151
|
Jin Y, Ma D, Gramyk T, Guo C, Fang R, Ji H, Shi YG. Kdm1a promotes SCLC progression by transcriptionally silencing the tumor suppressor Rest. Biochem Biophys Res Commun 2019; 515:214-221. [DOI: 10.1016/j.bbrc.2019.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 01/22/2023]
|
152
|
Shah M, Funnell APW, Quinlan KGR, Crossley M. Hit and Run Transcriptional Repressors Are Difficult to Catch in the Act. Bioessays 2019; 41:e1900041. [PMID: 31245868 DOI: 10.1002/bies.201900041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/04/2019] [Indexed: 11/11/2022]
Abstract
Transcriptional silencing may not necessarily depend on the continuous residence of a sequence-specific repressor at a control element and may act via a "hit and run" mechanism. Due to limitations in assays that detect transcription factor (TF) binding, such as chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), this phenomenon may be challenging to detect and therefore its prevalence may be underappreciated. To explore this possibility, erythroid gene promoters that are regulated directly by GATA1 in an inducible system are analyzed. It is found that many regulated genes are bound immediately after induction of GATA1 but the residency of GATA1 decreases over time, particularly at repressed genes. Furthermore, it is shown that the repressive mark H3K27me3 is seldom associated with bound repressors, whereas, in contrast, the active (H3K4me3) histone mark is overwhelmingly associated with TF binding. It is hypothesized that during cellular differentiation and development, certain genes are silenced by repressive TFs that subsequently vacate the region. Catching such repressor TFs in the act of silencing via assays such as ChIP-seq is thus a temporally challenging prospect. The use of inducible systems, epitope tags, and alternative techniques may provide opportunities for detecting elusive "hit and run" transcriptional silencing. Also see the video abstract here https://youtu.be/vgrsoP_HF3g.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.,Altius Institute for Biomedical Sciences, Seattle, WA, 98121, USA
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
153
|
Li H, Jiang H, Yin X, Bard JE, Zhang B, Feng J. Attenuation of PRRX2 and HEY2 enables efficient conversion of adult human skin fibroblasts to neurons. Biochem Biophys Res Commun 2019; 516:765-769. [PMID: 31255287 DOI: 10.1016/j.bbrc.2019.06.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
The direct conversion of accessible cells such as human fibroblasts to inaccessible cells, particularly neurons, opens up many opportunities for using the human model system to study diseases and discover therapies. Previous studies have indicated that the neuronal conversion of adult human skin fibroblasts is much harder than that for human lung fibroblasts, which are used in many experiments. Here we formally report this differential plasticity of human skin versus lung fibroblasts in their transdifferentiation to induced neurons. Using RNAseq of isogenic and non-isogenic pairs of human skin and lung fibroblasts at different days in their conversion to neurons, we found that several master regulators (TWIST1, TWIST2, PRRX1 and PRRX2) in the fibroblast Gene Regulatory Network were significantly downregulated in lung fibroblasts, but not in skin fibroblasts. By knocking down each of these genes and other genes that suppress the neural fate, such as REST, HES1 and HEY2, we found that the combined attenuation of HEY2 and PRRX2 significantly enhanced the transdifferentiation of human skin fibroblasts induced by ASCL1 and p53 shRNA. The new method, which overexpressed ASCL1 and knocked down p53, HEY2 and PRRX2 (ApH2P2), enabled the efficient transdifferentiation of adult human skin fibroblasts to MAP2+ neurons in 14 days. It would be useful for a variety of applications that require the efficient and speedy derivation of patient-specific neurons from skin fibroblasts.
Collapse
Affiliation(s)
- Hanqin Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14203, USA; Veterans Affairs Western New York Healthcare System, Buffalo, NY, 14215, USA
| | - Houbo Jiang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14203, USA; Veterans Affairs Western New York Healthcare System, Buffalo, NY, 14215, USA
| | - Xinzhen Yin
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14203, USA; Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jonathan E Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14203, USA; Veterans Affairs Western New York Healthcare System, Buffalo, NY, 14215, USA.
| |
Collapse
|
154
|
Marisetty AL, Lu L, Veo BL, Liu B, Coarfa C, Kamal MM, Kassem DH, Irshad K, Lu Y, Gumin J, Henry V, Paulucci-Holthauzen A, Rao G, Baladandayuthapani V, Lang FF, Fuller GN, Majumder S. REST-DRD2 mechanism impacts glioblastoma stem cell-mediated tumorigenesis. Neuro Oncol 2019; 21:775-785. [PMID: 30953587 PMCID: PMC6556851 DOI: 10.1093/neuonc/noz030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a lethal, heterogeneous human brain tumor, with regulatory mechanisms that have yet to be fully characterized. Previous studies have indicated that the transcriptional repressor REST (repressor element-1 silencing transcription factor) regulates the oncogenic potential of GBM stem cells (GSCs) based on level of expression. However, how REST performs its regulatory role is not well understood. METHODS We examined 2 independent high REST (HR) GSC lines using genome-wide assays, biochemical validations, gene knockdown analysis, and mouse tumor models. We analyzed in-house patient tumors and patient data present in The Cancer Genome Atlas (TCGA). RESULTS Genome-wide transcriptome and DNA-binding analyses suggested the dopamine receptor D2 (DRD2) gene, a dominant regulator of neurotransmitter signaling, as a direct target of REST. Biochemical analyses and mouse intracranial tumor models using knockdown of REST and double knockdown of REST and DRD2 validated this target and suggested that DRD2 is a downstream target of REST regulating tumorigenesis, at least in part, through controlling invasion and apoptosis. Further, TCGA GBM data support the presence of the REST-DRD2 axis and reveal that high REST/low DRD2 (HRLD) and low REST/high DRD2 (LRHD) tumors are specific subtypes, are molecularly different from the known GBM subtypes, and represent functional groups with distinctive patterns of enrichment of gene sets and biological pathways. The inverse HRLD/LRHD expression pattern is also seen in in-house GBM tumors. CONCLUSIONS These findings suggest that REST regulates neurotransmitter signaling pathways through DRD2 in HR-GSCs to impact tumorigenesis. They further suggest that the REST-DRD2 mechanism forms distinct subtypes of GBM.
