151
|
Development of a proteoliposome model to probe transmembrane electron-transfer reactions. Biochem Soc Trans 2012; 40:1257-60. [DOI: 10.1042/bst20120116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decahaem cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system has been developed that contains Methyl Viologen as an internalized electron carrier and valinomycin as a membrane-associated cation exchanger. These proteoliposomes can be used as a model system to investigate MtrCAB function.
Collapse
|
152
|
Ohlsson G, Tabaei SR, Beech J, Kvassman J, Johanson U, Kjellbom P, Tegenfeldt JO, Höök F. Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes. LAB ON A CHIP 2012; 12:4635-4643. [PMID: 22895529 DOI: 10.1039/c2lc40518k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (<10 ms) the solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications.
Collapse
Affiliation(s)
- Gabriel Ohlsson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Doumiati S, Haupt K, Rossi C. Autophosphorylation activation and inhibition by curcumin of the epidermal growth factor receptor reconstituted in liposomes. J Mol Recognit 2012; 25:623-9. [DOI: 10.1002/jmr.2194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samah Doumiati
- UMR 6022 CNRS; Université de Technologie de Compiègne; BP 20529, 60205; Compiègne Cedex; France
| | - Karsten Haupt
- UMR 6022 CNRS; Université de Technologie de Compiègne; BP 20529, 60205; Compiègne Cedex; France
| | - Claire Rossi
- UMR 6022 CNRS; Université de Technologie de Compiègne; BP 20529, 60205; Compiègne Cedex; France
| |
Collapse
|
154
|
Roberts PG, Hirst J. The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter. J Biol Chem 2012; 287:34743-51. [PMID: 22854968 PMCID: PMC3464577 DOI: 10.1074/jbc.m112.384560] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/23/2012] [Indexed: 11/21/2022] Open
Abstract
In mitochondria, complex I (NADH:ubiquinone oxidoreductase) uses the redox potential energy from NADH oxidation by ubiquinone to transport protons across the inner membrane, contributing to the proton-motive force. However, in some prokaryotes, complex I may transport sodium ions instead, and three subunits in the membrane domain of complex I are closely related to subunits from the Mrp family of Na(+)/H(+) antiporters. Here, we define the relationship between complex I from Bos taurus heart mitochondria, a close model for the human enzyme, and sodium ion transport across the mitochondrial inner membrane. In accord with current consensus, we exclude the possibility of redox-coupled Na(+) transport by B. taurus complex I. Instead, we show that the "deactive" form of complex I, which is formed spontaneously when enzyme turnover is precluded by lack of substrates, is a Na(+)/H(+) antiporter. The antiporter activity is abolished upon reactivation by the addition of substrates and by the complex I inhibitor rotenone. It is specific for Na(+) over K(+), and it is not exhibited by complex I from the yeast Yarrowia lipolytica, which thus has a less extensive deactive transition. We propose that the functional connection between the redox and transporter modules of complex I is broken in the deactive state, allowing the transport module to assert its independent properties. The deactive state of complex I is formed during hypoxia, when respiratory chain turnover is slowed, and may contribute to determining the outcome of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Philippa G. Roberts
- From The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Judy Hirst
- From The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
155
|
Hassanzadeh A, Ma HK, Dixon SJ, Mittler S. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:076025. [PMID: 22894508 DOI: 10.1117/1.jbo.17.7.076025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.
Collapse
Affiliation(s)
- Abdollah Hassanzadeh
- Western University, London, Department of Physics and Astronomy, Ontario, Canada
| | | | | | | |
Collapse
|
156
|
Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 2012; 336:1581-4. [PMID: 22653732 PMCID: PMC3677693 DOI: 10.1126/science.1221976] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.
Collapse
Affiliation(s)
- Javier M. Hernandez
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Alexander Stein
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elmar Behrmann
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Dietmar Riedel
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Anna Cypionka
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- AG Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Zohreh Farsi
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Peter J. Walla
- AG Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technical University of Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany
| | - Stefan Raunser
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
157
|
Seeger MA, Mittal A, Velamakanni S, Hohl M, Schauer S, Salaa I, Grütter MG, van Veen HW. Tuning the drug efflux activity of an ABC transporter in vivo by in vitro selected DARPin binders. PLoS One 2012; 7:e37845. [PMID: 22675494 PMCID: PMC3366976 DOI: 10.1371/journal.pone.0037845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
ABC transporters use the energy from binding and hydrolysis of ATP to import or extrude substrates across the membrane. Using ribosome display, we raised designed ankyrin repeat proteins (DARPins) against detergent solubilized LmrCD, a heterodimeric multidrug ABC exporter from Lactococcus lactis. Several target-specific DARPin binders were identified that bind to at least three distinct, partially overlapping epitopes on LmrD in detergent solution as well as in native membranes. Remarkably, functional screening of the LmrCD-specific DARPin pools in L. lactis revealed three homologous DARPins which, when generated in LmrCD-expressing cells, strongly activated LmrCD-mediated drug transport. As LmrCD expression in the cell membrane was unaltered upon the co-expression of activator DARPins, the activation is suggested to occur at the level of LmrCD activity. Consistent with this, purified activator DARPins were found to stimulate the ATPase activity of LmrCD in vitro when reconstituted in proteoliposomes. This study suggests that membrane transporters are tunable in vivo by in vitro selected binding proteins. Our approach could be of biopharmaceutical importance and might facilitate studies on molecular mechanisms of ABC transporters.
