University of Wisconsin; Madison WI 53705 USA
- University of Wisconsin Carbone Cancer Center; Madison WI 53705 USA
| |
Collapse
|
156
|
Golabian A, Hosseini MA, Ahmadi M, Soleimani B, Rezvanifard M. The feasibility study of 177Lu production in Miniature Neutron Source Reactors using a multi-stage approach in Isfahan, Iran. Appl Radiat Isot 2017; 131:62-66. [PMID: 29173809 DOI: 10.1016/j.apradiso.2017.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022]
Abstract
Miniature neutron source reactors (MNSRs) are among the safest and economic research reactors with potentials to be used for neutron studies. This manuscript explores the feasibility of 177Lu production in Isfahan MNSR reactor using direct production route. In this study, to assess the specific activity of the produced radioisotope, a simulation was carried out through the MCNPX2.6 code. The simulation was validated by irradiating a lutetium disc-like (99.98 chemical purity) at the thermal neutron flux of 5 × 1011 ncm2s-1 and an irradiation time of 4min. After the spectrometry of the irradiated sample, the experimental results of 177Lu production were compared with the simulation results. In addition, factor from the simulation was extracted by replacing it in the related equations in order to calculate specific activity through a multi-stage approach, and by using different irradiation techniques. The results showed that the simulation technique designed in this study is in agreement with the experimental approach (with a difference of approximately 3%). It was also found that the maximum 177Lu production at the maximum flux and irradiation time allows access to 723.5mCi/g after 27 cycles. Furthermore, the comparison of irradiation techniques showed that increasing the irradiation time is more effective in 177Lu production efficiency than increasing the number of irradiation cycles. In a way that increasing the irradiation time would postpone the saturation of the productions. On the other hand, it was shown that the choice of an appropriate irradiation technique for 177Lu production can be economically important in term of the effective fuel consumption in the reactor.
Collapse
Affiliation(s)
- A Golabian
- Nuclear Engineering Department, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - M A Hosseini
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M Ahmadi
- Reactor Research and Nuclear Safety Department, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | | | - M Rezvanifard
- Reactor Research and Nuclear Safety Department, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| |
Collapse
|
157
|
Immuno-PET imaging based radioimmunotherapy in head and neck squamous cell carcinoma model. Oncotarget 2017; 8:92090-92105. [PMID: 29190900 PMCID: PMC5696166 DOI: 10.18632/oncotarget.20760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of the most comprehensively studied molecular targets in head and neck squamous cell carcinoma (HNSCC). However, inherent and acquired resistance are serious problems and are responsible for limited clinical efficacy and tumor recurrence. In this study, we evaluated the feasibility of immuno-positron emission tomography (PET) imaging and radioimmunotherapy (RIT) with 64Cu-/177Lu-PCTA-cetuximab in cetuximab-resistant SNU-1066 HNSCC xenografted model. The cellular uptake of 64Cu/177Lu-3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid (PCTA)-cetuximab showed good correlation with western blot and flow cytometry analysis in EGFR expression level of various HNSCC cells. 177Lu-PCTA-cetuximab selectively killed cetuximab-resistant SNU-1066 cells in vitro. 64Cu-/177Lu-PCTA-cetuximab specifically accumulated in SNU-1066 tumor and those uptakes were peaked at 48 h and 7 day, respectively in biodistribution, PET and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. RIT with single dose of 177Lu-PCTA-cetuximab exhibited significant tumor regression and markedly reduced 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) uptake, compared to other groups. Proliferation index were dramatically decreased and apoptotic index increased in RIT group. These results suggest that a diagnostic and therapeutic convergence radiopharmaceutical, 64Cu-/177Lu-PCTA-cetuximab has the potential of target selection using immuno-PET imaging and targeted therapy by RIT in EGFR expressing cetuximab-resistant HNSCC tumors.