Collapse
Affiliation(s)
- Anantha L Marisetty
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bethany L Veo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mohamed Mostafa Kamal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dina Hamada Kassem
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khushboo Irshad
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yungang Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Verlene Henry
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
155
|
Richardson TG, Richmond RC, North TL, Hemani G, Davey Smith G, Sharp GC, Relton CL. An integrative approach to detect epigenetic mechanisms that putatively mediate the influence of lifestyle exposures on disease susceptibility. Int J Epidemiol 2019; 48:887-898. [PMID: 31257439 PMCID: PMC6659375 DOI: 10.1093/ije/dyz119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is mounting evidence that our environment and lifestyle has an impact on epigenetic regulatory mechanisms, such as DNA methylation. It has been suggested that these molecular processes may mediate the effect of risk factors on disease susceptibility, although evidence in this regard has been challenging to uncover. Using genetic variants as surrogate variables, we have used two-sample Mendelian randomization (2SMR) to investigate the potential implications of putative changes to DNA methylation levels on disease susceptibility. METHODS To illustrate our approach, we identified 412 CpG sites where DNA methylation was associated with prenatal smoking. We then applied 2SMR to investigate potential downstream effects of these putative changes on 643 complex traits using findings from large-scale genome-wide association studies. To strengthen evidence of mediatory mechanisms, we used multiple-trait colocalization to assess whether DNA methylation, nearby gene expression and complex trait variation were all influenced by the same causal genetic variant. RESULTS We identified 22 associations that survived multiple testing (P < 1.89 × 10-7). In-depth follow-up analyses of particular note suggested that the associations between DNA methylation at the ASPSCR1 and REST/POL2RB gene regions, both linked with reduced lung function, may be mediated by changes in gene expression. We validated associations between DNA methylation and traits using independent samples from different stages across the life course. CONCLUSION Our approach should prove valuable in prioritizing CpG sites that may mediate the effect of causal risk factors on disease. In-depth evaluations of findings are necessary to robustly disentangle causality from alternative explanations such as horizontal pleiotropy.
Collapse
Affiliation(s)
- Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Teri-Louise North
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| |
Collapse
|
156
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
157
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
158
|
Abstract
Comprehensive mapping of protein-DNA interactions is essential to uncover the mechanisms involved in gene regulation. However, the data generated has been sparse given the number of regulatory elements and transcription factors (TFs) encoded in the genomes of metazoan organisms. Yeast one-hybrid (Y1H) assays provide a powerful "DNA-centered" method, complementary to "TF-centered" methods such as chromatin immunoprecipitation, to identify the TFs that can bind a DNA sequence of interest. Here, we present different technical variations that should be considered when using a Y1H system, including the type of DNA sequence to test, source of TF clones, as well as types of vectors and screening format. Finally, we discuss limitations of the assay and future challenges.
Collapse
|
159
|
Starks RR, Biswas A, Jain A, Tuteja G. Combined analysis of dissimilar promoter accessibility and gene expression profiles identifies tissue-specific genes and actively repressed networks. Epigenetics Chromatin 2019; 12:16. [PMID: 30795793 PMCID: PMC6385419 DOI: 10.1186/s13072-019-0260-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The assay for transposase-accessible chromatin (ATAC-seq) is a powerful method to examine chromatin accessibility. While many studies have reported a positive correlation between gene expression and promoter accessibility, few have investigated the genes that deviate from this trend. In this study, we aimed to understand the relationship between gene expression and promoter accessibility in multiple cell types while also identifying gene regulatory networks in the placenta, an understudied organ that is critical for a successful pregnancy. RESULTS We started by assaying the open chromatin landscape in the mid-gestation placenta, when the fetal vasculature has started developing. After incorporating transcriptomic data generated in the placenta at the same time point, we grouped genes based on their expression levels and ATAC-seq promoter coverage. We found that the genes with the strongest correlation (high expression and high coverage) are likely involved in housekeeping functions, whereas tissue-specific genes were highly expressed and had only medium-low coverage. We also predicted that genes with medium-low expression and high promoter coverage were actively repressed. Within this group, we extracted a protein-protein interaction network enriched for neuronal functions, likely preventing the cells from adopting a neuronal fate. We further confirmed that a repressive histone mark is bound to the promoters of genes in this network. Finally, we ran our pipeline using ATAC-seq and RNA-seq data generated in ten additional cell types. We again found that genes with the strongest correlation are enriched for housekeeping functions and that genes with medium-low promoter coverage and high expression are more likely to be tissue-specific. These results demonstrate that only two data types, both of which require relatively low starting material to generate and are becoming more commonly available, can be integrated to understand multiple aspects of gene regulation. CONCLUSIONS Within the placenta, we identified an active placenta-specific gene network as well as a repressed neuronal network. Beyond the placenta, we demonstrate that ATAC-seq data and RNA-seq data can be integrated to identify tissue-specific genes and actively repressed gene networks in multiple cell types.
Collapse
Affiliation(s)
- Rebekah R. Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 USA
| | - Anilisa Biswas
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Molecular, Cellular, and Developmental Biology, Iowa State University, Ames, IA 50011 USA
| | - Ashish Jain
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 USA
- Molecular, Cellular, and Developmental Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
160
|
Corney BPA, Widnall CL, Rees DJ, Davies JS, Crunelli V, Carter DA. Regulatory Architecture of the Neuronal Cacng2/Tarpγ2 Gene Promoter: Multiple Repressive Domains, a Polymorphic Regulatory Short Tandem Repeat, and Bidirectional Organization with Co-regulated lncRNAs. J Mol Neurosci 2019; 67:282-294. [PMID: 30478755 PMCID: PMC6373327 DOI: 10.1007/s12031-018-1208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
CACNG2 (TARPγ2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i) multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organization with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence. Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats, Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter, or 3' UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further (bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter, describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs.
Collapse
Affiliation(s)
- B P A Corney
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - C L Widnall
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D J Rees
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - V Crunelli
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D A Carter
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK.
| |
Collapse
|
161
|
Kawamura M, Sato S, Matsumoto G, Fukuda T, Shiba-Fukushima K, Noda S, Takanashi M, Mori N, Hattori N. Loss of nuclear REST/NRSF in aged-dopaminergic neurons in Parkinson's disease patients. Neurosci Lett 2019; 699:59-63. [PMID: 30684677 DOI: 10.1016/j.neulet.2019.01.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Lewy bodies and pale bodies in dopaminergic neurons in the substantia nigra are pathological hallmarks of PD. A number of neurodegenerative diseases demonstrate aggregate formation, but how these aggregates are associated with their pathogenesis remains unknown. It has been reported that repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is induced in the nuclei of aged neurons, preserves neuronal function, and protects against neurodegeneration during aging through the repression of cell death-inducing genes. The loss of REST is associated with Alzheimer's disease pathology. However, its function in dopaminergic neurons remains unknown. Here we demonstrated that REST enters the nucleus of aged dopaminergic neurons. On the other hand, REST is partially sequestrated in Lewy bodies and is mostly absent from the nucleus of neurons in brains with PD and dementia with Lewy bodies (DLB). Dopaminergic neuron-specific autophagy-deficient mice exhibit REST accumulation in aggregates. Defects in the protein quality control system induce REST mRNA expression; its gene product mainly appears in aggregates. Our results suggest that Lewy pathology disturbs normal aging processes in dopaminergic neurons by sequestering REST and the loss of REST may associate with the PD pathology.