Collapse
Affiliation(s)
- Markus A. Seeger
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anshumali Mittal
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Saroj Velamakanni
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Hohl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Stefan Schauer
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Ihsene Salaa
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Markus G. Grütter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Hendrik W. van Veen
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
158
|
Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H. Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem 2012; 287:21326-34. [PMID: 22532566 DOI: 10.1074/jbc.m112.356659] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic generation of amyloid β-peptide (Aβ) by sequential cleavage of β-amyloid precursor protein (APP) by β- and γ-secretases is widely believed to causally underlie Alzheimer disease (AD). β-Secretase initially cleaves APP thereby generating a membrane-bound APP C-terminal fragment, from which γ-secretase subsequently liberates 37-43-amino acid long Aβ species. Although the latter cleavages are intramembranous and although lipid alterations have been implicated in AD, little is known of how the γ-secretase-mediated release of the various Aβ species, in particular that of the pathogenic longer variants Aβ(42) and Aβ(43), is affected by the lipid environment. Using a cell-free system, we have directly and systematically investigated the activity of γ-secretase reconstituted in defined model membranes of different thicknesses. We found that bilayer thickness is a critical parameter affecting both total activity as well as cleavage specificity of γ-secretase. Whereas the generation of the pathogenic Aβ(42/43) species was markedly attenuated in thick membranes, that of the major and rather benign Aβ(40) species was enhanced. Moreover, the increased production of Aβ(42/43) by familial AD mutants of presenilin 1, the catalytic subunit of γ-secretase, could be substantially lowered in thick membranes. Our data demonstrate an effective modulation of γ-secretase activity by membrane thickness, which may provide an approach to lower the generation of the pathogenic Aβ(42/43) species.
Collapse
Affiliation(s)
- Edith Winkler
- Adolf Butenandt Institute, Biochemistry, Ludwig Maximilians University Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
159
|
Ciancaglini P, Simão AMS, Bolean M, Millán JL, Rigos CF, Yoneda JS, Colhone MC, Stabeli RG. Proteoliposomes in nanobiotechnology. Biophys Rev 2012; 4:67-81. [PMID: 28510001 PMCID: PMC5418368 DOI: 10.1007/s12551-011-0065-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/22/2011] [Indexed: 01/08/2023] Open
Abstract
Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.
Collapse
Affiliation(s)
- P Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil.
| | - A M S Simão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J L Millán
- Sanford Children's Health Research Center, Sanford - Burnham Medical Research Institute, La Jolla, CA, USA
| | - C F Rigos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J S Yoneda
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M C Colhone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - R G Stabeli
- Centro de Estudos de Biomoléculas Aplicadas a Medicina, Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), 76800-000, Porto Velho, RO, Brazil
- Fundação Oswaldo Cruz (Fiocruz-Rondonia), Ministério da Saúde, 76812-245, Porto Velho, RO, Brazil
| |
Collapse
|
160
|
Quick M, Shi L, Zehnpfennig B, Weinstein H, Javitch JA. Experimental conditions can obscure the second high-affinity site in LeuT. Nat Struct Mol Biol 2012; 19:207-11. [PMID: 22245968 PMCID: PMC3272158 DOI: 10.1038/nsmb.2197] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/08/2011] [Indexed: 02/02/2023]
Abstract
Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated.
Collapse
Affiliation(s)
- Matthias Quick
- Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | |
Collapse
|
161
|
Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Proc Natl Acad Sci U S A 2011; 108:12723-8. [PMID: 21768342 DOI: 10.1073/pnas.1105128108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SNARE proteins play a critical role in intracellular membrane fusion by forming tight complexes that bring two membranes together and involve sequences called SNARE motifs. These motifs have a high tendency to form amphipathic coiled-coils that assemble into four-helix bundles, and often precede transmembrane regions. NMR studies in dodecylphosphocholine (DPC) micelles suggested that the N-terminal half of the SNARE motif from the neuronal SNARE synaptobrevin binds to membranes, which appeared to contradict previous biophysical studies of synaptobrevin in liposomes. NMR analyses of synaptobrevin reconstituted into nanodiscs and into liposomes now show that most of its SNARE motif, except for the basic C terminus, is highly flexible, exhibiting cross-peak patterns and transverse relaxation rates that are very similar to those observed in solution. Considering the proximity to the bilayer imposed by membrane anchoring, our data show that most of the synaptobrevin SNARE motif has a remarkable reluctance to bind membranes. This conclusion is further supported by NMR experiments showing that the soluble synaptobrevin SNARE motif does not bind to liposomes, even though it does bind to DPC micelles. These results show that nanodiscs provide a much better membrane model than DPC micelles in this system, and that most of the SNARE motif of membrane-anchored synaptobrevin is accessible for SNARE complex formation. We propose that the charge and hydrophobicity of SNARE motifs is optimized to enable formation of highly stable SNARE complexes while at the same time avoiding membrane binding, which could hinder SNARE complex assembly.
Collapse
|
162
|
Morgan CR, Hebling CM, Rand KD, Stafford DW, Jorgenson JW, Engen JR. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol Cell Proteomics 2011; 10:M111.010876. [PMID: 21715319 DOI: 10.1074/mcp.m111.010876] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectrometry was used to probe the structure and dynamics of the scaffold protein in the presence and absence of lipid. On nanodisc self-assembly, the entire scaffold protein gained significant protection from exchange, consistent with a large, protein-wide, structural rearrangement. This protection was short-lived and the scaffold protein was highly deuterated within 2 h. Several regions of the scaffold protein, in both the lipid-free and lipid-associated states, displayed EX1 unfolding kinetics. The rapid deuteration of the scaffold protein and the presence of correlated unfolding events both indicate that nanodiscs are dynamic rather than rigid bodies in solution. This work provides a catalog of the expected scaffold protein peptic peptides in a nanodisc-hydrogen exchange mass spectrometry experiment and their deuterium uptake signatures, data that can be used as a benchmark to verify correct assembly and nanodisc structure. Such reference data will be useful control data for all hydrogen exchange mass spectrometry experiments involving nanodiscs in which transmembrane or lipid-associated proteins are the primary molecule(s) of interest.
