151
|
Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci 2012; 35:671-80. [DOI: 10.1016/j.tins.2012.08.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/25/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
|
152
|
Rodríguez F, Zanetti MN, Mayorga LS, Tomes CN. Munc18-1 controls SNARE protein complex assembly during human sperm acrosomal exocytosis. J Biol Chem 2012; 287:43825-39. [PMID: 23091057 DOI: 10.1074/jbc.m112.409649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The spermatozoon is a very specialized cell capable of carrying out a limited set of functions with high efficiency. Sperm are then excellent model cells to dissect fundamental processes such as regulated exocytosis. The secretion of the single dense-core granule of mammalian spermatozoa relies on the same highly conserved molecules and goes through the same stages as exocytosis in other types of cells. In this study, we describe the presence of Munc18-1 in human sperm and show that this protein has an essential role in acrosomal exocytosis. We observed that inactivation of endogenous Munc18-1 with a specific antibody precluded the stabilization of trans-SNARE complexes and inhibited acrosomal exocytosis. Addition of recombinant Munc18-1 blocked secretion by sequestering monomeric syntaxin, an effect that was rescued by α-soluble NSF attachment protein. By electron microscopy, we observed that both the anti-Munc18-1 antibody and recombinant Munc18-1 inhibited the docking of the acrosome to the plasma membrane. In conclusion, our results indicate that Munc18-1 plays a key role in the dynamics of trans-SNARE complex assembly and/or stabilization, a process that is necessary for the docking of the outer acrosomal membrane to the plasma membrane and subsequent fusion pore opening.
Collapse
Affiliation(s)
- Facundo Rodríguez
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
153
|
Negative coupling as a mechanism for signal propagation between C2 domains of synaptotagmin I. PLoS One 2012; 7:e46748. [PMID: 23071627 PMCID: PMC3465270 DOI: 10.1371/journal.pone.0046748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022] Open
Abstract
Synaptotagmin I (Syt I) is a vesicle-localized protein implicated in sensing the calcium influx that triggers fast synchronous release of neurotransmitter. How Syt I utilizes its two C2 domains to integrate signals and mediate neurotransmission has continued to be a controversial area of research, though prevalent hypotheses favor independent function. Using differential scanning calorimetry and fluorescence lifetime spectroscopy in a thermodynamic denaturation approach, we tested an alternative hypothesis in which both domains interact to cooperatively disseminate binding information. The free energy of stability was determined for C2A, C2B, and C2AB constructs by globally fitting both methods to a two-state model of unfolding. By comparing the additive free energies of C2A and C2B with C2AB, we identified a negative coupling interaction between the C2 domains of Syt I. This interaction not only provides a mechanistic means for propagating signals, but also a possible means for coordinating the molecular events of neurotransmission.
Collapse
|
154
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
155
|
Reid AT, Lord T, Stanger SJ, Roman SD, McCluskey A, Robinson PJ, Aitken RJ, Nixon B. Dynamin regulates specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa. J Biol Chem 2012; 287:37659-72. [PMID: 22977254 DOI: 10.1074/jbc.m112.392803] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Ahmad M, Polepalli JS, Goswami D, Yang X, Kaeser-Woo YJ, Südhof TC, Malenka RC. Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron 2012; 73:260-7. [PMID: 22284181 DOI: 10.1016/j.neuron.2011.11.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2011] [Indexed: 12/20/2022]
Abstract
Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitter release via binding to SNARE complexes, is essential for AMPAR exocytosis during LTP but not for the constitutive AMPAR exocytosis that maintains basal synaptic strength. The regulated postsynaptic AMPAR exocytosis during LTP requires binding of complexin to SNARE complexes. In hippocampal neurons, presynaptic complexin acts together with synaptotagmin-1 to mediate neurotransmitter release. However, postsynaptic synaptotagmin-1 is not required for complexin-dependent AMPAR exocytosis during LTP. These results suggest a complexin-dependent molecular mechanism for regulating AMPAR delivery to synapses, a mechanism that is surprisingly similar to presynaptic exocytosis but controlled by regulators other than synaptotagmin-1.
Collapse
Affiliation(s)
- Mohiuddin Ahmad
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Parisotto D, Malsam J, Scheutzow A, Krause JM, Söllner TH. SNAREpin assembly by Munc18-1 requires previous vesicle docking by synaptotagmin 1. J Biol Chem 2012; 287:31041-9. [PMID: 22810233 DOI: 10.1074/jbc.m112.386805] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion. Complexin II stalls SNAREpin zippering at a late stage and, hence, contributes to synchronize membrane fusion in a Ca(2+)- and synaptotagmin 1-dependent manner. Thus, at the neuronal synapse, the priming factor Munc18-1 may accelerate the conversion of docked synaptic vesicles into a readily releasable pool by activating SNAREs for efficient membrane fusion.
Collapse
Affiliation(s)
- Daniel Parisotto
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
158
|
Rizo J, Rosen MK, Gardner KH. Enlightening molecular mechanisms through study of protein interactions. J Mol Cell Biol 2012; 4:270-83. [PMID: 22735643 DOI: 10.1093/jmcb/mjs036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The investigation of molecular mechanisms is a fascinating area of current biological research that unites efforts from scientists with very diverse expertise. This review provides a perspective on the characterization of protein interactions as a central aspect of this research. We discuss case studies on the neurotransmitter release machinery that illustrate a variety of principles and emphasize the power of combining nuclear magnetic resonance (NMR) spectroscopy with other biophysical techniques, particularly X-ray crystallography. These studies have shown that: (i) the soluble SNAP receptor (SNARE) proteins form a tight complex that brings the synaptic vesicle and plasma membranes together, which is key for membrane fusion; (ii) the SNARE syntaxin-1 adopts an autoinhibitory closed conformation; (iii) Munc18-1 plays crucial functions through interactions with closed syntaxin-1 and with the SNARE complex; (iv) Munc13s mediate the opening of syntaxin-1; (v) complexins play dual roles through distinct interactions with the SNARE complex; (vi) synaptotagmin-1 acts a Ca(2+) sensor, interacting simultaneously with the membranes and the SNAREs; and (vii) a Munc13 homodimer to Munc13-RIM heterodimer switch modulates neurotransmitter release. Overall, this research underlines the complexities involved in elucidating molecular mechanisms and how these mechanisms can depend critically on an interplay between strong and weak protein interactions.