Collapse
Affiliation(s)
- Miwako Kawamura
- Department of Neurology, Graduate school of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Graduate school of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| | - Gen Matsumoto
- Department of Anatomy and Neurobiology, Graduate school of Biomedical science, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuroscience, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kahori Shiba-Fukushima
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Sachiko Noda
- Department of Neurology, Graduate school of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Masashi Takanashi
- Department of Neurology, Graduate school of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Nozomu Mori
- Department of Anatomy and Neurobiology, Graduate school of Biomedical science, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Nobutaka Hattori
- Department of Neurology, Graduate school of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
162
|
Dobson THW, Tao RH, Swaminathan J, Maegawa S, Shaik S, Bravo-Alegria J, Sharma A, Kennis B, Yang Y, Callegari K, Haltom AR, Taylor P, Kogiso M, Qi L, Khatua S, Goldman S, Lulla RR, Fangusaro J, MacDonald TJ, Li XN, Hawkins C, Rajaram V, Gopalakrishnan V. Transcriptional repressor REST drives lineage stage-specific chromatin compaction at Ptch1 and increases AKT activation in a mouse model of medulloblastoma. Sci Signal 2019; 12:12/565/eaan8680. [PMID: 30670636 DOI: 10.1126/scisignal.aan8680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas (MBs), the expression and activity of RE1-silencing transcription factor (REST) is increased in tumors driven by the sonic hedgehog (SHH) pathway, specifically the SHH-α (children 3 to 16 years) and SHH-β (infants) subgroups. Neuronal maturation is greater in SHH-β than SHH-α tumors, but both correlate with poor overall patient survival. We studied the contribution of REST to MB using a transgenic mouse model (RESTTG ) wherein conditional NeuroD2-controlled REST transgene expression in lineage-committed Ptch1 +/- cerebellar granule neuron progenitors (CGNPs) accelerated tumorigenesis and increased penetrance and infiltrative disease. This model revealed a neuronal maturation context-specific antagonistic interplay between the transcriptional repressor REST and the activator GLI1 at Ptch1 Expression of Arrb1, which encodes β-arrestin1 (a GLI1 inhibitor), was substantially reduced in proliferating and, to a lesser extent, lineage-committed RESTTG cells compared with wild-type proliferating CGNPs. Lineage-committed RESTTG cells also had decreased GLI1 activity and increased histone H3K9 methylation at the Ptch1 locus, which correlated with premature silencing of Ptch1 These cells also had decreased expression of Pten, which encodes a negative regulator of the kinase AKT. Expression of PTCH1 and GLI1 were less, and ARRB1 was somewhat greater, in patient SHH-β than SHH-α MBs, whereas that of PTEN was similarly lower in both subtypes than in others. Inhibition of histone modifiers or AKT reduced proliferation and induced apoptosis, respectively, in cultured REST-high MB cells. Our findings linking REST to differentiation-specific chromatin remodeling, PTCH1 silencing, and AKT activation in MB tissues reveal potential subgroup-specific therapeutic targets for MB patients.
Collapse
Affiliation(s)
- Tara H W Dobson
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rong-Hua Tao
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Shinji Maegawa
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javiera Bravo-Alegria
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ajay Sharma
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bridget Kennis
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanwen Yang
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keri Callegari
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amanda R Haltom
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pete Taylor
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lin Qi
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Soumen Khatua
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stewart Goldman
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Rishi R Lulla
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jason Fangusaro
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | | | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Veena Rajaram
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA. .,Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center-University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
163
|
NRSF and Its Epigenetic Effectors: New Treatments for Neurological Disease. Brain Sci 2018; 8:brainsci8120226. [PMID: 30572571 PMCID: PMC6316267 DOI: 10.3390/brainsci8120226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/02/2022] Open
Abstract
The Neuron Restrictive Silencer Factor (NRSF) is the well-known master transcriptional repressor of the neuronal phenotype. Research to date has shown that it is an important player in the growth and development of the nervous system. Its role in the maturation of neural precursor cells to adult neurons has been well characterized in stem cell models. While much has been characterized from a developmental perspective, research is revealing that NRSF plays a role in various neurological diseases, ranging from neurodegenerative, neuropsychiatric, to cancer. Dysregulation of NRSF activity disrupts downstream gene expression that is responsible for neuronal cell homeostasis in several models that contribute to pathologic states. Interestingly, it is now becoming apparent that the dysregulation of NRSF contributes to neurological disease through epigenetic mechanisms. Although NRSF itself is a transcription factor, its major effectors are chromatin modifiers. At the level of epigenetics, changes in NRSF activity have been well characterized in models of neuropathic pain and epilepsy. Better understanding of the epigenetic basis of brain diseases has led to design and use of small molecules that can prevent NRSF from repressing gene expression by neutralizing its interactions with its chromatin remodelers. This review will address the basic function of NRSF and its cofactors, investigate their mechanisms, then explore how their dysfunction can cause disease states. This review will also address research on NRSF as a therapeutic target and delve into new therapeutic strategies that focus on disrupting NRSF’s ability to recruit chromatin remodelers.
Collapse
|
164
|
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A 2018; 115:E12417-E12426. [PMID: 30530687 DOI: 10.1073/pnas.1812518115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.
Collapse
|
165
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
166
|
Abstract
In 2000, with the completion of the human genome project, nine related channels were found to comprise the complete voltage-gated sodium gene family and they were renamed NaV1.1–NaV1.9. This millennial event reflected the extraordinary impact of molecular genetics on our understanding of electrical signalling in the nervous system. In this review, studies of animal electricity from the time of Galvani to the present day are described. The seminal experiments and models of Hodgkin and Huxley coupled with the discovery of the structure of DNA, the genetic code and the application of molecular genetics have resulted in an appreciation of the extraordinary diversity of sodium channels and their surprisingly broad repertoire of functions. In the present era, unsuspected roles for sodium channels in a huge range of pathologies have become apparent.