Collapse
|
158
|
Ghosh S, Das T, Sarma HD, Dash A. Preparation and Evaluation of 177Lu-Labeled Gemcitabine: An Effort Toward Developing Radiolabeled Chemotherapeutics for Targeted Therapy Applications. Cancer Biother Radiopharm 2017; 32:239-246. [PMID: 28876087 DOI: 10.1089/cbr.2017.2255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Gemcitabine, a nucleoside analogue, is used as a chemotherapeutic drug for the treatment of a wide variety of cancers. Therefore, radiolabeled gemcitabine may have potential as a radiotherapeutic agent for the treatment of various types of cancers. In the present work, an attempt has been made to radiolabel gemcitabine with 177Lu and study the preliminary biological behavior of 177Lu-labeled gemcitabine in tumor-bearing animal model. EXPERIMENTAL Gemcitabine was coupled with p-NCS-benzyl-DOTA, a bifunctional chelating agent, to facilitate radiolabeling with 177Lu. The p-NCS-benzyl-DOTA-gemcitabine conjugate was radiolabeled with 177Lu, produced in-house and characterized by high-performance liquid chromatography. Tumor targeting potential of the radiolabeled agent was determined by biodistribution studies in Swiss mice bearing fibrosarcoma tumors. RESULTS 177Lu-gemcitabine was prepared with a radiochemical purity of 95.7% ± 0.3% under the optimized reaction conditions. The radiolabeled agent showed adequate in vitro stability in normal saline as well as in human blood serum. Preliminary biological studies revealed rapid and significant accumulation of the radiotracer in the tumorous lesions along with fast clearance of activity from blood and other vital organs/tissue. Although tumor uptake gradually reduced with time, tumor to blood and tumor to muscle ratios were improved due to the comparatively faster clearance of activity from the nontarget organs/tissue. CONCLUSION The present study demonstrates the preliminary potential of 177Lu-gemcitabine for targeted radiotherapy. However, further studies are warranted to assess its potential for radiotherapeutic applications.
Collapse
Affiliation(s)
- Subhajit Ghosh
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| | - Tapas Das
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| | - Haladhar D Sarma
- 3 Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| |
Collapse
|
159
|
Mathur A, Prashant V, Sakhare N, Chakraborty S, Vimalnath K, Mohan RK, Arjun C, Karkhanis B, Seshan R, Basu S, Korde A, Banerjee S, Dash A, Sachdev SS. Bulk Scale Formulation of Therapeutic Doses of Clinical Grade Ready-to-Use 177Lu-DOTA-TATE: The Intricate Radiochemistry Aspects. Cancer Biother Radiopharm 2017. [DOI: 10.1089/cbr.2017.2208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anupam Mathur
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Vrinda Prashant
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Navin Sakhare
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Sudipta Chakraborty
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - K.V. Vimalnath
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Repaka Krishna Mohan
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Chanda Arjun
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Barkha Karkhanis
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Ravi Seshan
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Sandip Basu
- Department of Atomic Energy, Radiation Medicine Centre, Mumbai, India
| | - Aruna Korde
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Department of Atomic Energy, Radiation Medicine Centre, Mumbai, India
| | - Ashutosh Dash
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Satbir Singh Sachdev
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| |
Collapse
|
160
|
Pandey U, Gamre N, Lohar SP, Dash A. A systematic study on the utility of CHX-A''-DTPA-NCS and NOTA-NCS as bifunctional chelators for 177Lu radiopharmaceuticals. Appl Radiat Isot 2017; 127:1-6. [PMID: 28478331 DOI: 10.1016/j.apradiso.2017.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 01/25/2023]
Abstract
This paper describes the evaluation of [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-pentaacetic acid (CHX-A''-DTPA-NCS) and 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA-NCS) as bifunctional chelators for 177Lu. While 177Lu-CHX-A''-DTPA-NCS could be obtained in high yields at equimolar ratios of lutetium to CHX-A''-DTPA-NCS, >95% yield of 177Lu-NOTA-NCS could be achieved at 1:2M ratio of lutetium to NOTA-NCS. Trace metals reduced the yields of 177Lu-NOTA-NCS significantly as compared to 177Lu-CHX-A''-DTPA-NCS. In vitro stability of 177Lu-CHX-A''-DTPA-NCS was also superior to 177Lu-NOTA-NCS. It could be concluded from this study that among the two chelators evaluated, CHX-A''-DTPA-NCS is more appropriate for preparation of 177Lu radiopharmaceuticals.