Collapse
Affiliation(s)
- Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
159
|
Malsam J, Parisotto D, Bharat TAM, Scheutzow A, Krause JM, Briggs JAG, Söllner TH. Complexin arrests a pool of docked vesicles for fast Ca2+-dependent release. EMBO J 2012; 31:3270-81. [PMID: 22705946 DOI: 10.1038/emboj.2012.164] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 05/15/2012] [Indexed: 12/16/2022] Open
Abstract
Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger--a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca(2+)-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca(2+) concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion.
Collapse
Affiliation(s)
- Jörg Malsam
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
160
|
C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis. J Neurosci 2012; 32:2877-85. [PMID: 22357870 DOI: 10.1523/jneurosci.3360-11.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complexins are small soluble proteins that bind to assembling SNARE complexes during synaptic vesicle exocytosis, which in turn mediates neurotransmitter release. Complexins are required for clamping of spontaneous "mini " release and for the priming and synaptotagmin-dependent Ca(2+) triggering of evoked release. Mammalian genomes encode four complexins that are composed of an N-terminal unstructured sequence that activates synaptic exocytosis, an accessory α-helix that clamps exocytosis, an essential central α-helix that binds to assembling SNARE complexes and is required for all of its functions, and a long, apparently unstructured C-terminal sequence whose function remains unclear. Here, we used cultured mouse neurons to show that the C-terminal sequence of complexin-1 is not required for its synaptotagmin-activating function but is essential for its priming and clamping functions. Wild-type complexin-3 did not clamp exocytosis but nevertheless fully primed and activated exocytosis. Strikingly, exchanging the complexin-1 C terminus for the complexin-3 C terminus abrogated clamping, whereas exchanging the complexin-3 C terminus for the complexin-1 C terminus enabled clamping. Analysis of point mutations in the complexin-1 C terminus identified two single amino-acid substitutions that impaired clamping without altering the activation function of complexin-1. Examination of release induced by stimulus trains revealed that clamping-deficient C-terminal complexin mutants produced a modest relative increase in delayed release. Overall, our results show that the relatively large C-terminal complexin-1 sequence acts in priming and clamping synaptic exocytosis and demonstrate that the clamping function is not conserved in complexin-3, presumably because of its distinct C-terminal sequences.
Collapse
|
161
|
Kielar C, Sawiak SJ, Navarro Negredo P, Tse DHY, Morton AJ. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse. PLoS One 2012; 7:e32636. [PMID: 22393426 PMCID: PMC3290572 DOI: 10.1371/journal.pone.0032636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/-)) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/-) mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/-) mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/-) and Cplx1(+/+) mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/-) mice when compared to Cplx1(+/+) animals. Our study is the first to describe pathological changes in Cplx1(-/-) mouse brain. We suggest that the ataxia in Cplx1(-/-) mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/-) mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Desmond H. Y. Tse
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
162
|
Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol 2012; 96:304-21. [PMID: 22307060 DOI: 10.1016/j.pneurobio.2012.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
Synaptic transmission is a finely regulated mechanism of neuronal communication. The release of neurotransmitter at the synapse is not only the reflection of membrane depolarization events, but rather, is the summation of interactions between ion channels, G protein coupled receptors, second messengers, and the exocytotic machinery itself which exposes the components within a synaptic vesicle to the synaptic cleft. The focus of this review is to explore the role of G protein signaling as it relates to neurotransmission, as well as to discuss the recently determined inhibitory mechanism of Gβγ dimers acting directly on the exocytotic machinery proteins to inhibit neurotransmitter release.
Collapse
Affiliation(s)
- Katherine M Betke
- Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd Ave. South @ Pierce, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
163
|
Abstract
Upon entering a presynaptic terminal, an action potential opens Ca(2+) channels, and transiently increases the local Ca(2+) concentration at the presynaptic active zone. Ca(2+) then triggers neurotransmitter release within a few hundred microseconds by activating synaptotagmins Ca(2+). Synaptotagmins bind Ca(2+) via two C2-domains, and transduce the Ca(2+) signal into a nanomechanical activation of the membrane fusion machinery; this activation is mediated by the Ca(2+)-dependent interaction of the synaptotagmin C2-domains with phospholipids and SNARE proteins. In triggering exocytosis, synaptotagmins do not act alone, but require an obligatory cofactor called complexin, a small protein that binds to SNARE complexes and simultaneously activates and clamps the SNARE complexes, thereby positioning the SNARE complexes for subsequent synaptotagmin action. The conserved function of synaptotagmins and complexins operates generally in most, if not all, Ca(2+)-regulated forms of exocytosis throughout the body in addition to synaptic vesicle exocytosis, including in the degranulation of mast cells, acrosome exocytosis in sperm cells, hormone secretion from endocrine cells, and neuropeptide release.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
164
|
Ramírez F, Lawyer G, Albrecht M. Novel search method for the discovery of functional relationships. ACTA ACUST UNITED AC 2011; 28:269-76. [PMID: 22180409 PMCID: PMC3259435 DOI: 10.1093/bioinformatics/btr631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Motivation: Numerous annotations are available that functionally characterize genes and proteins with regard to molecular process, cellular localization, tissue expression, protein domain composition, protein interaction, disease association and other properties. Searching this steadily growing amount of information can lead to the discovery of new biological relationships between genes and proteins. To facilitate the searches, methods are required that measure the annotation similarity of genes and proteins. However, most current similarity methods are focused only on annotations from the Gene Ontology (GO) and do not take other annotation sources into account. Results: We introduce the new method BioSim that incorporates multiple sources of annotations to quantify the functional similarity of genes and proteins. We compared the performance of our method with four other well-known methods adapted to use multiple annotation sources. We evaluated the methods by searching for known functional relationships using annotations based only on GO or on our large data warehouse BioMyn. This warehouse integrates many diverse annotation sources of human genes and proteins. We observed that the search performance improved substantially for almost all methods when multiple annotation sources were included. In particular, our method outperformed the other methods in terms of recall and average precision. Contact:mario.albrecht@mpi-inf.mpg.de Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fidel Ramírez
- Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
165
|
Abstract
Dendritic exocytosis underpins a broad range of integrative and homeostatic synaptic functions. Emerging data highlight the essential role of SNAREs in trafficking and fusion of secretory organelles with release of peptides and neurotransmitters from dendrites. This Perspective analyzes recent evidence inferring axo-dendritic polarization of vesicular release machinery and pinpoints progress made with existing challenges in this rapidly progressing field of dendritic research. Interpreting the relation of new molecular data to physiological results on secretion from dendrites would greatly advance our understanding of this facet of neuronal mechanisms.