Collapse
Affiliation(s)
- John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
167
|
Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia 2018; 20:1227-1235. [PMID: 30414538 PMCID: PMC6226622 DOI: 10.1016/j.neo.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive non-melanoma skin cancer of the elderly which is associated with the Merkel cell polyomavirus (MCPyV). MCC reveals a trilinear differentiation characterized by neuroendocrine, epithelial and pre/pro B-cell lymphocytic gene expression disguising the cellular origin of MCC. Here we investigated the expression of the neuroendocrine key regulators RE1 silencing transcription factor (REST), neurogenic differentiation 1 (NeuroD1) and the Achaete-scute homolog 1 (ASCL1) in MCC. All MCCs were devoid of REST and were positive for NeuroD1 expression. Only one MCC tissue revealed focal ASCL1 expression. This was confirmed in MCPyV-positive MCC cell lines. Of interest, MCPyV-negative cell lines did express REST. The introduction of REST expression in REST-negative, MCPyV-positive MCC cells downregulated the neuroendocrine gene expression. The lack of the neuroendocrine master regulator ASCL1 in almost all tested MCCs points to an important role of the absence of the negative regulator REST towards the MCC neuroendocrine phenotype. This is underlined by the expression of the REST-regulated microRNAs miR-9/9* in REST-negative MCC cell lines. These data might provide the basis for the understanding of neuroendocrine gene expression profile which is expected to help to elucidate the cellular origin of MCC.
Collapse
|
168
|
Deng P, Zuo Y, Feng S, Li Z, Chen W, Li H, Wang X. Knockdown of NRSF inhibits cell proliferation of ovarian cancer via activating Hippo pathway. Life Sci 2018; 215:73-79. [PMID: 30391650 DOI: 10.1016/j.lfs.2018.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
AIMS Ovarian cancer is the most leading cause of deaths among gynecologic malignancies, and Neuron-restrictive silencer factor (NRSF) can be upregulated or downregulated according to the type of tumor. However, the expression and function of NRSF in ovarian cancer is still unknown. MAIN METHODS Expression of NRSF in normal ovary and ovarian cancer cells were evaluated by quantitative PCR (qPCR). NRSF expression in normal ovary and ovarian cancer tissue samples were examined by qPCR, western blotting and immunohistochemistry (IHC). MTT, colony formation, anchorage-independent growth assay were applied to examine the effect of NRSF on ovarian cancer cell proliferation. Bromodeoxyuridine (BrdUrd) labeling and flow cytometry assay were carried out to investigate the role of NRSF on cell cycle of ovarian cancer cells. Luciferase reporter assay and western blotting, immunofluorescence labeling were devoted to explore the mechanism by which NRSF contributes to proliferation of ovarian cancer cells. KEY FINDINGS The results demonstrated that NRSF is significantly upregulated in ovarian cancer cells and tissues and negatively related with the survival of patients with ovarian cancer, and knockout of NRSF inhibit proliferation of ovarian cancer cells. Further analysis showed that NRSF can influence G1/S transition of cell cycle via regulating the transcription of Hippo pathway. SIGNIFICANCE Herein, our study suggest that NRSF is associated with the progression of ovarian cancer, and NRSF may be a valuable early detection marker of ovarian cancer and inhibiting NRSF expression may be an effective method to treat ovarian cancer.
Collapse
Affiliation(s)
- Pengfei Deng
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China; Department of Gynecology, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Yan Zuo
- Department of Gynecology, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Shuxian Feng
- Department of Gynecology, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Zongtao Li
- Department of Gynecology, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Wan Chen
- Department of Gynecology, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Huawen Li
- Department of Gynecology, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong 519000, China.
| | - Xiaoyu Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China; Department of Gynecology, The First Affliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
169
|
Chooi WH, Ong W, Murray A, Lin J, Nizetic D, Chew SY. Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells. Biomater Sci 2018; 6:3019-3029. [PMID: 30277233 DOI: 10.1039/c8bm01034j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) is an attractive therapeutic option for damaged nerve tissues. To direct neuronal differentiation of stem cells, we have previously developed an electrospun polycaprolactone nanofiber scaffold that was functionalized with siRNA targeting Re-1 silencing transcription factor (REST), by mussel-inspired bioadhesive coating. However, the efficacy of nanofiber-mediated RNA interference on hiPSC-NPCs differentiation remains unknown. Furthermore, interaction between such cell-seeded scaffolds with injured tissues has not been tested. In this study, scaffolds were optimized for REST knockdown in hiPSC-NPCs to enhance neuronal differentiation. Specifically, the effects of two different mussel-inspired bioadhesives and transfection reagents were analyzed. Scaffolds functionalized with RNAiMAX Lipofectamine-siREST complexes enhanced the differentiation of hiPSC-NPCs into TUJ1+ cells (60% as compared to 22% in controls with scrambled siNEG after 9 days) without inducing high cytotoxicity. When cell-seeded scaffolds were transplanted to transected spinal cord organotypic slices, similar efficiency in neuronal differentiation was observed. The scaffolds also supported the migration of cells and neurite outgrowth from the spinal cord slices. Taken together, the results suggest that this scaffold can be effective in enhancing hiPSC-NPC neuronal commitment by gene-silencing for the treatment of injured spinal cords.