Collapse
Affiliation(s)
- Christopher R Morgan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
163
|
Improved Technique for Reconstituting Incredibly High and Soluble Amounts of Tetrameric K+ Channel in Natural Membranes. J Membr Biol 2011; 241:141-4. [DOI: 10.1007/s00232-011-9370-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
|
164
|
Optimized purification of a heterodimeric ABC transporter in a highly stable form amenable to 2-D crystallization. PLoS One 2011; 6:e19677. [PMID: 21602923 PMCID: PMC3094339 DOI: 10.1371/journal.pone.0019677] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/06/2011] [Indexed: 12/24/2022] Open
Abstract
Optimized protocols for achieving high-yield expression, purification and reconstitution of membrane proteins are required to study their structure and function. We previously reported high-level expression in Escherichia coli of active BmrC and BmrD proteins from Bacillus subtilis, previously named YheI and YheH. These proteins are half-transporters which belong to the ABC (ATP-Binding Cassette) superfamily and associate in vivo to form a functional transporter able to efflux drugs. In this report, high-yield purification and functional reconstitution were achieved for the heterodimer BmrC/BmrD. In contrast to other detergents more efficient for solubilizing the transporter, dodecyl-ß-D-maltoside (DDM) maintained it in a drug-sensitive and vanadate-sensitive ATPase-competent state after purification by affinity chromatography. High amounts of pure proteins were obtained which were shown either by analytical ultracentrifugation or gel filtration to form a monodisperse heterodimer in solution, which was notably stable for more than one month at 4°C. Functional reconstitution using different lipid compositions induced an 8-fold increase of the ATPase activity (kcat∼5 s−1). We further validated that the quality of the purified BmrC/BmrD heterodimer is suitable for structural analyses, as its reconstitution at high protein densities led to the formation of 2-D crystals. Electron microscopy of negatively stained crystals allowed the calculation of a projection map at 20 Å resolution revealing that BmrC/BmrD might assemble into oligomers in a lipidic environment.
Collapse
|
165
|
Huber T, Sakmar TP. Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends Pharmacol Sci 2011; 32:410-9. [PMID: 21497404 DOI: 10.1016/j.tips.2011.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 01/17/2023]
Abstract
Despite significant recent advances in molecular and structural studies of G protein-coupled receptors (GPCRs), an understanding of transmembrane signal transduction with chemical precision requires new approaches. Simple binary receptor-ligand or receptor-G protein complex models cannot adequately describe the relevant macromolecular signaling machineries. GPCR signalosomes undergo complex dynamic assembly-disassembly reactions to create allosteric signaling conduits whose properties cannot necessarily be predicted from individual elements alone. The combinatorial possibilities inherent in a system with hundreds of potential components suggest that high-content miniaturized experimental platforms and computational approaches will be required. To study allosteric effects involved in signalosome reaction pathways, a bottom-up approach using multicolor single-molecule detection fluorescence experiments in biochemically defined systems and complemented by molecular dynamics models of macromolecular complexes is proposed. In bridging the gap between molecular and systems biology, this synthetic approach suggests a way forward from the flatlands to multi-dimensional data collection.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
166
|
Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dötsch V, Bernhard F. Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N Biotechnol 2011; 28:262-71. [DOI: 10.1016/j.nbt.2010.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/28/2010] [Accepted: 07/04/2010] [Indexed: 11/25/2022]
|
167
|
Pérez-Victoria I, Pérez-Victoria FJ, Roldán-Vargas S, García-Hernández R, Carvalho L, Castanys S, Gamarro F, Morales JC, Pérez-Victoria JM. Non-reducing trisaccharide fatty acid monoesters: Novel detergents in membrane biochemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:717-26. [DOI: 10.1016/j.bbamem.2010.11.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/30/2022]
|
168
|
Lipid bilayer composition affects transmembrane protein orientation and function. J Lipids 2011; 2011:208457. [PMID: 21490797 PMCID: PMC3068514 DOI: 10.1155/2011/208457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022] Open
Abstract
Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or α-amylase). Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET) confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the β subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.
Collapse
|
169
|
Faxén K, Andersen JL, Gourdon P, Fedosova N, Morth JP, Nissen P, Møller JV. Characterization of a Listeria monocytogenes Ca(2+) pump: a SERCA-type ATPase with only one Ca(2+)-binding site. J Biol Chem 2011; 286:1609-17. [PMID: 21047776 PMCID: PMC3020769 DOI: 10.1074/jbc.m110.176784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/21/2010] [Indexed: 11/06/2022] Open
Abstract
We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) ∼80 μm) and a high pH optimum (pH ∼9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH.
Collapse
Affiliation(s)
- Kristina Faxén
- From the Departments of Molecular Biology, Gustav Wieds Vej 10C, and
| | | | - Pontus Gourdon
- From the Departments of Molecular Biology, Gustav Wieds Vej 10C, and
| | - Natalya Fedosova
- Physiology and Biophysics, Ole Worms Allé 6, Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Aarhus University, DK-8000, Aarhus, Denmark
| | - Jens Preben Morth
- From the Departments of Molecular Biology, Gustav Wieds Vej 10C, and
| | - Poul Nissen
- From the Departments of Molecular Biology, Gustav Wieds Vej 10C, and
| | - Jesper Vuust Møller
- Physiology and Biophysics, Ole Worms Allé 6, Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
170
|
Elsayed MMA, Cevc G. The vesicle-to-micelle transformation of phospholipid-cholate mixed aggregates: a state of the art analysis including membrane curvature effects. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:140-53. [PMID: 20832388 DOI: 10.1016/j.bbamem.2010.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
We revisited the vesicle-to-micelle transformation in phosphatidylcholine-cholate mixtures paying special attention to the lipid bilayer curvature effects. For this purpose, we prepared unilamellar vesicles with different starting sizes (2r(v)=45-120nm). We then studied mixtures of the unilamellar vesicles (1-8mmol kg(-1)) and sodium cholate (0-11.75mmolkg(-1)) by static and dynamic light scattering. The transformation generally comprises at least two, largely parallel phenomena; one increases and the other decreases the average mixed aggregate size. In our view, cholate first induces bilayer fluctuations that lead to vesicle asphericity, and then to lipid bilayer poration followed by sealing/reformation (or fusion). The cholate-containing mixed bilayers, whether in vesicular or open form, project thread-like protrusions with surfactant enriched ends even before complete bilayer solubilisation. Increasing cholate concentration promotes detachment of such protrusions (i.e. mixed micelles formation), in parallel to further softening/destabilising of mixed amphipat bilayers over a broad range of concentrations. Vesicles ultimately fragment into mixed thread-like micelles. Higher cholate relative concentrations yield shorter thread-like mixed micelles. Most noteworthy, the cholate-induced bilayer fluctuations, the propensity for large aggregate formation, the transformation kinetics, and the cholate concentration ensuring complete lipid solubilisation all depend on the starting mean vesicle size. The smallest tested vesicles (2r(v)=45nm), with the highest bilayer curvature, require ~30% less cholate for complete solubilisation than the largest tested vesicles (2r(v)=120nm).