Collapse
Affiliation(s)
- Saak V. Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - J. Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
166
|
Interactions among the SNARE proteins and complexin analyzed by a yeast four-hybrid assay. Anal Biochem 2011; 416:107-11. [DOI: 10.1016/j.ab.2011.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
|
167
|
Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, Gazzellone M, Carson AR, Howe JL, Wang Z, Wei J, Stewart AFR, Roberts R, McPherson R, Fiebig A, Franke A, Schreiber S, Zwaigenbaum L, Fernandez BA, Roberts W, Arnold PD, Szatmari P, Marshall CR, Schachar R, Scherer SW. Rare Copy Number Variation Discovery and Cross-Disorder Comparisons Identify Risk Genes for ADHD. Sci Transl Med 2011; 3:95ra75. [DOI: 10.1126/scitranslmed.3002464] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
168
|
Krishnakumar SS, Radoff DT, Kümmel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinisch KM, Pincet F, Rothman JE. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol 2011; 18:934-40. [PMID: 21785412 DOI: 10.1038/nsmb.2103] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/19/2011] [Indexed: 11/09/2022]
Abstract
The crystal structure of complexin bound to a prefusion SNAREpin mimetic shows that the accessory helix extends away from the SNAREpin in an 'open' conformation, binding another SNAREpin and inhibiting its assembly, to clamp fusion. In contrast, the accessory helix in the postfusion complex parallels the SNARE complex in a 'closed' conformation. Here we use targeted mutations, FRET spectroscopy and a functional assay that reconstitutes Ca(2+)-triggered exocytosis to show that the conformational switch from open to closed in complexin is needed for synaptotagmin-Ca(2+) to trigger fusion. Triggering fusion requires the zippering of three crucial aspartate residues in the switch region (residues 64-68) of v-SNARE. Conformational switching in complexin is integral to clamp release and is probably triggered when its accessory helix is released from its trans-binding to the neighboring SNAREpin, allowing the v-SNARE to complete zippering and open a fusion pore.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mol Biol 2011; 18:927-33. [PMID: 21785414 PMCID: PMC3410656 DOI: 10.1038/nsmb.2101] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/19/2011] [Indexed: 01/07/2023]
Abstract
Complexin prevents SNAREs from releasing neurotransmitters until an action potential arrives at the synapse. To understand the mechanism for this inhibition, we determined the structure of complexin bound to a mimetic of a prefusion SNAREpin lacking the portion of the v-SNARE that zippers last to trigger fusion. The 'central helix' of complexin is anchored to one SNARE complex, while its 'accessory helix' extends away at ~45° and bridges to a second complex, occupying the vacant v-SNARE binding site to inhibit fusion. We expected the accessory helix to compete with the v-SNARE for t-SNARE binding but found instead that the interaction occurs intermolecularly. Thus, complexin organizes the SNAREs into a zigzag topology that, when interposed between the vesicle and plasma membranes, is incompatible with fusion.
Collapse
|
170
|
McMahon H. Harvey McMahon: ahead of the curve on membrane dynamics. J Cell Biol 2011; 193:598-9. [PMID: 21576387 PMCID: PMC3166867 DOI: 10.1083/jcb.1934pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
McMahon studies how membranes are bent into shape during vesicle formation and fusion.
Collapse
|
171
|
Kennedy MJ, Ehlers MD. Mechanisms and function of dendritic exocytosis. Neuron 2011; 69:856-75. [PMID: 21382547 DOI: 10.1016/j.neuron.2011.02.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 12/30/2022]
Abstract
Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
172
|
Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr Biol 2011; 21:97-105. [PMID: 21215634 PMCID: PMC3026084 DOI: 10.1016/j.cub.2010.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Synaptic transmission can occur in a binary or graded fashion, depending on whether transmitter release is triggered by action potentials or by gradual changes in membrane potential. Molecular differences of these two types of fusion events and their differential regulation in a physiological context have yet to be addressed. Complexin is a conserved SNARE-binding protein that has been proposed to regulate both spontaneous and stimulus-evoked synaptic vesicle (SV) fusion. RESULTS Here we examine complexin function at a graded synapse in C. elegans. Null complexin (cpx-1) mutants are viable, although nervous system function is significantly impaired. Loss of CPX-1 results in a 3-fold increase in the rate of tonic synaptic transmission at the neuromuscular junction, whereas stimulus-evoked SV fusion is decreased 10-fold. A truncated CPX-1 missing its C-terminal domain can rescue stimulus-evoked synaptic vesicle exocytosis but fails to suppress tonic activity, demonstrating that these two modes of exocytosis can be distinguished at the molecular level. A CPX-1 variant with impaired SNARE binding also rescues evoked, but not tonic, neurotransmitter release. Finally, tonic, but not evoked, release can be rescued in a syntaxin point mutant by removing CPX-1. Rescue of either form of exocytosis partially restores locomotory behavior, indicating that both types of synaptic transmission are relevant. CONCLUSION These observations suggest a dual role for CPX-1: suppressing SV exocytosis, driven by low levels of endogenous neural activity, while promoting synchronous fusion of SVs driven by a depolarizing stimulus. Thus, patterns of synaptic activity regulate complexin's inhibitory and permissive roles at a graded synapse.
Collapse
Affiliation(s)
| | - Zhitao Hu
- Department of Molecular Biology Simches 7 Massachusetts General Hospital 185 Cambridge St. Boston, MA 02114
| | - Katherine M. Fenz
- Department of Biochemistry Weill Cornell Medical School 1300 York Ave. New York, NY 10065
- Department of Molecular Biology Simches 7 Massachusetts General Hospital 185 Cambridge St. Boston, MA 02114
| | - Joel Fernandez
- Department of Biochemistry Weill Cornell Medical School 1300 York Ave. New York, NY 10065
- Department of Molecular Biology Simches 7 Massachusetts General Hospital 185 Cambridge St. Boston, MA 02114
| | - Jeremy S. Dittman
- Corresponding author contact information: Jeremy S. Dittman Department of Biochemistry Weill Cornell Medical School 1300 York Ave. New York, NY 10065 phone: (212) 746-5224 fax: (212) 746-8875
| |
Collapse
|
173
|
Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Südhof TC. Complexin clamps asynchronous release by blocking a secondary Ca(2+) sensor via its accessory α helix. Neuron 2011; 68:907-20. [PMID: 21145004 PMCID: PMC3050570 DOI: 10.1016/j.neuron.2010.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively. Mutations designed to test whether the accessory α helix of complexin clamps exocytosis by inserting into SNARE-complexes support this hypothesis, suggesting that the accessory α helix blocks completion of trans-SNARE-complex assembly until Ca(2+) binding to synaptotagmin relieves this block. Moreover, a juxtamembranous mutation in the SNARE-protein synaptobrevin-2, which presumably impairs force transfer from nascent trans-SNARE complexes onto fusing membranes, also unclamps spontaneous fusion by disinhibiting a secondary Ca(2+) sensor. Thus, complexin performs mechanistically distinct activation and clamping functions that operate in conjunction with synaptotagmin-1 by controlling trans-SNARE-complex assembly.