Collapse
Affiliation(s)
- Wai Hon Chooi
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - William Ong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Junquan Lin
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg and Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| |
Collapse
|
170
|
Chang YT, Lin TP, Tang JT, Campbell M, Luo YL, Lu SY, Yang CP, Cheng TY, Chang CH, Liu TT, Lin CH, Kung HJ, Pan CC, Chang PC. HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett 2018; 433:43-52. [DOI: 10.1016/j.canlet.2018.06.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
|
171
|
Callegari K, Maegawa S, Bravo-Alegria J, Gopalakrishnan V. Pharmacological inhibition of LSD1 activity blocks REST-dependent medulloblastoma cell migration. Cell Commun Signal 2018; 16:60. [PMID: 30227871 PMCID: PMC6145331 DOI: 10.1186/s12964-018-0275-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children. Current problems in the clinic include metastasis, recurrence, and treatment-related sequelae that highlight the need for targeted therapies. Epigenetic perturbations are an established hallmark of human MB and expression of Lysine Specific Demethylase 1 (LSD1) is elevated in MBs compared to normal tissue, suggesting that LSD1 inhibitors may have efficacy against human MB tumors. METHODS Expression of LSD1 was examined across a publicly-available database and correlated with patient outcomes. Sonic Hedgehog (SHH) MB samples were clustered based on expression of LSD1 and LSD1-associated RE-1 silencing transcription factor (REST) target genes as well as genes involved in metastasis. Resulting clusters were examined for patient outcomes associated with LSD1 and REST expression. Human SHH MB cell lines were transduced with a REST-transgene to create isogenic cell pairs. In vitro viability and cell migration assays were used to examine the effect of LSD1 knockdown or inhibition on these parameters. RESULTS We demonstrate that subsets of SHH MB tumors have elevated LSD1 expression coincident with increased expression of its deubiquitylase, USP7, and REST. Patients with co-elevation of USP7, REST, and LSD1 have poorer outcomes compared to those with lower expression of these genes. In SHH MB cell lines, REST elevation increased cell growth and LSD1 protein levels. Surprisingly, while genetic loss of LSD1 reduced cell viability, pharmacological targeting of its activity using LSD1 inhibitors did not affect cell viability. However, a reduction in REST-dependent cell migration was seen in wound healing, suggesting that REST-LSD1 interaction regulates cell migration. Ingenuity pathway analyses validated these findings and identified Hypoxia Inducible Factor 1 alpha (HIF1A) as a potential target. In line with this, ectopic expression of HIF1A rescued the loss of migration seen following LSD1 inhibition. CONCLUSIONS A subset of SHH patients display increased levels of LSD1 and REST, which is associated with poor outcomes. REST elevation in MB in conjunction with elevated LSD1 promotes MB cell migration. LSD1 inhibition blocks REST-dependent cell migration of MB cells in a HIF1A-dependent manner.
Collapse
Affiliation(s)
- Keri Callegari
- Department of Pediatrics, University of Texas M.D. Anderson Cancer Center, Unit 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Austin, USA
| | - Shinji Maegawa
- Department of Pediatrics, University of Texas M.D. Anderson Cancer Center, Unit 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Javiera Bravo-Alegria
- Department of Pediatrics, University of Texas M.D. Anderson Cancer Center, Unit 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas M.D. Anderson Cancer Center, Unit 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Center for Cancer Epigenetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Brain Tumor Center, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Austin, USA.
| |
Collapse
|
172
|
Burkholder NT, Mayfield JE, Yu X, Irani S, Arce DK, Jiang F, Matthews WL, Xue Y, Zhang YJ. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST). J Biol Chem 2018; 293:16851-16861. [PMID: 30217818 DOI: 10.1074/jbc.ra118.004722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
The RE1-silencing transcription factor (REST) is the major scaffold protein for assembly of neuronal gene silencing complexes that suppress gene transcription through regulating the surrounding chromatin structure. REST represses neuronal gene expression in stem cells and non-neuronal cells, but it is minimally expressed in neuronal cells to ensure proper neuronal development. Dysregulation of REST function has been implicated in several cancers and neurological diseases. Modulating REST gene silencing is challenging because cellular and developmental differences can affect its activity. We therefore considered the possibility of modulating REST activity through its regulatory proteins. The human small C-terminal domain phosphatase 1 (SCP1) regulates the phosphorylation state of REST at sites that function as REST degradation checkpoints. Using kinetic analysis and direct visualization with X-ray crystallography, we show that SCP1 dephosphorylates two degron phosphosites of REST with a clear preference for phosphoserine 861 (pSer-861). Furthermore, we show that SCP1 stabilizes REST protein levels, which sustains REST's gene silencing function in HEK293 cells. In summary, our findings strongly suggest that REST is a bona fide substrate for SCP1 in vivo and that SCP1 phosphatase activity protects REST against degradation. These observations indicate that targeting REST via its regulatory protein SCP1 can modulate its activity and alter signaling in this essential developmental pathway.
Collapse
Affiliation(s)
| | | | - Xiaohua Yu
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | | | | | - Faqin Jiang
- the School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yuanchao Xue
- the Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yan Jessie Zhang
- From the Departments of Molecular Biosciences and .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
173
|
Sertraline, chlorprothixene, and chlorpromazine characteristically interact with the REST-binding site of the corepressor mSin3, showing medulloblastoma cell growth inhibitory activities. Sci Rep 2018; 8:13763. [PMID: 30213984 PMCID: PMC6137095 DOI: 10.1038/s41598-018-31852-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of repressor-element 1 silencing transcription factor REST/NRSF is related to several neuropathies, including medulloblastoma, glioblastoma, Huntington’s disease, and neuropathic pain. Inhibitors of the interaction between the N-terminal repressor domain of REST/NRSF and the PAH1 domain of its corepressor mSin3 may ameliorate such neuropathies. In-silico screening based on the complex structure of REST/NRSF and mSin3 PAH1 yielded 52 active compounds, including approved neuropathic drugs. We investigated their binding affinity to PAH1 by NMR, and their inhibitory activity toward medulloblastoma cell growth. Interestingly, three antidepressant and antipsychotic medicines, sertraline, chlorprothixene, and chlorpromazine, were found to strongly bind to PAH1. Multivariate analysis based on NMR chemical shift changes in PAH1 residues induced by ligand binding was used to identify compound characteristics associated with cell growth inhibition. Active compounds showed a new chemo-type for inhibitors of the REST/NRSF-mSin3 interaction, raising the possibility of new therapies for neuropathies caused by dysregulation of REST/NRSF.
Collapse
|
174
|
Jung HG, Hwang YS, Park YH, Cho HY, Rengaraj D, Han JY. Role of Epigenetic Regulation by the REST/CoREST/HDAC Corepressor Complex of Moderate NANOG Expression in Chicken Primordial Germ Cells. Stem Cells Dev 2018; 27:1215-1225. [DOI: 10.1089/scd.2018.0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hyun Gyo Jung
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ho Yeon Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
175
|
Lu L, Marisetty A, Liu B, Kamal MM, Gumin J, Veo B, Cai Y, Kassem DH, Weng C, Maynard ME, Hood KN, Fuller GN, Pan ZZ, Cykowski MD, Dash PK, Majumder S. REST overexpression in mice causes deficits in spontaneous locomotion. Sci Rep 2018; 8:12083. [PMID: 30108242 PMCID: PMC6092433 DOI: 10.1038/s41598-018-29441-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Overexpression of REST has been implicated in brain tumors, ischemic insults, epilepsy, and movement disorders such as Huntington's disease. However, owing to the lack of a conditional REST overexpression animal model, the mechanism of action of REST overexpression in these disorders has not been established in vivo. We created a REST overexpression mouse model using the human REST (hREST) gene. Our results using these mice confirm that hREST expression parallels endogenous REST expression in embryonic mouse brains. Further analyses indicate that REST represses the dopamine receptor 2 (Drd2) gene, which encodes a critical nigrostriatal receptor involved in regulating movement, in vivo. Overexpression of REST using Drd2-Cre in adult mice results in increased REST and decreased DRD2 expression in the striatum, a major site of DRD2 expression, and phenocopies the spontaneous locomotion deficits seen upon global DRD2 deletion or specific DRD2 deletion from indirect-pathway medium spiny neurons. Thus, our studies using this mouse model not only reveal a new function of REST in regulating spontaneous locomotion but also suggest that REST overexpression in DRD2-expressing cells results in spontaneous locomotion deficits.