Collapse
|
171
|
Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient. JOURNAL OF DRUG DELIVERY 2010; 2011:897592. [PMID: 21490758 PMCID: PMC3065815 DOI: 10.1155/2011/897592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/17/2010] [Indexed: 12/29/2022]
Abstract
Detergent-mediated reconstitution of bacteriorhodopsin (BR) into large unilamellar vesicles (LUVs) was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG) as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.
Collapse
|
172
|
Dezi M, Fribourg PF, Cicco AD, Jault JM, Chami M, Lévy D. Binding, reconstitution and 2D crystallization of membrane or soluble proteins onto functionalized lipid layer observed in situ by reflected light microscopy. J Struct Biol 2010; 174:307-14. [PMID: 21163357 DOI: 10.1016/j.jsb.2010.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022]
Abstract
Monolayer of functionalized lipid spread at the air/water interface is used for the structural analysis of soluble and membrane proteins by electron crystallography and single particle analysis. This powerful approach lacks of a method for the screening of the binding of proteins to the surface of the lipid layer. Here, we described an optical method based on the use of reflected light microscopy to image, without the use of any labeling, the lipid layer at the surface of buffers in the Teflon wells used for 2D crystallization. Images revealed that the lipid layer was made of a monolayer coexisting with liposomes or aggregates of lipids floating at the surface. Protein binding led to an increase of the contrast and the decrease of the fluidity of the lipid surface, as demonstrated with the binding of soluble Shiga toxin B subunit, of purple membrane and of solubilized His-BmrA, a bacterial ABC transporter. Moreover the reconstitution of membrane proteins bound to the lipidic surface upon detergent removal can be followed through the appearance of large recognizable domains at the surface. Proteins binding and reconstitution were further confirmed by electron microcopy. Overall, this method provides a quick evaluation of the monolayer trials, a significant reduction in screening by transmission electron microscopy and new insights in the proteins binding and 2D crystallogenesis at the lipid surface.
Collapse
Affiliation(s)
- Manuela Dezi
- Institut Curie, Centre de Recherche, Paris F-75231, France
| | | | | | | | | | | |
Collapse
|
173
|
Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz O, Kühlbrandt W. Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J 2010; 30:439-49. [PMID: 21151096 DOI: 10.1038/emboj.2010.321] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/10/2010] [Indexed: 11/09/2022] Open
Abstract
We have determined the structure of the archaeal sodium/proton antiporter NhaP1 at 7 Å resolution by electron crystallography of 2D crystals. NhaP1 is a dimer in the membrane, with 13 membrane-spanning α-helices per protomer, whereas the distantly related bacterial NhaA has 12. Dimer contacts in the two antiporters are very different, but the structure of a six-helix bundle at the tip of the protomer is conserved. The six-helix bundle of NhaA contains two partially unwound α-helices thought to harbour the ion-translocation site, which is thus similar in NhaP1. A model of NhaP1 based on detailed sequence comparison and the NhaA structure was fitted to the 7 Å map. The additional N-terminal helix 1 of NhaP1, which appears to be an uncleaved signal sequence, is located near the dimer interface. Similar sequences are present in many eukaryotic homologues of NhaP1, including NHE1. Although fully folded and able to dimerize, NhaP1 constructs without helix 1 are inactive. Possible reasons are investigated and discussed.
Collapse
Affiliation(s)
- Panchali Goswami
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
174
|
Characterization of membrane protein preparations: measurement of detergent content and ligand binding after proteoliposomes reconstitution. Methods Mol Biol 2010. [PMID: 20665258 DOI: 10.1007/978-1-60761-762-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The study of membrane proteins is a difficult task due to their natural embedding in hydrophobic environment made by lipids. Solubilization and purification from native membranes or overexpressed system involves the use of detergent to make them soluble while maintaining their structural and functional properties. The choice of detergent is governed not only by their ability to reach these goals, but also by their compatibility with biochemical and structural studies. A different detergent can be used during purification, and characterization of the detergent amounts present in each purification step is crucial. To address this point, we developed a colorimetric method to measure detergent content in different preparations. We analyzed detergent present in the collected fractions from the purification of the recombinant membrane translocator protein (RecTSPO). We followed detergent removal during the reconstitution of RecTSPO in liposomes and observed by electron microscopy the formation of proteoliposomes. We addressed the RecTSPO functionality by testing its ability to bind high affinity drug ligand [(3)H]PK 11195. We described the different parameters that should be controlled in order to optimize the measurement of this ligand binding using a filtration procedure. These protocols are useful to characterize functionality and detergent content of membrane protein, both key factors for further structural studies.
Collapse
|
175
|
Tark SH, Das A, Sligar S, Dravid VP. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs. NANOTECHNOLOGY 2010; 21:435502. [PMID: 20890017 PMCID: PMC3868204 DOI: 10.1088/0957-4484/21/43/435502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The label-free detection of cholera toxin is demonstrated using microcantilevers functionalized with ganglioside nanodiscs. The cholera toxin molecules bind specifically to the active membrane protein encased in nanodiscs, nanoscale lipid bilayers surrounded by an amphipathic protein belt, immobilized on the cantilever surface. The specific molecular binding results in cantilever deflection via the formation of a surface stress-induced bending moment. The nanomechanical cantilever response is quantitatively monitored by optical interference. The consistent and reproducible nanomechanical detection of cholera toxin in nanomolar range concentrations is demonstrated. The results validated with such a model system suggest that the combination of a microcantilever platform with receptor nanodiscs is a promising approach for monitoring invasive pathogens and other types of biomolecular detection relevant to drug discovery.
Collapse
Affiliation(s)
- Soo-Hyun Tark
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Aditi Das
- Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen Sligar
- Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
176
|
Hebling CM, Morgan CR, Stafford DW, Jorgenson JW, Rand KD, Engen JR. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal Chem 2010; 82:5415-9. [PMID: 20518534 DOI: 10.1021/ac100962c] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of membrane protein structure and enzymology has traditionally been hampered by the inherent insolubility of membrane proteins in aqueous environments and experimental challenges in emulating an in vivo lipid environment. Phospholipid bilayer nanodiscs have recently been shown to be of great use for the study of membrane proteins since they offer a controllable, stable, and monodisperse model membrane with a nativelike lipid bilayer. Here we report the integration of nanodiscs with hydrogen exchange (HX) mass spectrometry (MS) experiments, thereby allowing for analysis of the native conformation of membrane proteins. gamma-Glutamyl carboxylase (GGCX), an approximately 94 kDa transmembrane protein, was inserted into nanodiscs and labeled with deuterium oxide under native conditions. Analytical parameters including sample-handling and chromatographic separation were optimized to measure the incorporation of deuterium into GGCX. Coupling nanodisc technology with HX MS offers an effective approach for investigating the conformation and dynamics of membrane proteins in their native environment and is therefore capable of providing much needed insight into the function of membrane proteins.