Collapse
Affiliation(s)
- Xiaofei Yang
- Department of Molecular and Cellular Physiology, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA
| | | | | | | | | |
Collapse
|
174
|
Hobson RJ, Liu Q, Watanabe S, Jorgensen EM. Complexin maintains vesicles in the primed state in C. elegans. Curr Biol 2011; 21:106-13. [PMID: 21215631 DOI: 10.1016/j.cub.2010.12.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Complexin binds the SNARE complex at synapses and regulates exocytosis, but genetic studies indicate contradictory roles: in flies it predominantly inhibits synaptic vesicle fusion, whereas in mice it promotes evoked responses. RESULTS Here we characterize the complexin mutant in the nematode Caenorhabditis elegans and reveal bipolar functions in neurotransmission: complexin inhibits spontaneous fusion of synaptic vesicles but is also essential for evoked responses. Complexin mutants exhibit a doubling of vesicle fusion in the absence of extracellular calcium. Even more profoundly, mutants exhibit an almost complete loss of evoked responses, and current amplitudes are reduced by 94%. One possible interpretation is that complexin is required for the stabilization of docked vesicles and that, in its absence, vesicles may fuse or undock from the plasma membrane. Consistent with this hypothesis, docked synaptic vesicles are reduced by 70% in complexin-1 mutants. CONCLUSION These data suggest that the main function of complexin is to maintain the docked state both by inhibiting fusion and by promoting priming.
Collapse
Affiliation(s)
- Robert J Hobson
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
175
|
SNARE protein recycling by αSNAP and βSNAP supports synaptic vesicle priming. Neuron 2010; 68:473-87. [PMID: 21040848 DOI: 10.1016/j.neuron.2010.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 11/21/2022]
Abstract
Neurotransmitter release proceeds by Ca(2+)-triggered, SNARE-complex-dependent synaptic vesicle fusion. After fusion, the ATPase NSF and its cofactors α- and βSNAP disassemble SNARE complexes, thereby recycling individual SNAREs for subsequent fusion reactions. We examined the effects of genetic perturbation of α- and βSNAP expression on synaptic vesicle exocytosis, employing a new Ca(2+) uncaging protocol to study synaptic vesicle trafficking, priming, and fusion in small glutamatergic synapses of hippocampal neurons. By characterizing this protocol, we show that synchronous and asynchronous transmitter release involve different Ca(2+) sensors and are not caused by distinct releasable vesicle pools, and that tonic transmitter release is due to ongoing priming and fusion of new synaptic vesicles during high synaptic activity. Our analysis of α- and βSNAP deletion mutant neurons shows that the two NSF cofactors support synaptic vesicle priming by determining the availability of free SNARE components, particularly during phases of high synaptic activity.
Collapse
|
176
|
Hazell AS, Wang D. Identification of complexin II in astrocytes: a possible regulator of glutamate release in these cells. Biochem Biophys Res Commun 2010; 404:228-32. [PMID: 21110949 DOI: 10.1016/j.bbrc.2010.11.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 11/22/2010] [Indexed: 12/25/2022]
Abstract
Complexins are a family of SNARE complex-binding proteins which regulate neurotransmitter release by playing a crucial role in triggering fast exocytosis at the synapse. Current evidence indicates astrocytes can release glutamate via a vesicular mechanism similar to that at nerve terminals and thereby modulate synaptic activity. In addition, components of the biochemical machinery associated with synaptic release have been identified in these cells. However, whether complexins are also present in astrocytes and may therefore participate in the vesicular release of glutamate is a key issue that is yet to be determined. In the present study we therefore examined if astrocytes express complexin I (Cpx I) and/or complexin II (Cpx II). Our results indicate these cells contain Cpx II but not Cpx I in primary culture. In addition, serum deprivation for 24 h led to a 2.6-fold increase in Cpx II, suggesting this protein is responsive to insults. These findings point to Cpx II being a likely key modulator of synaptic activity at the level of these glial cells. Given the considered involvement of complexins in neurologic and psychiatric illness, astrocytic Cpx II represents a potentially important therapeutic target for the future treatment of such maladies.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada H2X 3J4.
| | | |
Collapse
|
177
|
Falkowski MA, Thomas DDH, Groblewski GE. Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem 2010; 285:35558-66. [PMID: 20829354 DOI: 10.1074/jbc.m110.146597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complexins are soluble proteins that regulate the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion. Neuronal specific complexin 1 has inhibitory and stimulatory effects on exocytosis by clamping trans-SNARE complexes in a prefusion state and promoting conformational changes to facilitate membrane fusion following cell stimulation. Complexins are unable to bind to monomeric SNARE proteins but bind with high affinity to ternary SNARE complexes and with lower affinity to target SNARE complexes. Far less is understood about complexin function outside the nervous system. Pancreatic acini express the complexin 2 isoform by RT-PCR and immunoblotting. Immunofluorescence microscopy revealed complexin 2 localized along the apical plasma membrane consistent with a role in secretion. Accordingly, complexin 2 was found to interact with vesicle-associated membrane protein (VAMP) 2, syntaxins 3 and 4, but not with VAMP 8 or syntaxin 2. Introduction of recombinant complexin 2 into permeabilized acini inhibited Ca(2+)-stimulated secretion in a concentration-dependent manner with a maximal inhibition of nearly 50%. Mutations of the central α-helical domain reduced complexin 2 SNARE binding and concurrently abolished its inhibitory activity. Surprisingly, mutation of arginine 59 to histidine within the central α-helical domain did not alter SNARE binding and moreover, augmented Ca(2+)-stimulated secretion by 130% of control. Consistent with biochemical studies, complexin 2 colocalized with VAMP 2 along the apical plasma membrane following cholecystokinin-8 stimulation. These data demonstrate a functional role for complexin 2 outside the nervous system and indicate that it participates in the Ca(2+)-sensitive regulatory pathway for zymogen granule exocytosis.