Collapse
Affiliation(s)
- Li Lu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anantha Marisetty
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohamed Mostafa Kamal
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bethany Veo
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pediatrics/Hematology and Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - YouQing Cai
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dina Hamada Kassem
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Connie Weng
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhizhong Z Pan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sadhan Majumder
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
176
|
Lee SW, Oh YM, Lu YL, Kim WK, Yoo AS. MicroRNAs Overcome Cell Fate Barrier by Reducing EZH2-Controlled REST Stability during Neuronal Conversion of Human Adult Fibroblasts. Dev Cell 2018; 46:73-84.e7. [PMID: 29974865 DOI: 10.1016/j.devcel.2018.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
The ability to convert human somatic cells efficiently to neurons facilitates the utility of patient-derived neurons for studying neurological disorders. As such, ectopic expression of neuronal microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124) in adult human fibroblasts has been found to evoke extensive reconfigurations of the chromatin and direct the fate conversion to neurons. However, how miR-9/9∗-124 break the cell fate barrier to activate the neuronal program remains to be defined. Here, we identified an anti-neurogenic function of EZH2 in fibroblasts that acts outside its role as a subunit of Polycomb Repressive Complex 2 to directly methylate and stabilize REST, a transcriptional repressor of neuronal genes. During neuronal conversion, miR-9/9∗-124 induced the repression of the EZH2-REST axis by downregulating USP14, accounting for the opening of chromatin regions harboring REST binding sites. Our findings underscore the interplay between miRNAs and protein stability cascade underlying the activation of neuronal program.
Collapse
Affiliation(s)
- Seong Won Lee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young Mi Oh
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ya-Lin Lu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo Kyung Kim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
177
|
Abstract
Mandel reflects on the influence that a very broad training had on her scientific career.
Collapse
Affiliation(s)
- Gail Mandel
- Oregon Health and Science University, Portland, OR
| |
Collapse
|
178
|
FACT Sets a Barrier for Cell Fate Reprogramming in Caenorhabditis elegans and Human Cells. Dev Cell 2018; 46:611-626.e12. [PMID: 30078731 PMCID: PMC6137076 DOI: 10.1016/j.devcel.2018.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2023]
Abstract
The chromatin regulator FACT (facilitates chromatin transcription) is essential for ensuring stable gene expression by promoting transcription. In a genetic screen using Caenorhabditis elegans, we identified that FACT maintains cell identities and acts as a barrier for transcription factor-mediated cell fate reprogramming. Strikingly, FACT's role as a barrier to cell fate conversion is conserved in humans as we show that FACT depletion enhances reprogramming of fibroblasts. Such activity is unexpected because FACT is known as a positive regulator of gene expression, and previously described reprogramming barriers typically repress gene expression. While FACT depletion in human fibroblasts results in decreased expression of many genes, a number of FACT-occupied genes, including reprogramming-promoting factors, show increased expression upon FACT depletion, suggesting a repressive function of FACT. Our findings identify FACT as a cellular reprogramming barrier in C. elegans and humans, revealing an evolutionarily conserved mechanism for cell fate protection.
Collapse
|
179
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, Zhou W, Yuan D, Cao J, Li Y, He P, Tang Y. Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Cell Death Dis 2018; 9:779. [PMID: 30006541 PMCID: PMC6045651 DOI: 10.1038/s41419-018-0807-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
High avidity of bone metastasis is an important characteristic in prostate cancer (PCa). Downexpression of miR-133b has been reported to be implicated in the development, progression and recurrence in PCa. However, clinical significance and biological roles of miR-133b in bone metastasis of PCa remain unclear. Here we report that miR-133b is downregulated in PCa tissues and further decreased in bone metastatic PCa tissues. Downexpression of miR-133b positively correlates with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients. Upregulating miR-133b inhibits invasion, migration in vitro and bone metastasis in vivo in PCa cells. Mechanistically, we find that miR-133b suppresses activity of TGF-β signaling via directly targeting TGF-β receptor I and II, which further inhibits bone metastasis of PCa cells. Our results further reveal that overexpression of REST contributes to miR-133b downexpression via transcriptional repression in PCa tissues. Importantly, silencing miR-133b enhances invasion and migration abilities in vitro and bone metastasis ability in vivo in REST-silenced PCa cells. The clinical correlation of miR-133b with TGFBRI, TGFBRII, REST and TGF-β signaling activity is verified in PCa tissues. Therefore, our results uncover a novel mechanism of miR-133b downexpression that REST transcriptionally inhibits miR-133b expression in PCa cells, and meanwhile support the notion that administration of miR-133b may serve as a rational regimen in the treatment of PCa bone metastasis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 563003, Zunyi, China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qiji Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qing Yang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wei Zhou
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Dan Yuan
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yuming Li
- Department of Orthopaedic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Peiheng He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
180
|
Nakano Y, Kelly MC, Rehman AU, Boger ET, Morell RJ, Kelley MW, Friedman TB, Bánfi B. Defects in the Alternative Splicing-Dependent Regulation of REST Cause Deafness. Cell 2018; 174:536-548.e21. [PMID: 29961578 DOI: 10.1016/j.cell.2018.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/11/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael C Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Botond Bánfi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
181
|