Collapse
Affiliation(s)
- Christine M Hebling
- Department of Chemistry, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
177
|
Moritani Y, Nomura SIM, Morita I, Akiyoshi K. Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. FEBS J 2010; 277:3343-52. [PMID: 20608976 DOI: 10.1111/j.1742-4658.2010.07736.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteoliposomes were directly prepared by synthesizing membrane proteins with the use of minimal protein synthesis factors isolated from Escherichia coli (the PURE system) in the presence of liposomes. Connexin-43 (Cx43), which is a water-insoluble integral membrane protein that forms a hexameric complex in membranes, was cotranslationally integrated with an essentially uniform orientation in liposomes. The addition of liposomes following protein expression (post-translational presence of liposomes) did not lead to the integration of Cx43 into the liposome membranes. The amount of integrated Cx43 increased as the liposome concentration increased. The presence of liposomes did not influence the total amount of synthesized Cx43. The Cx43 integrated into the liposome membranes formed open membrane pores. These results indicate that the liposomes act in a chaperone-like manner by preventing Cx43 from aggregating in solution, because of integration into the bilayer, and also by functionalization of the integrated Cx43 in the membrane. This is the first report that cell-free-synthesized water-insoluble membrane protein is directly integrated with a uniform orientation as a functional oligomer into liposome membranes. This simple proteoliposome preparation procedure should be a valuable approach for structural and functional studies of membrane proteins.
Collapse
Affiliation(s)
- Yuki Moritani
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
178
|
Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2160-9. [PMID: 20647001 DOI: 10.1016/j.bbamem.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
Abstract
Bacterial conjugative systems code for an essential membrane protein that couples the relaxosome to the DNA transport apparatus, called type IV coupling protein (T4CP). TrwB is the T4CP of the conjugative plasmid R388. In earlier work we found that this protein, purified in the presence of detergents, binds preferentially purine nucleotides trisphosphate. In contrast a soluble truncated mutant TrwBΔN70 binds uniformly all nucleotides tested. In this work, TrwB has been successfully reconstituted into liposomes. The non-membranous portion of the protein is almost exclusively oriented towards the outside of the vesicles. Functional analysis of TrwB proteoliposomes demonstrates that when the protein is inserted into the lipid bilayer the affinity for adenine and guanine nucleotides is enhanced as compared to that of the protein purified in detergent or to the soluble deletion mutant, TrwBΔN70. The protein specificity for adenine nucleotides is also increased. No ATPase activity has been found in TrwB reconstituted in proteoliposomes. This result suggests that the N-terminal transmembrane segment of this T4CP interferes with its ATPase activity and can be taken to imply that the TrwB transmembrane domain plays a regulatory role in its biological activity.
Collapse
|
179
|
Rupprecht A, Sokolenko EA, Beck V, Ninnemann O, Jaburek M, Trimbuch T, Klishin SS, Jezek P, Skulachev VP, Pohl EE. Role of the transmembrane potential in the membrane proton leak. Biophys J 2010; 98:1503-11. [PMID: 20409469 DOI: 10.1016/j.bpj.2009.12.4301] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 11/08/2009] [Accepted: 12/08/2009] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanism responsible for the regulation of the mitochondrial membrane proton conductance (G) is not clearly understood. This study investigates the role of the transmembrane potential (DeltaPsim) using planar membranes, reconstituted with purified uncoupling proteins (UCP1 and UCP2) and/or unsaturated FA. We show that high DeltaPsim (similar to DeltaPsim in mitochondrial State IV) significantly activates the protonophoric function of UCPs in the presence of FA. The proton conductance increases nonlinearly with DeltaPsim. The application of DeltaPsim up to 220 mV leads to the overriding of the protein inhibition at a constant ATP concentration. Both, the exposure of FA-containing bilayers to high DeltaPsim and the increase of FA membrane concentration bring about the significant exponential Gm increase, implying the contribution of FA in proton leak. Quantitative analysis of the energy barrier for the transport of FA anions in the presence and absence of protein suggests that FA- remain exposed to membrane lipids while crossing the UCP-containing membrane. We believe this study shows that UCPs and FA decrease DeltaPsim more effectively if it is sufficiently high. Thus, the tight regulation of proton conductance and/or FA concentration by DeltaPsim may be key in mitochondrial respiration and metabolism.
Collapse
Affiliation(s)
- Anne Rupprecht
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Kumano S, Murakoshi M, Iida K, Hamana H, Wada H. Atomic force microscopy imaging of the structure of the motor protein prestin reconstituted into an artificial lipid bilayer. FEBS Lett 2010; 584:2872-6. [PMID: 20452349 DOI: 10.1016/j.febslet.2010.04.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Prestin is the motor protein of cochlear outer hair cells and is essential for mammalian hearing. The present study aimed to clarify the structure of prestin by atomic force microscopy (AFM). Prestin was purified from Chinese hamster ovary cells which had been modified to stably express prestin, and then reconstituted into an artificial lipid bilayer. Immunofluorescence staining with anti-prestin antibody showed that the cytoplasmic side of prestin was possibly face up in the reconstituted lipid bilayer. AFM observation indicated that the cytoplasmic surface of prestin was ring-like with a diameter of about 11 nm.