Collapse
Affiliation(s)
- Michelle A Falkowski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
178
|
Zanazzi G, Matthews G. Enrichment and differential targeting of complexins 3 and 4 in ribbon-containing sensory neurons during zebrafish development. Neural Dev 2010; 5:24. [PMID: 20809954 PMCID: PMC2941751 DOI: 10.1186/1749-8104-5-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/01/2010] [Indexed: 12/01/2022] Open
Abstract
Background In sensory systems with broad bandwidths, polarized receptor cells utilize highly specialized organelles in their apical and basolateral compartments to transduce and ultimately transmit signals to the rest of the nervous system. While progress has been made in elucidating the assembly of the transduction apparatus, the development of synaptic ribbon-containing terminals remains poorly understood. To begin to delineate the targeting of the exocytotic machinery specifically in ribbon-containing neurons, we have examined the expression of complexins 3 and 4 in the zebrafish visual and acousticolateral systems during the first week of development. Results We have identified five members of the complexin 3/4 subfamily in zebrafish that show 50 to 75% amino acid identity with mammalian complexins 3 and 4. Utilizing a polyclonal antibody that recognizes all five orthologs, we demonstrate that these proteins are enriched in ribbon-containing sensory neurons. Complexin 3/4 is rapidly targeted to presynaptic terminals in the pineal organ and retina concomitantly with RIBEYE b, a component of ribbons. In hair cells of the inner ear and lateral line, however, complexin 3/4 immunoreactivity clusters on the apical surfaces of hair cells, among their stereocilia, rather than along the basolateral plasma membrane with RIBEYE b. A complexin 4a-specific antibody selectively labels the presynaptic terminals of visual system ribbon-containing neurons. Conclusions These results provide evidence for the concurrent transport and/or assembly of multiple components of the active zone in developing ribbon terminals. Members of the complexin 3/4 subfamily are enriched in these terminals in the visual system and in hair bundles of the acousticolateral system, suggesting that these proteins are differentially targeted and may have multiple roles in ribbon-containing sensory neurons.
Collapse
Affiliation(s)
- George Zanazzi
- Graduate Program in Neuroscience, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
179
|
Smyth AM, Rickman C, Duncan RR. Vesicle fusion probability is determined by the specific interactions of munc18. J Biol Chem 2010; 285:38141-8. [PMID: 20801887 PMCID: PMC2992247 DOI: 10.1074/jbc.m110.164038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.
Collapse
Affiliation(s)
- Annya M Smyth
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
180
|
Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol Cell Neurosci 2010; 45:389-97. [PMID: 20678575 DOI: 10.1016/j.mcn.2010.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023] Open
Abstract
The SNARE-binding protein complexin (Cpx) has been demonstrated to regulate synaptic vesicle fusion. Previous studies are consistent with Cpx functioning either as a synaptic vesicle fusion clamp to prevent premature exocytosis, or as a facilitator to directly stimulate release. Here we examined conserved roles of invertebrate and mammalian Cpx isoforms in the regulation of neurotransmitter release using the Drosophila neuromuscular junction as a model synapse. We find that SNARE binding by Cpx is required for its role as a fusion clamp. All four mammalian Cpx proteins (mCpx), which have been demonstrated to facilitate release, also function as fusion clamps when expressed in Drosophila cpx null mutants, though their clamping abilities vary between isoforms. Moreover, expression of mCpx I, II or III isoforms dramatically enhance evoked release compared to mCpx IV or Drosophila Cpx. Differences in the clamping and facilitating properties of complexin isoforms can be partially attributed to differences in the C-terminal membrane tethering domain. Our findings indicate that the function of complexins as fusion clamps and facilitators of fusion are conserved across evolution, and that these roles are genetically separable within an isoform and across different isoforms.
Collapse
|
181
|
Glynn D, Gibson HE, Harte MK, Reim K, Jones S, Reynolds GP, Morton AJ. Clorgyline-mediated reversal of neurological deficits in a Complexin 2 knockout mouse. Hum Mol Genet 2010; 19:3402-12. [PMID: 20584925 DOI: 10.1093/hmg/ddq252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Complexin 2 is a protein modulator of neurotransmitter release that is downregulated in humans suffering from depression, animal models of depression and neurological disorders such as Huntington's disease in which depression is a major symptom. Although complexin 2 knockout (Cplx2-/-) mice are overtly normal, they show significant abnormalities in cognitive function and synaptic plasticity. Here we show that Cplx2-/- mice also have disturbances in emotional behaviours that include abnormal social interactions and depressive-like behaviour. Since neurotransmitter deficiencies are thought to underlie depression, we examined neurotransmitter levels in Cplx2-/- mice and found a significant decrease in levels of noradrenaline and the serotonin metabolite 5-hydroxyindoleacetic acid in the hippocampus. Chronic treatment with clorgyline, an irreversible inhibitor of monoamine oxidase A, restored hippocampal noradrenaline to normal levels (from 60 to 97% of vehicle-treated Cplx2+/+ mice, P<0.001), and reversed the behavioural deficits seen in Cplx2-/- mice. For example, clorgyline-treated Cplx2-/- mice spent significantly more time interacting with a novel visitor mouse compared with vehicle-treated Cplx2-/- mice in the social recognition test (34 compared with 13%, P<0.01). We were also able to reverse the selective deficit seen in mossy fibre-long-term potentiation (MF-LTP) in Cplx2-/- mice using the noradrenergic agonist isoprenaline. Pre-treatment with isoprenaline in vitro increased MF-LTP by 125% (P<0.001), thus restoring it to control levels. Our data strongly support the idea that complexin 2 is a key player in normal neurological function, and that downregulation of complexin 2 could lead to changes in neurotransmitter release sufficient to cause significant behavioural abnormalities such as depression.
Collapse
Affiliation(s)
- Dervila Glynn
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | |
Collapse
|
182
|
Garcia-Reitböck P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, Ghetti B, Della Corte L, Spano P, Tofaris GK, Goedert M, Spillantini MG. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. ACTA ACUST UNITED AC 2010; 133:2032-44. [PMID: 20534649 DOI: 10.1093/brain/awq132] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pre-synaptic protein alpha-synuclein is the main component of Lewy bodies and Lewy neurites, the defining neuropathological characteristics of Parkinson's disease and dementia with Lewy bodies. Mutations in the alpha-synuclein gene cause familial forms of Parkinson's disease and dementia with Lewy bodies. We previously described a transgenic mouse line expressing truncated human alpha-synuclein(1-120) that develops alpha-synuclein aggregates, striatal dopamine deficiency and reduced locomotion, similar to Parkinson's disease. We now show that in the striatum of these mice, as in Parkinson's disease, synaptic accumulation of alpha-synuclein is accompanied by an age-dependent redistribution of the synaptic SNARE proteins SNAP-25, syntaxin-1 and synaptobrevin-2, as well as by an age-dependent reduction in dopamine release. Furthermore, the release of FM1-43 dye from PC12 cells expressing either human full-length alpha-synuclein(1-140) or truncated alpha-synuclein(1-120) was reduced. These findings reveal a novel gain of toxic function of alpha-synuclein at the synapse, which may be an early event in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Pablo Garcia-Reitböck
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod.