Huminiecki L. Modelling of the breadth of expression from promoter architectures identifies pro-housekeeping transcription factors. PLoS One 2018; 13:e0198961. [PMID: 29928029 PMCID: PMC6013173 DOI: 10.1371/journal.pone.0198961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Understanding how regulatory elements control mammalian gene expression is a challenge of post-genomic era. We previously reported that size of proximal promoter architecture predicted the breadth of expression (fraction of tissues in which a gene is expressed). Herein, the contributions of individual transcription factors (TFs) were quantified. Several technologies of statistical modelling were utilized and compared: tree models, generalized linear models (GLMs, without and with regularization), Bayesian GLMs and random forest. Both linear and non-linear modelling strategies were explored. Encouragingly, different models led to similar statistical conclusions and biological interpretations. The majority of ENCODE TFs correlated positively with housekeeping expression, a minority correlated negatively. Thus, housekeeping expression can be understood as a cumulative effect of many types of TF binding sites. This is accompanied by the exclusion of fewer types of binding sites for TFs which are repressors, or support cell lineage commitment or temporarily inducible or spatially-restricted expression.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Instytut Genetyki i Hodowli Zwierząt Polskiej Akademii Nauk, Jastrzębiec, Magdalenka, Poland
| |
Collapse
|
182
|
Niu M, Tabari E, Ni P, Su Z. Towards a map of cis-regulatory sequences in the human genome. Nucleic Acids Res 2018; 46:5395-5409. [PMID: 29733395 PMCID: PMC6009671 DOI: 10.1093/nar/gky338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that transcription factor (TF) binding sites, or cis-regulatory elements (CREs), and their clusters termed cis-regulatory modules (CRMs) play a more important role than do gene-coding sequences in specifying complex traits in humans, including the susceptibility to common complex diseases. To fully characterize their roles in deriving the complex traits/diseases, it is necessary to annotate all CREs and CRMs encoded in the human genome. However, the current annotations of CREs and CRMs in the human genome are still very limited and mostly coarse-grained, as they often lack the detailed information of CREs in CRMs. Here, we integrated 620 TF ChIP-seq datasets produced by the ENCODE project for 168 TFs in 79 different cell/tissue types and predicted an unprecedentedly completely map of CREs in CRMs in the human genome at single nucleotide resolution. The map includes 305 912 CRMs containing a total of 1 178 913 CREs belonging to 736 unique TF binding motifs. The predicted CREs and CRMs tend to be subject to either purifying selection or positive selection, thus are likely to be functional. Based on the results, we also examined the status of available ChIP-seq datasets for predicting the entire regulatory genome of humans.
Collapse
Affiliation(s)
- Meng Niu
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ehsan Tabari
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Pengyu Ni
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
183
|
REST, regulated by RA through miR-29a and the proteasome pathway, plays a crucial role in RPC proliferation and differentiation. Cell Death Dis 2018; 9:444. [PMID: 29670089 PMCID: PMC5906654 DOI: 10.1038/s41419-018-0473-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
One of the primary obstacles in the application of retinal progenitor cells (RPCs) to the treatment of retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), is their limited ability to proliferate and differentiate into specific retinal neurons. In this study, we revealed that repressor element-1-silencing transcription factor (REST), whose expression could be transcriptionally and post-transcriptionally mediated by retinoic acid (RA, one isomeride of a vitamin A derivative used as a differentiation-inducing agent in many disease treatments), plays a pivotal role in the regulation of proliferation and differentiation of RPCs. Our results show that direct knockdown of endogenous REST reduced RPC proliferation but accelerated RPC differentiation toward retinal neurons, which phenocopied the observed effects of RA on RPCs. Further studies disclosed that the expression level of REST could be downregulated by RA not only through upregulating microRNA (miR)-29a, which directly interacted with the 3′-untranslated region (3′-UTR) of the REST mRNA, but also through promoting REST proteasomal degradation. These results show us a novel functional protein, REST, which regulates RPC proliferation and differentiation, can be mediated by RA. Understanding the mechanisms of REST and RA in RPC fate determination enlightens a promising future for the application of REST and RA in the treatment of retinal degeneration diseases.
Collapse
|
184
|
Chen R, Dong X, Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int 2018; 122:560-570. [DOI: 10.1111/bju.14207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruiqi Chen
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Xuesen Dong
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| | - Martin Gleave
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
185
|
Nativio R, Donahue G, Berson A, Lan Y, Amlie-Wolf A, Tuzer F, Toledo JB, Gosai SJ, Gregory BD, Torres C, Trojanowski JQ, Wang LS, Johnson FB, Bonini NM, Berger SL. Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nat Neurosci 2018; 21:497-505. [PMID: 29507413 PMCID: PMC6124498 DOI: 10.1038/s41593-018-0101-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Aging is the strongest risk factor for Alzheimer's disease (AD), although the underlying mechanisms remain unclear. The chromatin state, in particular through the mark H4K16ac, has been implicated in aging and thus may play a pivotal role in age-associated neurodegeneration. Here we compare the genome-wide enrichment of H4K16ac in the lateral temporal lobe of AD individuals against both younger and elderly cognitively normal controls. We found that while normal aging leads to H4K16ac enrichment, AD entails dramatic losses of H4K16ac in the proximity of genes linked to aging and AD. Our analysis highlights the presence of three classes of AD-related changes with distinctive functional roles. Furthermore, we discovered an association between the genomic locations of significant H4K16ac changes with genetic variants identified in prior AD genome-wide association studies and with expression quantitative trait loci. Our results establish the basis for an epigenetic link between aging and AD.