Collapse
Affiliation(s)
- Shun Kumano
- Department of Bioengineering and Robotics, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
181
|
Schmidt P, Berger C, Scheidt HA, Berndt S, Bunge A, Beck-Sickinger AG, Huster D. A reconstitution protocol for the in vitro folded human G protein-coupled Y2 receptor into lipid environment. Biophys Chem 2010; 150:29-36. [PMID: 20421142 DOI: 10.1016/j.bpc.2010.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Although highly resolved crystal structures of G protein-coupled receptors have become available within the last decade, the need for studying these molecules in their natural membrane environment, where the molecules are rather dynamic, has been widely appreciated. Solid-state NMR spectroscopy is an excellent method to study structure and dynamics of membrane proteins in their native lipid environment. We developed a reconstitution protocol for the uniformly (15)N labeled Y(2) receptor into a bicelle-like lipid structure with high yields suitable for NMR studies. Milligram quantities of target protein were expressed in Escherichia coli using an optimized fermentation process in defined medium yielding in over 10mg/L medium of purified Y(2) receptor solubilized in SDS micelles. The structural integrity of the receptor molecules was strongly increased through refolding and subsequent reconstitution into phospholipid membranes. Specific ligand binding to the integrated receptor was determined using radioligand affinity assay. Further, by NMR measurement a dispersion of the (15)N signals comparable to native rhodopsin was shown. The efficiency of the reconstitution could also be inferred from the fact that reasonable (13)C NMR spectra at natural abundance could be acquired.
Collapse
Affiliation(s)
- Peter Schmidt
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
182
|
Krylova OO, Jahnke N, Keller S. Membrane solubilisation and reconstitution by octylglucoside: comparison of synthetic lipid and natural lipid extract by isothermal titration calorimetry. Biophys Chem 2010; 150:105-11. [PMID: 20392557 DOI: 10.1016/j.bpc.2010.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/12/2010] [Accepted: 03/13/2010] [Indexed: 11/28/2022]
Abstract
We have studied the solubilisation and reconstitution of lipid membranes composed of either synthetic phosphatidylcholine or Escherichia. coli polar lipid extract by the non-ionic detergent octylglucoside. For both lipid systems, composition-dependent transformations of unilamellar vesicles into micelles or vice versa were followed by high-sensitivity isothermal titration calorimetry. Data obtained over a range of detergent and lipid concentrations could be rationalised in terms of a three-stage phase separation model involving bilayer, bilayer/micelle coexistence, and micellar ranges, yielding the detergent/lipid phase diagrams and the bilayer-to-micelle partition coefficients of both detergent and lipid. The most notable difference between the lipids investigated was a substantial widening of the bilayer/micelle coexistence range for E. coli lipid, which was due to an increased preference of the detergent and a decreased affinity of the lipid for the micellar phase as compared with the bilayer phase. These effects on the bilayer-to-micelle partition coefficients could be explained by the high proportion in E. coli membranes of lipids possessing negative spontaneous curvature, which hampers both their transfer into strongly curved micellar structures as well as the insertion of detergent into condensed bilayers.
Collapse
Affiliation(s)
- Oxana O Krylova
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | |
Collapse
|
183
|
Wang L, Sigworth FJ. Liposomes on a streptavidin crystal: a system to study membrane proteins by cryo-EM. Methods Enzymol 2010; 481:147-64. [PMID: 20887857 PMCID: PMC3903115 DOI: 10.1016/s0076-6879(10)81007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this chapter, we describe the preparation of cryo-EM specimens for random spherically constrained (RSC) single-particle reconstruction of membrane proteins. The specimen consists of liposomes into which the purified membrane protein is reconstituted at low density. The substrate is a 2D streptavidin crystal, which serves as an affinity surface that tethers the liposomes, which are doped with biotinylated lipids; the crystal can also serve as an image-quality and image-calibration reference. After subtraction of the crystal and lipid membrane contributions to the image, the remaining particle images can be used for 3D reconstruction.
Collapse
|
184
|
Graff A, Fraysse-Ailhas C, Palivan CG, Grzelakowski M, Friedrich T, Vebert C, Gescheidt G, Meier W. Amphiphilic Copolymer Membranes Promote NADH:Ubiquinone Oxidoreductase Activity: Towards an Electron-Transfer Nanodevice. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900517] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
185
|
Tan Q, Wang N, Yang H, Chen L, Xiong H, Zhang L, Liu J, Zhao C, Zhang J. Preparation and characterization of lipid vesicles containing uricase. Drug Deliv 2009; 17:28-37. [DOI: 10.3109/10717540903508953] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
186
|
Juárez O, Athearn K, Gillespie P, Barquera B. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 2009; 48:9516-24. [PMID: 19694431 DOI: 10.1021/bi900845y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae and many other marine and pathogenic bacteria possess a unique respiratory complex, the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR), which pumps Na(+) across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. To function as a selective sodium pump, Na(+)-NQR must contain structures that (1) allow the sodium ion to pass through the hydrophobic core of the membrane and (2) provide cation specificity to the translocation system. In other sodium-transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study, we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D, and E of Na(+)-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133, and NqrE-E95 produced a decrease of approximately >or=10-fold in the apparent affinity of the enzyme for sodium (Km(app)(Na+)), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346, and NqrD-D88, had a strong effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but a weaker effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
187
|
Pennisi CP, Greenbaum E, Yoshida K. Analysis of light-induced transmembrane ion gradients and membrane potential in Photosystem I proteoliposomes. Biophys Chem 2009; 146:13-24. [PMID: 19854559 DOI: 10.1016/j.bpc.2009.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/25/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
Abstract
Photosystem I (PSI) complexes can support a light-driven electrochemical gradient for protons, which is the driving force for energy-conserving reactions across biological membranes. In this work, a computational model that enables a quantitative description of the light-induced proton gradients across the membrane of PSI proteoliposomes is presented. Using a set of electrodiffusion equations, a compartmental model of a vesicle suspended in aqueous medium was studied. The light-mediated proton movement was modeled as a single proton pumping step with backpressure of the electric potential. The model fits determinations of pH obtained from PSI proteoliposomes illuminated in the presence of mediators of cyclic electron transport. The model also allows analysis of the proton gradients in relation to the transmembrane ion fluxes and electric potential. Sensitivity analysis enabled a determination of the parameters that have greater influence on steady-state levels and onset/decay rates of transmembrane pH and electric potential. This model could be used as a tool for optimizing PSI proteoliposomes for photo-electrochemical applications.