Collapse
Affiliation(s)
- Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India, 400085; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India 400 094.
| | - Naresh Gamre
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India, 400085
| | | | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India, 400085; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India 400 094
| |
Collapse
|
161
|
Bhardwaj R, van der Meer A, Das SK, de Bruin M, Gascon J, Wolterbeek HT, Denkova AG, Serra-Crespo P. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects. Sci Rep 2017; 7:44242. [PMID: 28287131 PMCID: PMC5347157 DOI: 10.1038/srep44242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β- emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.
Collapse
Affiliation(s)
- R Bhardwaj
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands.,Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - A van der Meer
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - S K Das
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - M de Bruin
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - J Gascon
- Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - H T Wolterbeek
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - A G Denkova
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - P Serra-Crespo
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| |
Collapse
|
162
|
Liberal FDCG, Tavares AAS, Tavares JMRS. Computational modeling of radiobiological effects in bone metastases for different radionuclides. Int J Radiat Biol 2017; 93:627-636. [PMID: 28276897 DOI: 10.1080/09553002.2017.1294274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. METHODS Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 (89Sr), Samarium-153 (153Sm), Lutetium-177 (177Lu), and Radium-223 (223Ra). RESULTS Cellular kinetics post-irradiation using 89Sr β- particles, 153Sm β- particles, 177Lu β- particles and 223Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177Lu beta minus particles and, in particular, 223Ra alpha particles, yielded the lowest survival fraction of all investigated particles. CONCLUSIONS 223Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β- radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- a Faculdade de Engenharia , Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto , Porto , Portugal
| | - Adriana Alexandre S Tavares
- a Faculdade de Engenharia , Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto , Porto , Portugal
| | - João Manuel R S Tavares
- a Faculdade de Engenharia , Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto , Porto , Portugal
| |
Collapse
|
163
|
Kameswaran M, Pandey U, Dash A, Samuel G, Venkatesh M. Preparation & in vitro evaluation of ⁹⁰Y-DOTA-rituximab. Indian J Med Res 2017; 143:57-65. [PMID: 26997015 PMCID: PMC4822370 DOI: 10.4103/0971-5916.178593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background & objectives: Radioimmunotherapy is extensively being used for the treatment of non-Hodgkin's lymphoma (NHL). Use of rituximab, a chimeric anti-CD20 antibody directed against the CD20 antigen in combination with suitable beta emitters is expected to result in good treatment response by its cross-fire and bystander effects. The present work involves the conjugation of p-isothiocyanatobenzyl DOTA (p-SCN-Bn-DOTA) to rituximab, its radiolabelling with 90Y and in vitro and in vivo evaluation to determine its potential as a radioimmunotherapeutic agent. Methods: Rituximab was conjugated with p-SCN-Bn-DOTA at 1:1 antibody: DOTA molar ratio. The number of DOTA molecules linked to one molecule of rituximab was determined by radioassay and spectroscopic assay. Radiolabelling of rituximab with 90Y was carried out and its in vitro stability was evaluated. In vitro cell binding studies were carried out in Raji cells expressing CD20 antigen. Biodistribution studies were carried out in normal Swiss mice. Results: Using both radioassay and spectroscopic method, it was determined that about five molecules of DOTA were linked to rituximab. Radiolabelling of the rituximab conjugate with 90Y and subsequent purification on PD-10 column gave a product with radiochemical purity (RCP) > 98 per cent which was retained at > 90 per cent up to 72 h when stored at 37°C. In vitro cell binding experiments of 90Y-DOTA-rituximab with Raji cells exhibited specific binding of 20.7 ± 0.1 per cent with 90Y-DOTA-rituximab which reduced to 15.5 ± 0.2 per cent when incubated with cold rituximab. The equilibrium constant Kd for 90Y-DOTA-Rituximab was determined to be 3.38 nM. Radiolabelled antibody showed clearance via hepatobiliary and renal routes and activity in tibia was found to be quite low indicating in vivo stability of 90Y-DOTA-rituximab. Interpretation & conclusions: p-SCN-Bn-DOTA was conjugated with rituximab and radiolabelling with 90Y was carried out. In vitro studies carried out in Raji cells showed the specificity of the radiolabelled conjugate suggesting the potential uitability of the formulation as a radiopharmaceutical for therapy of NHL.