Collapse
Affiliation(s)
- Choong-Hyun Sun
- Department of Computer Science, KAIST, Daejeon 305-701, South Korea
| | | | | | | |
Collapse
|
184
|
Radyushkin K, El-Kordi A, Boretius S, Castaneda S, Ronnenberg A, Reim K, Bickeböller H, Frahm J, Brose N, Ehrenreich H. Complexin2 null mutation requires a 'second hit' for induction of phenotypic changes relevant to schizophrenia. GENES BRAIN AND BEHAVIOR 2010; 9:592-602. [PMID: 20412316 DOI: 10.1111/j.1601-183x.2010.00590.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a devastating disease that affects approximately 1% of the population across cultures. Its neurobiological underpinnings are still unknown. Accordingly, animal models of schizophrenia often lack construct validity. As concordance rate in monozygotic twins amounts to only 50%, environmental risk factors (e.g. neurotrauma, drug abuse, psychotrauma) likely act as necessary 'second hit' to trigger/drive the disease process in a genetically predisposed individual. Valid animal models would have to consider this genetic-environmental interaction. Based on this concept, we designed an experimental approach for modeling a schizophrenia-like phenotype in mice. As dysfunction in synaptic transmission plays a key role in schizophrenia, and complexin2 (CPLX2) gene expression is reduced in hippocampus of schizophrenic patients, we developed a mouse model with Cplx2 null mutation as genetic risk factor and a mild parietal neurotrauma, applied during puberty, as environmental 'second hit'. Several months after lesion, Cplx2 null mutants showed reduced pre-pulse inhibition, deficit of spatial learning and loss of inhibition after MK-801 challenge. These abnormalities were largely absent in lesioned wild-type mice and non-lesioned Cplx2 null mutants. Forced alternation in T-maze, object recognition, social interaction and elevated plus maze tests were unaltered in all groups. The previously reported mild motor phenotype of Cplx2 null mutants was accentuated upon lesion. MRI volumetrical analysis showed a decrease of hippocampal volume exclusively in lesioned Cplx2 null mutants. These findings provide suggestive evidence for the 'second hit' hypothesis of schizophrenia and may offer new tools for the development of advanced treatment strategies.
Collapse
Affiliation(s)
- K Radyushkin
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat Struct Mol Biol 2010; 17:568-75. [PMID: 20400951 DOI: 10.1038/nsmb.1791] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/23/2010] [Indexed: 01/02/2023]
Abstract
Complexins facilitate and inhibit neurotransmitter release through distinct domains, and their function was proposed to be coupled to the Ca(2+) sensor synaptotagmin-1 (Syt1). However, the mechanisms underlying complexin function remain unclear. We now uncover an interaction between the complexin N terminus and the SNARE complex C terminus, and we show that disrupting this interaction abolishes the facilitatory function of complexins in mouse neurons. Analyses of hypertonically induced exocytosis show that complexins enhance synaptic-vesicle fusogenicity. Genetic experiments crossing complexin- and Syt1-null mice indicate a functional interaction between these proteins but also show that complexins can promote Ca(2+)-triggered release in the absence of Syt1. We propose that the complexin N terminus stabilizes the SNARE complex C terminus and/or helps release the inhibitory function of complexins, thereby activating the fusion machinery in a manner that may cooperate with Syt1 but does not require Syt1.
Collapse
|
186
|
An SJ, Grabner CP, Zenisek D. Real-time visualization of complexin during single exocytic events. Nat Neurosci 2010; 13:577-83. [PMID: 20383135 PMCID: PMC2860691 DOI: 10.1038/nn.2532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/15/2010] [Indexed: 11/09/2022]
Abstract
Understanding the fundamental role of soluble NSF attachment protein receptor (SNARE) complexes in membrane fusion requires knowledge of the spatiotemporal dynamics of their assembly. We visualized complexin (cplx), a cytosolic protein that binds assembled SNARE complexes, during single exocytic events in live cells. We found that cplx appeared briefly during full fusion. However, a truncated version of cplx containing only the SNARE-complex binding region persisted at fusion sites for seconds and caused fusion to be transient. Resealing pores with the mutant cplx only partially released transmitter and lipid probes, indicating that the pores are narrow and not purely lipidic in structure. Depletion of cplx similarly caused secretory cargo to be retained. These data suggest that cplx is recruited at a late step in exocytosis and modulates fusion pores composed of SNARE complexes.
Collapse
Affiliation(s)
- Seong J An
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
187
|
Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 2010; 298:R517-31. [PMID: 20053958 DOI: 10.1152/ajpregu.00597.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes has been coined "a two-hit disease," as it involves specific defects of glucose-stimulated insulin secretion from the pancreatic beta cells in addition to defects in peripheral tissue insulin action required for glucose uptake. Both of these processes, insulin secretion and glucose uptake, are mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein core complexes composed of syntaxin, SNAP-23/25, and VAMP proteins. The SNARE core complex is regulated by the Sec1/Munc18 (SM) family of proteins, which selectively bind to their cognate syntaxin isoforms with high affinity. The process of insulin secretion uses multiple Munc18-syntaxin isoform pairs, whereas insulin action in the peripheral tissues appears to use only the Munc18c-syntaxin 4 pair. Importantly, recent reports have linked obesity and Type 2 diabetes in humans with changes in protein levels and single nucleotide polymorphisms (SNPs) of Munc18 and syntaxin isoforms relevant to these exocytotic processes, although the molecular mechanisms underlying the observed phenotypes remain incomplete (5, 104, 144). Given the conservation of these proteins in two seemingly disparate processes and the need to design and implement novel and more effective clinical interventions, it will be vitally important to delineate the mechanisms governing these conserved SNARE-mediated exocytosis events. Thus, we provide here an up-to-date historical review of advancements in defining the roles and molecular mechanisms of Munc18-syntaxin complexes in the pathophysiology of Type 2 diabetes.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
188
|
Lu B, Song S, Shin YK. Accessory alpha-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex. J Mol Biol 2009; 396:602-9. [PMID: 20026076 DOI: 10.1016/j.jmb.2009.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/05/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The calcium-triggered neurotransmitter release requires three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins: synaptobrevin 2 (or vesicle-associated membrane protein 2) on the synaptic vesicle and syntaxin 1 and SNAP-25 (synaptosome-associated protein of 25 kDa) at the presynaptic plasma membrane. This minimal fusion machinery is believed to drive fusion of the vesicle to the presynaptic membrane. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a major regulator of synaptic vesicle exocytosis. Stimulatory and inhibitory effects of complexin have both been reported, suggesting the duality of its function. To shed light on the molecular basis of the complexin's dual function, we have performed an EPR investigation of the complexin-SNARE quaternary complex. We found that the accessory alpha-helix (amino acids 27-48) by itself has the capacity to replace the C-terminus of the SNARE motif of vesicle-associated membrane protein 2 in the four-helix bundle and makes the SNARE complex weaker when the N-terminal region of complexin I (amino acids 1-26) is removed. However, the accessory alpha-helix remains detached from the SNARE core when the N-terminal region of complexin I is present. Thus, our data show the possibility that the balance between the activities of the accessory alpha-helix and the N-terminal domain might determine the final outcome of the complexin function, either stimulatory or inhibitory.