Collapse
Affiliation(s)
- Cristian Pablo Pennisi
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Denmark.
| | | | | |
Collapse
|
188
|
Bloch DA, Jasaitis A, Verkhovsky MI. Elevated proton leak of the intermediate OH in cytochrome c oxidase. Biophys J 2009; 96:4733-42. [PMID: 19486696 DOI: 10.1016/j.bpj.2009.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/10/2009] [Accepted: 03/11/2009] [Indexed: 11/16/2022] Open
Abstract
The kinetics of the formation and relaxation of transmembrane electric potential (Deltapsi) during the complete single turnover of CcO was studied in the bovine heart mitochondrial and the aa(3)-type Paracoccus denitrificans enzymes incorporated into proteoliposome membrane. The real-time Deltapsi kinetics was followed by the direct electrometry technique. The prompt oxidation of CcO and formation of the activated, oxidized (O(H)) state of the enzyme leaves the enzyme trapped in the open state that provides an internal leak for protons and thus facilitates dissipation of Deltapsi (tau(app) < or = 0.5-0.8 s). By contrast, when the enzyme in the O(H) state is rapidly re-reduced by sequential electron delivery, Deltapsi dissipates much slower (tau(app) > 3 s). In P. denitrificans CcO proteoliposomes the accelerated Deltapsi dissipation is slowed down by a mutational block of the proton conductance through the D-, but not K-channel. We concluded that in contrast to the other intermediates the O(H) state of CcO is vulnerable to the elevated internal proton leak that proceeds via the D-channel.
Collapse
Affiliation(s)
- Dmitry A Bloch
- Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
189
|
Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 2009; 460:978-83. [PMID: 19633650 DOI: 10.1038/nature08280] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/13/2009] [Indexed: 01/10/2023]
Abstract
Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin--the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia--localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.
Collapse
|
190
|
Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat Protoc 2009; 4:686-97. [PMID: 19373233 DOI: 10.1038/nprot.2009.35] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The solubilization and reconstitution of biological or liposomal membranes by detergents and biomolecules with detergent-like properties play a major role for technical applications (e.g., the isolation of membrane proteins) and biological phenomena (of, e.g., amphiphilic peptides). It is therefore important to know and understand the amounts of a given detergent required for the onset and completion of membrane solubilization and the detergent-lipid interactions in general. Lipid-detergent systems can form a variety of aggregate structures, which can be grouped into two pseudophases (lamellae and micelles) so that solubilization can be approximately described as a phase transition. Here we present a protocol for establishing the phase diagram and a detailed thermodynamic description of a lipid-detergent system based on isothermal titration calorimetry (ITC). The protocol can also be used to detect additive-induced membrane destabilization, permeabilization, domain formation and lipid-dependent transitions between rod-like and spherical micelles. A minimal protocol consisting of all sample preparation procedures and a single solubilization experiment can be accomplished within 2 days; a more extensive series comprising both solubilization and reconstitution experiments requires several days to a few weeks, depending on the number of titrations performed.
Collapse
|
191
|
Concentration gradient effects of sodium and lithium ions and deuterium isotope effects on the activities of H+-ATP synthase from chloroplasts. Biophys J 2009; 96:2479-89. [PMID: 19289072 DOI: 10.1016/j.bpj.2008.12.3910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 11/27/2008] [Accepted: 12/05/2008] [Indexed: 11/22/2022] Open
Abstract
We explored the concentration gradient effects of the sodium and lithium ions and the deuterium isotope's effects on the activities of H(+)-ATP synthase from chloroplasts (CF(0)F(1)). We found that the sodium concentration gradient can drive the ATP synthesis reaction of CF(0)F(1). In contrast, the lithium ion can be an efficient enzyme-inhibitor by blocking the entrance channel of the ion translocation pathway in CF(0). In the presence of sodium or lithium ions and with the application of a membrane potential, unexpected enzyme behaviors of CF(0)F(1) were evident. To account for these observations, we propose that both of the sodium and lithium ions could undergo localized hydrolysis reactions in the chemical environment of the ion channel of CF(0). The protons generated locally could proceed to complete the ion translocation process in the ATP synthesis reaction of CF(0)F(1). Experimental and theoretical deuterium isotope effects of the localized hydrolysis on the activities of CF(0)F(1), and the energetics of these related reactions, support this proposed mechanism. Our experimental observations could be understood in the framework of the well-established ion translocation models for the H(+)-ATP synthase from Escherichia coli, and the Na(+)-ATP synthase from Propionigenium modestum and Ilyobacter tartaricus.
Collapse
|
192
|
Ganea C, Fendler K. Bacterial transporters: Charge translocation and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:706-13. [DOI: 10.1016/j.bbabio.2009.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 12/01/2022]
|
193
|
Das A, Zhao J, Schatz GC, Sligar SG, Van Duyne RP. Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal Chem 2009; 81:3754-9. [PMID: 19364136 PMCID: PMC4757437 DOI: 10.1021/ac802612z] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A prototype nanoparticle biosensor based on localized surface plasmon resonance (LSPR) spectroscopy was developed to detect drug binding to human membrane-bound cytochrome P450 3A4 (CYP3A4). CYP3A4 is one of the most important enzymes in drug and xenobiotic metabolism in the human body. Because of the inherent propensity of CYP3A4 to aggregate, it is difficult to study drug binding to this protein in solution and on surfaces. In this paper, we use a soluble nanometer scale membrane bilayer disk (Nanodisk) to functionally stabilize monomeric CYP3A4 on Ag nanoparticle surfaces fabricated by nanosphere lithography. CYP3A4-Nanodiscs have absorption bands in the visible wavelength region, which upon binding certain drugs shift to either shorter (type I) or longer wavelengths (type II). On the basis of the coupling between the LSPR of the Ag nanoparticles and the electronic resonances of the heme chromophore in CYP3A4-Nanodiscs, LSPR spectroscopy is used to detect drug binding with high sensitivity. This paper combines LSPR and Nanodisc techniques to optically sense drug binding to a functionally stable membrane protein, with the goal of integrating this with microfluidics and expanding it into a multiarray format, enabling high-throughput screening.