Collapse
Affiliation(s)
- Mythili Kameswaran
- Isotope Production & Applications Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | | | | |
Collapse
|
164
|
Ferreira CDA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALBD. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 2016; 87:58-72. [PMID: 28040598 DOI: 10.1016/j.biopha.2016.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Despite efforts, cancer is still one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths each year, according to the World Health Organization. Among the strategies to reduce cancer progression and improving its management, implementing early detection technologies is crucial. Based on the fact that several types of cancer cells overexpress surface receptors, small molecule ligands, such as peptides, have been developed to allow tumor identification at earlier stages. Allied with imaging techniques such as PET and SPECT, radiolabeled peptides play a pivotal role in nuclear medicine. Bombesin, a peptide of 14 amino acids, is an amphibian homolog to the mammalian gastrin-releasing peptide (GRP), that has been extensively studied as a targeting ligand for diagnosis and therapy of GRP positive tumors, such as breast, pancreas, lungs and prostate cancers. In this context, herein we provide a review of reported bombesin derivatives radiolabeled with a multitude of radioactive isotopes for diagnostic purposes in the preclinical setting. Moreover, since animal models are highly relevant for assessing the potential of clinical translation of this radiopeptides, a brief report of the currently used GRP-positive tumor-bearing animal models is described.
Collapse
Affiliation(s)
| | - Leonardo Lima Fuscaldi
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, NeuroRadiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André Luís Branco de Barros
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
165
|
Pillai MRA, Nanabala R, Joy A, Sasikumar A, Russ Knapp FF. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 2016; 43:692-720. [PMID: 27589333 DOI: 10.1016/j.nucmedbio.2016.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Abstract
Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-l-aspartyl-l-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68Ga and 177Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68Ga for PET-CT imaging and 177Lu for therapy. In particular, because of availability from the long-lived 68Ge (T1/2=270days)/68Ga (T1/2=68min) generator system and increasing availability of PET-CT, the 68Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.
Collapse
Affiliation(s)
| | - Raviteja Nanabala
- KIMS DDNMRC PET Scans, KIMS Hospital, Trivandrum, Kerala, India, 691601
| | - Ajith Joy
- Molecular Group of Companies, Puthuvype, Ernakulam, Kerala, 682508, India
| | - Arun Sasikumar
- KIMS DDNMRC PET Scans, KIMS Hospital, Trivandrum, Kerala, India, 691601
| | - Furn F Russ Knapp
- Emeritus, Medical Radioisotope Program, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 37830
| |
Collapse
|
166
|
Chakravarty R, Chakraborty S, Sarma HD, Nair KVV, Rajeswari A, Dash A. (90) Y/(177) Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation. J Labelled Comp Radiopharm 2016; 59:354-63. [PMID: 27264196 DOI: 10.1002/jlcr.3413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 11/06/2022]
Abstract
Radiolabelled monoclonal antibodies (mAbs) are increasingly being utilized in cancer theranostics, which is a significant move toward tailored treatment for individual patients. Cetuximab is a recombinant, human-mouse chimeric IgG1 mAb that binds to the epidermal growth factor receptor with high affinity. We have optimized a protocol for formulation of clinically relevant doses (~2.22 GBq) of (90) Y-labelled Cetuximab and (177) Lu-labelled Cetuximab by conjugation of the mAb with a suitable bifunctional chelator, N-[(R)-2-amino-3-(paraisothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N',N″,N″-pentaacetic acid (CHX-A″-DTPA). The radioimmunoconjugates demonstrated reasonably high specific activity (1.26 ± 0.27 GBq/mg for (90) Y-CHX-A″-DTPA-Cetuximab and 1.14 ± 0.15 GBq/mg for (177) Lu-CHX-A″-DTPA-Cetuximab), high radiochemical purity (>95%) and appreciable in vitro stability under physiological conditions. Preliminary biodistribution studies with both (90) Y-CHX-A″-DTPA-Cetuximab and (177) Lu-CHX-A″-DTPA-Cetuximab in Swiss mice bearing fibrosarcoma tumours demonstrated significant tumour uptake at 24-h post-injection (p.i.) (~16%ID/g) with good tumour-to-background contrast. The results of the biodistribution studies were further corroborated by ex vivo Cerenkov luminescence imaging after administration of (90) Y-CHX-A″-DTPA-Cetuximab in tumour-bearing mice. The tumour uptake at 24 h p.i. was significantly reduced with excess unlabelled Cetuximab, suggesting that the uptake was receptor mediated. The results of this study hold promise, and this strategy should be further explored for clinical translation.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sudipta Chakraborty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K V Vimalnath Nair