Collapse
Affiliation(s)
- Bin Lu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
189
|
Abstract
Ca(2+)-dependent exocytosis of synaptic vesicles is mediated by the SNARE proteins synaptobrevin/VAMP, SNAP-25, and syntaxin. SNARE function is controlled by conserved regulatory proteins, including the complexins. In a study by Xue et al. in this issue of Neuron, contradictory data from Drosophila and mouse complexin mutants have been resolved, revealing a complex pattern of facilitatory and inhibitory domains.
Collapse
Affiliation(s)
- Alexander Stein
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
190
|
Xue M, Lin YQ, Pan H, Reim K, Deng H, Bellen HJ, Rosenmund C. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron 2009; 64:367-80. [PMID: 19914185 DOI: 10.1016/j.neuron.2009.09.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2009] [Indexed: 11/29/2022]
Abstract
SNARE-mediated synaptic exocytosis is orchestrated by facilitatory and inhibitory mechanisms. Genetic ablations of Complexins, a family of SNARE-complex-binding proteins, in mice and Drosophila cause apparently opposite effects on neurotransmitter release, leading to contradictory hypotheses of Complexin function. Reconstitution experiments with different fusion assays and Complexins also yield conflicting results. We therefore performed cross-species rescue experiments to compare the functions of murine and Drosophila Complexins in both mouse and fly synapses. We found that murine and Drosophila Complexins employ conserved mechanisms to regulate exocytosis despite their strikingly different overall effects on neurotransmitter release. Both Complexins contain distinct domains that facilitate or inhibit synaptic vesicle fusion, and the strength of each facilitatory or inhibitory function differs significantly between murine and Drosophila Complexins. Our results show that a relative shift in the balance of facilitatory and inhibitory functions results in differential regulation of neurotransmitter release by murine and Drosophila Complexins in vivo, reconciling previous incompatible findings.
Collapse
Affiliation(s)
- Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
191
|
Ackermann F, Zitranski N, Borth H, Buech T, Gudermann T, Boekhoff I. CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci 2009; 122:4547-57. [PMID: 19934217 DOI: 10.1242/jcs.058263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The success of acrosomal exocytosis, a complex process with a variety of inter-related steps, relies on the coordinated interaction of participating signaling molecules. Since the acrosome reaction resembles Ca(2+)-regulated exocytosis in neurons, we investigated whether cognate neuronal binding partners of the multi-PDZ domain protein MUPP1, which recruits molecules that control the initial tethering and/or docking between the acrosomal vesicle and the plasma membrane, are also expressed in spermatozoa, and whether they contribute to the regulation of acrosomal secretion. We observed that CaMKIIalpha colocalizes with MUPP1 in the acrosomal region of epididymal spermatozoa where the kinase selectively binds to a region encompassing PDZ domains 10-11 of MUPP1. Furthermore, we found that pre-treating mouse spermatozoa with a CaMKII inhibitor that directly blocks the catalytic region of the kinase, as well as a competitive displacement of CaMKIIalpha from PDZ domains 10-11, led to a significant increase in spontaneous acrosomal exocytosis. Since Ca(2+)-calmodulin releases CaMKIIalpha from the PDZ scaffolding protein, MUPP1 represents a central signaling platform to dynamically regulate the assembly and disassembly of binding partners pertinent to acrosomal secretion, thereby precisely adjusting an increase in Ca(2+) to synchronized fusion pore formation.
Collapse
Affiliation(s)
- Frauke Ackermann
- Karolinska Institute, Department of Neuroscience, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
192
|
Tadokoro S, Nakanishi M, Hirashima N. Complexin II regulates degranulation in RBL-2H3 cells by interacting with SNARE complex containing syntaxin-3. Cell Immunol 2009; 261:51-6. [PMID: 19932892 DOI: 10.1016/j.cellimm.2009.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/17/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Abstract
Recent studies have revealed that SNARE proteins are involved in the exocytotic release (degranulation) in mast cells. However, the roles of SNARE regulatory proteins are poorly understood. Complexin is one such regulatory protein and it plays a crucial role in exocytotic release. In this study, we characterized the interaction between SNARE complex and complexin II in mast cells by GST pull-down assay and in vitro binding assay. We found that the SNARE complex that interacted with complexin II consisted of syntaxin-3, SNAP-23, and VAMP-2 or -8, whereas syntaxin-4 was not detected. Recombinant syntaxin-3 binds to complexin II by itself, but its affinity to complexin II was enhanced upon addition of VAMP-8 and SNAP-23. Furthermore, the region of complexin II responsible for binding to the SNARE complex, was near the central alpha-helix region. These results suggest that complexin II regulates degranulation by interacting with the SNARE complex containing syntaxin-3.
Collapse
Affiliation(s)
- Satoshi Tadokoro
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
193
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
194
|
Zink M, Araç G, Frank ST, Gass P, Gebicke-Härter PJ, Spanagel R. Perinatal exposure to alcohol reduces the expression of complexins I and II. Neurotoxicol Teratol 2009; 31:400-5. [PMID: 19671442 DOI: 10.1016/j.ntt.2009.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/29/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
Perinatal exposure to alcohol (PEA) induces general developmental and specific neuropsychiatric disturbances. Ethanol affects amino acid neurotransmission and synaptic plasticity. We were interested in the transcriptional effects of ethanol on the expression of complexins I and II, two synaptic vesicle proteins (SVP) with relevance for cognition and memory. We exposed pregnant Wistar inbred rats (N=4) and their pups until postnatal day 8 (P8) in vapor chambers and performed in situ-hybridizations regarding complexins I and II at P8 as well as neurobehavioral testing in adult animals of the same litters. At P8, serum ethanol levels of 281+/-58 mg/dl were achieved. PEA animals presented a pronounced retardation of postnatal growth. Significantly lower expression levels of complexin I was observed in CA1, together with trends of reductions in other hippocampal and cortical regions. Complexin II was found reduced in anterior cingulate, prefrontal and fronto-parietal cortex. Adult rats of exposed litters showed worse performance in hippocampus-dependent learning (Morris water maze). The observed suppression of complexins I and II reveals disturbed synaptic plasticity and corresponds with long lasting, ethanol-induced deficits of learning and memory. Further investigations should focus on other synaptic vesicle protein genes in order to unravel the molecular basis of ethanol-induced neurocognitive disabilities.