Collapse
Affiliation(s)
- Aditi Das
- Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jing Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Stephen G. Sligar
- Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Richard P. Van Duyne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
194
|
Kaneda M, Nomura SIM, Ichinose S, Kondo S, Nakahama KI, Akiyoshi K, Morita I. Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes. Biomaterials 2009; 30:3971-7. [PMID: 19423159 DOI: 10.1016/j.biomaterials.2009.04.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Liposomes are widely utilized in molecular biology and medicine as drug carriers. Here we report a new liposome-cell interaction through connexins. Connexin 43 (Cx43)-containing liposomes were prepared by using cell-free transcription/translation systems with plasmids encoding Cx43 in the presence of liposome. The expressed membrane protein, Cx43, was directly constituted to the liposome membrane upon in vitro synthesis, leading to pure membrane protein-containing liposomes. The hydrophilic dye calcein was efficiently transferred from Cx43-expressing liposomes to cultured cells (Cx43 expressing). The transfer is significantly blocked in the presence of gap junction inhibitor (18beta-glycyrrhetinic acid) and in the case of the other type of connexin (Cx32)-expressing cell. The results show that calcein entered the cell through connexin-mediated pathway. Cx43 liposomes containing a soluble NEMO-binding domain peptide suppressed the intracellular signaling cascade IL-1beta-induced NF-kappaB activation and cyclooxygenase-2 expression in Cx43-expressing cells, confirming effective peptide transfer into the cell. This is a new method for direct cytosolic delivery of hydrophilic molecules.
Collapse
Affiliation(s)
- Makoto Kaneda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | | | |
Collapse
|
195
|
Milano F, Italiano F, Agostiano A, Trotta M. Characterisation of RC-proteoliposomes at different RC/lipid ratios. PHOTOSYNTHESIS RESEARCH 2009; 100:107-112. [PMID: 19387862 DOI: 10.1007/s11120-009-9423-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Reconstitution of membrane proteins in phospholipid vesicles allows the investigation of such macromolecules in a biomimetic simplified environment. The often employed micelle-to-vesicle-transition method for proteoliposome preparation is a fast and reproducible technique. In this, communication is shown that the lipid/protein ratio influences the size of the proteoliposomes and the actual protein reconstitution. The results indicate that for photosynthetic reaction centres, the best conditions for ligand-interaction experiments are achieved with a lipid/protein value of 1000:1, while for complete protein incorporation, the 2000:1 ratio should be chosen.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici, Sezione di Bari, c/o Dipartimento di Chimica, Via Orabona, 4 I-70124, Bari, Italy
| | | | | | | |
Collapse
|
196
|
Ryan RM, Compton ELR, Mindell JA. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J Biol Chem 2009; 284:17540-8. [PMID: 19380583 DOI: 10.1074/jbc.m109.005926] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are crucial in maintaining extracellular levels of glutamate, the most abundant excitatory neurotransmitter, below toxic levels. The recent three-dimensional crystal structure of GltPh, an archaeal homolog of the EAATs, provides elegant structural details of this family of proteins, yet we know little about the mechanism of the bacterial transporter. Conflicting reports in the literature have described GltPh as an aspartate transporter driven by Na+ or a glutamate transporter driven by either Na+ or H+. Here we use purified protein reconstituted into liposomes to thoroughly characterize the ion and substrate dependence of the GltPh transport. We confirm that GltPh is a Na+-dependent transporter that is highly selective for aspartate over other amino acids, and we show that transport is coupled to at least two Na+ ions. In contrast to the EAATs, transport via GltPh is independent of H+ and K+. We propose a kinetic model of transport in which at least two Na+ ions are coupled to the cotransport of each aspartate molecule by GltPh, and where an ion- and substrate-free transporter reorients to complete the transport cycle.
Collapse
Affiliation(s)
- Renae M Ryan
- Membrane Transport Biophysics Unit, Porter Neuroscience Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
197
|
Resistance of Human Erythrocyte Membranes to Triton X-100 and C12E8. J Membr Biol 2008; 227:39-48. [DOI: 10.1007/s00232-008-9142-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/11/2008] [Indexed: 11/24/2022]
|
198
|
Koçer A. A Remote Controlled Valve in Liposomes for Triggered Liposomal Release. J Liposome Res 2008; 17:219-25. [DOI: 10.1080/08982100701528203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
199
|
Periasamy N, Teichert H, Weise K, Vogel RF, Winter R. Effects of temperature and pressure on the lateral organization of model membranes with functionally reconstituted multidrug transporter LmrA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:390-401. [PMID: 18983816 DOI: 10.1016/j.bbamem.2008.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 11/29/2022]
Abstract
To contribute to the understanding of membrane protein function upon application of pressure, we investigated the influence of hydrostatic pressure on the conformational order and phase behavior of the multidrug transporter LmrA in biomembrane systems. To this end, the membrane protein was reconstituted into various lipid bilayer systems of different chain length, conformation, phase state and heterogeneity, including raft model mixtures as well as some natural lipid extracts. In the first step, we determined the temperature stability of the protein itself and verified its reconstitution into the lipid bilayer systems using CD spectroscopic and AFM measurements, respectively. Then, to yield information on the temperature and pressure dependent conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined, which report on the conformation and phase state of the lipid bilayer system. The temperature-dependent measurements were carried out in the temperature range 5-70 degrees C, and the pressure dependent measurements were performed in the range 1-200 MPa. The data show that the effect of the LmrA reconstitution on the conformation and phase state of the lipid matrix depends on the fluidity and hydrophobic matching conditions of the lipid system. The effect is most pronounced for fluid DMPC and DMPC with low cholesterol levels, but minor for longer-chain fluid phospholipids such as DOPC and model raft mixtures such as DOPC/DPPC/cholesterol. The latter have the additional advantage of using lipid sorting to avoid substantial hydrophobic mismatch. Notably, the most drastic effect was observed for the neutral/glycolipid natural lipid mixture. In this case, the impact of LmrA incorporation on the increase of the conformational order of the lipid membrane was most pronounced. As a consequence, the membrane reaches a mechanical stability which makes it very insensitive to application of pressures as high as 200 MPa. The results are correlated with the functional properties of LmrA in these various lipid environments and upon application of high hydrostatic pressure and are discussed in the context of other work on pressure effects on membrane protein systems.
Collapse
Affiliation(s)
- Nagarajan Periasamy
- Dortmund University of Technology, Physical Chemistry I - Biophysical Chemistry, D-44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
200
|
Etzkorn M, Kneuper H, Dünnwald P, Vijayan V, Krämer J, Griesinger C, Becker S, Unden G, Baldus M. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat Struct Mol Biol 2008; 15:1031-9. [DOI: 10.1038/nsmb.1493] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 08/29/2008] [Indexed: 11/09/2022]
|