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ardhi Rajeswari
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashutosh Dash
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
167
|
Gamma camera calibration and validation for quantitative SPECT imaging with 177Lu. Appl Radiat Isot 2016; 112:156-64. [DOI: 10.1016/j.apradiso.2016.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|
168
|
Palliative treatment of metastatic bone pain with radiopharmaceuticals: A perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot 2016; 110:87-99. [DOI: 10.1016/j.apradiso.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022]
|
169
|
Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, An GI, Lee HW, Kim KI, Lee YJ, Kang JH, Lim SM. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model. J Nucl Med 2016; 57:1105-11. [PMID: 26917708 DOI: 10.2967/jnumed.115.167155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Immuno-PET provides valuable information about tumor location, phenotype, susceptibility to therapy, and treatment response, especially to targeted radioimmunotherapy. In this study, we prepared antiepidermal growth factor receptor (EGFR) antibody via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with (64)Cu or (177)Lu to evaluate the EGFR expression levels using immuno-PET and the feasibility of radioimmunotherapy in an esophageal squamous cell carcinoma (ESCC) model. METHODS Cetuximab was conjugated with p-SCN-Bn-PCTA and radiolabeled with (64)Cu or (177)Lu. In vitro EGFR expression levels were determined and compared using flow cytometry and cell binding assay. In vivo EGFR expression levels were evaluated via immuno-PET imaging of (64)Cu-cetuximab and biodistribution analysis. Micro-SPECT/CT imaging, biodistribution, and radioimmunotherapy studies of (177)Lu-cetuximab were performed in the ESCC model. Therapeutic responses were monitored using (18)F-FDG PET and immunohistochemical staining. RESULTS (64)Cu- or (177)Lu-labeled antibodies showed high radiolabeling yield (>98%), stability (>90%), and favorable immunoreactivity. In vitro EGFR status measured by cell binding assay was correlated with the flow cytometry data. Immuno-PET, micro-SPECT/CT, and biodistribution demonstrated specific uptake in ESCC tumors depending on the EGFR expression levels. Tumor accumulation of (64)Cu- and (177)Lu-cetuximab was peaked at 48 and 120 h, respectively. Radioimmunotherapy with (177)Lu-cetuximab showed significant inhibition of tumor growth (P < 0.01) and marked reduction of (18)F-FDG SUV compared with that of control (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity and Ki-67 staining indices increased and decreased, respectively, in the radioimmunotherapy group compared with other groups (P < 0.01). CONCLUSION (64)Cu-cetuximab immuno-PET represented EGFR expression levels in ESCC tumors, and (177)Lu-cetuximab radioimmunotherapy effectively inhibited the tumor growth. The diagnostic and therapeutic convergence radiopharmaceutical (64)Cu-/(177)Lu-PCTA-cetuximab may be useful as a diagnostic tool in patient selection and a potent radioimmunotherapy agent in EGFR-positive ESCC tumors.
Collapse
Affiliation(s)
- In Ho Song
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Tae Sup Lee
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Jin Sook Lee
- Department of Anatomy, Yonsei University Wonju Collage of Medicine, Wonju, South Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Gwang Il An
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Hae Won Lee
- Department of Thoracic Surgery, KIRAMS, Seoul, South Korea; and
| | - Kwang Il Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Yong Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Joo Hyun Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Sang Moo Lim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea Department of Nuclear Medicine, KIRAMS, Seoul, South Korea
| |
Collapse
|