Collapse
Affiliation(s)
- Mathias Zink
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
195
|
Complexin-I is required for high-fidelity transmission at the endbulb of Held auditory synapse. J Neurosci 2009; 29:7991-8004. [PMID: 19553439 DOI: 10.1523/jneurosci.0632-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complexins (CPXs I-IV) presumably act as regulators of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, but their function in the intact mammalian nervous system is not well established. Here, we explored the role of CPXs in the mouse auditory system. Hearing was impaired in CPX I knock-out mice but normal in knock-out mice for CPXs II, III, IV, and III/IV as measured by auditory brainstem responses. Complexins were not detectable in cochlear hair cells but CPX I was expressed in spiral ganglion neurons (SGNs) that give rise to the auditory nerve. Ca(2+)-dependent exocytosis of inner hair cells and sound encoding by SGNs were unaffected in CPX I knock-out mice. In the absence of CPX I, the resting release probability in the endbulb of Held synapses of the auditory nerve fibers with bushy cells in the cochlear nucleus was reduced. As predicted by computational modeling, bushy cells had decreased spike rates at sound onset as well as longer and more variable first spike latencies explaining the abnormal auditory brainstem responses. In addition, we found synaptic transmission to outlast the stimulus at many endbulb of Held synapses in vitro and in vivo, suggesting impaired synchronization of release to stimulus offset. Although sound encoding in the cochlea proceeds in the absence of complexins, CPX I is required for faithful processing of sound onset and offset in the cochlear nucleus.
Collapse
|
196
|
Brunger AT, Weninger K, Bowen M, Chu S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 2009; 78:903-28. [PMID: 19489736 DOI: 10.1146/annurev.biochem.77.070306.103621] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305, USA.
| | | | | | | |
Collapse
|
197
|
Seiler F, Malsam J, Krause JM, Söllner TH. A role of complexin-lipid interactions in membrane fusion. FEBS Lett 2009; 583:2343-8. [PMID: 19540234 DOI: 10.1016/j.febslet.2009.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Complexins (Cpxs) and synaptotagmins regulate calcium-dependent exocytosis. A central helix in Cpx confers specific binding to the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) fusion machinery. An accessory helix in the amino-terminal region inhibits membrane fusion by blocking SNAREpin zippering. We now show that an amphipathic helix in the carboxy-terminal region of CpxI binds lipid bilayers and affects SNARE-mediated lipid mixing in a liposome fusion assay. The substitution of a hydrophobic amino acid within the helix by a charged residue abolishes the lipid interaction and the stimulatory effect of CpxI in liposome fusion. In contrast, the introduction of the bulky hydrophobic amino acid tryptophan stimulates lipid binding and liposome fusion. This data shows that local Cpx-lipid interactions can play a role in membrane fusion.
Collapse
Affiliation(s)
- Florian Seiler
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
198
|
Deák F, Xu Y, Chang WP, Dulubova I, Khvotchev M, Liu X, Südhof TC, Rizo J. Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. ACTA ACUST UNITED AC 2009; 184:751-64. [PMID: 19255244 PMCID: PMC2686405 DOI: 10.1083/jcb.200812026] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca2+-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1–SNARE–complexin macromolecular assembly that is poised for Ca2+ triggering of fusion.
Collapse
Affiliation(s)
- Ferenc Deák
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Chicka MC, Chapman ER. Concurrent binding of complexin and synaptotagmin to liposome-embedded SNARE complexes. Biochemistry 2009; 48:657-9. [PMID: 19128031 PMCID: PMC2651691 DOI: 10.1021/bi801962d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Synaptotagmin and complexin regulate SNARE-mediated synaptic vesicle exocytosis. It has been proposed that complexin clamps membrane fusion and that Ca2+-synaptotagmin displaces complexin from SNARE complexes to relieve this clamping activity. Using a reconstituted system, we demonstrate that complexin and synaptotagmin simultaneously bind to neuronal SNARE complexes and that both apo-synaptotagmin and complexin inhibit SNARE-mediated membrane fusion. Moreover, the clamping ability of apo-synaptotagmin occluded the clamping activity of complexin until the arrival of a Ca2+ trigger, at which point synaptotagmin accelerated fusion while high concentrations of complexin inhibited fusion. Thus, the inhibitory patterns of synaptotagmin and complexin are different, suggesting that SNAREs assemble into distinct states along the fusion pathway. These data also suggest that during synaptotagmin-regulated vesicle−vesicle fusion, complexin does not function as a fusion clamp that is relieved by Ca2+-synaptotagmin.
Collapse
Affiliation(s)
- Michael C Chicka
- Department of Physiology and Programs in Cellular and Molecular Biology, University of Wisconsin, 1300 University Avenue, SMI 129, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
200
|
The carboxy-terminal domain of complexin I stimulates liposome fusion. Proc Natl Acad Sci U S A 2009; 106:2001-6. [PMID: 19179400 DOI: 10.1073/pnas.0812813106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated exocytosis requires tight coupling of the membrane fusion machinery to a triggering signal and a fast response time. Complexins are part of this regulation and, together with synaptotagmins, control calcium-dependent exocytosis. Stimulatory and inhibitory functions have been reported for complexins. To test if complexins directly affect membrane fusion, we analyzed the 4 known mammalian complexin isoforms in a reconstituted fusion assay. In contrast to complexin III (CpxIII) and CpxIV, CpxI and CpxII stimulated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-pin assembly and membrane fusion. This stimulatory effect required a preincubation at low temperature and was specific for neuronal t-SNAREs. Stimulation of membrane fusion was lost when the carboxy-terminal domain of CpxI was deleted or serine 115, a putative phosphorylation site, was mutated. Transfer of the carboxy-terminal domain of CpxI to CpxIII resulted in a stimulatory CpxIII-I chimera. Thus, the carboxy-terminal domains of CpxI and CpxII promote the fusion of high-curvature liposomes.
Collapse
|