Collapse
Affiliation(s)
- Raffaella Nativio
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandre Amlie-Wolf
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ferit Tuzer
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jon B Toledo
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sager J Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Torres
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Brad Johnson
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Shelley L Berger
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
186
|
|
187
|
Yu Y, Li S, Zhang H, Zhang X, Guo D, Zhang J. NRSF/REST levels are decreased in cholangiocellular carcinoma but not hepatocellular carcinoma compared with normal liver tissues: A tissue microarray study. Oncol Lett 2018; 15:6592-6598. [PMID: 29725406 DOI: 10.3892/ol.2018.8169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The transcription factor neuron-restrictive silencer factor (NRSF), also termed repressor element 1-silencing transcription factor (REST), has been previously demonstrated to repress the expression of neuronal genes in non-neuronal cells, facilitating the controlled development and organization of nerve tissue. However, previous studies have reported NRSF/REST to be upregulated or downregulated in multiple types of carcinoma. Liver diseases are a major global health concern, with cirrhosis and liver carcinoma among the most common causes of mortality worldwide. A previous study demonstrated that there were >400 NRSF/REST target genes in mouse liver cells; however, the expression profile of NRSF/REST in human liver disease remains unclear. The present study examined NRSF/REST expression in human normal and liver carcinoma samples using tissue microarray immunohistochemistry. The results demonstrated that in normal liver tissues, NRSF/REST can be detected in the cytoplasm and nuclei of the cell; whereas in the liver carcinoma tissue, NRSF/REST is only detected in the cytoplasm. Furthermore, the number of samples with high levels of NRSF/REST was significantly lower in cholangiocellular carcinoma samples compared with normal tissues. Additionally, no detectable sex- or age-associated differences were identified in NRSF/REST expression among all the tissues examined. In conclusion, the results of the present study revealed nuclear loss of NRSF/REST in hepatic carcinomas and decreased expression of NRSF/REST in cholangiocellular carcinoma, indicating that the cytoplasmic translocation of NRSF/REST may be involved in liver tumorigenesis. A low expression level of NRSF/REST may be a novel biomarker for cholangiocellular carcinoma.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shan Li
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huiyan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuqing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Deyu Guo
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
188
|
Gu X, Wang X, Su D, Su X, Lin L, Li S, Wu Q, Liu S, Zhang P, Zhu X, Jiang X. CBX2 Inhibits Neurite Development by Regulating Neuron-Specific Genes Expression. Front Mol Neurosci 2018. [PMID: 29541019 PMCID: PMC5835719 DOI: 10.3389/fnmol.2018.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb group (PcG) proteins regulate the epigenetic status of transcription regulatory states during development. Progression from pluripotency to differentiation requires the sequential activation and repression of different PcG target genes, however, the relationship between early patterning signals, PcG expression, and the development of the central nervous system is still unclear. Using various models of neuronal differentiation, we provide evidence that CBX2 is a negative regulator of neuronal differentiation. Knock-down of CBX2 expression promotes neurite development, while overexpression of CBX2 inhibits neurite development. Further, we found that CBX2 is a direct target gene of miR-124. During neuronal differentiation, CBX2 was decreased while miR-124 was increased. Mechanistically, CBX2 directly interacts with the promoter region of several neuro-associated genes and regulates their expression. We found that the neuron-specific GAP-43 gene could contribute to the stimulating effect on neurite development associated with inhibition of CBX2.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Dazhuang Su
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Qiaoqi Wu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xinhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
189
|
Hwang JY, Zukin RS. REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol 2018; 48:193-200. [PMID: 29351877 DOI: 10.1016/j.conb.2017.12.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
The restrictive element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor (NRSF) is a transcriptional repressor which acts via epigenetic remodeling to silence target genes. Emerging evidence indicates that REST is a master transcriptional regulator of neuron-specific genes not only in neurogenesis and neuronal differentiation, but also in differentiated neurons during the critical period in postnatal brain development, where it plays a role in fine-tuning of genes involved in synaptic plasticity, and in normal aging, where it promotes neuroprotection by repressing genes involved in oxidative stress and β-amyloid toxicity. This review focuses on recent findings that dysregulation of REST and REST-dependent epigenetic remodeling provide a central mechanism critical to the progressive neurodegeneration associated with neurologic disorders and diseases including global ischemia, stroke, epilepsy, Alzheimer's and Huntington's disease.
Collapse
Affiliation(s)
- Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 610, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 610, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| |
Collapse
|
190
|
Yi J, Wu J. Epigenetic regulation in medulloblastoma. Mol Cell Neurosci 2017; 87:65-76. [PMID: 29269116 DOI: 10.1016/j.mcn.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor. The heterogeneous tumors are classified into four subgroups based on transcription profiles. Recent developments in genome-wide sequencing techniques have rapidly advanced the understanding of these tumors. The high percentages of somatic alterations of genes encoding chromatin regulators in all subgroups suggest that epigenetic deregulation is a major driver of medulloblastoma. In this report, we review the current understanding of epigenetic regulation in medulloblastoma with a focus on the functional studies of chromatin regulators in the initiation and progression of specific subgroups of medulloblastoma. We also discuss the potential usage of epigenetic inhibitors for medulloblastoma treatment.
Collapse
Affiliation(s)
- Jiaqing Yi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Jiang Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
191
|
Neuron-specific alternative splicing of transcriptional machineries: Implications for neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:35-45. [PMID: 29254826 DOI: 10.1016/j.mcn.2017.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
The brain has long been known to display the most complex pattern of alternative splicing, thereby producing diverse protein isoforms compared to other tissues. Recent evidence indicates that many alternative exons are neuron-specific, evolutionarily conserved, and found in regulators of transcription including DNA-binding protein and histone modifying enzymes. This raises a possibility that neurons adopt unique mechanisms of transcription. Given that transcriptional machineries are frequently mutated in neurodevelopmental disorders with cognitive dysfunction, it is important to understand how neuron-specific alternative splicing contributes to proper transcriptional regulation in the brain. In this review, we summarize current knowledge regarding how neuron-specific splicing events alter the function of transcriptional regulators and shape unique gene expression patterns in the brain and the implications of neuronal splicing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
192
|
Song Z, Zhu T, Zhou X, Barrow P, Yang W, Cui Y, Yang L, Zhao D. REST alleviates neurotoxic prion peptide-induced synaptic abnormalities, neurofibrillary degeneration and neuronal death partially via LRP6-mediated Wnt-β-catenin signaling. Oncotarget 2017; 7:12035-52. [PMID: 26919115 PMCID: PMC4914267 DOI: 10.18632/oncotarget.7640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/14/2016] [Indexed: 02/07/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks including synaptic damage, spongiform degeneration and neuronal death. The factors and mechanisms that maintain cellular morphological integrity and protect against neurodegeneration in prion diseases are still unclear. Here we report that after stimulation with the neurotoxic PrP106-126 fragment in primary cortical neurons, REST translocates from the cytoplasm to the nucleus and protects neurons from harmful effects of PrP106-126. Overexpression of REST reduces pathological damage and abnormal biochemical alterations of neurons induced by PrP106-126 and maintains neuronal viability by stabilizing the level of pro-survival protein FOXO1 and inhibiting the permeability of the mitochondrial outer membrane, release of cytochrome c from mitochondria to cytoplasm and the activation of Capase3. Conversely, knockdown of REST exacerbates morphological damage and inhibits the expression of FOXO1. Additionally, by overexpression or knockdown of LRP6, we further show that LRP6-mediated Wnt-β-catenin signaling partly regulates the expression of REST. Collectively, we demonstrate for the first time novel neuroprotective function of REST in prion diseases and hypothesise that the LRP6-Wnt-β-catenin/REST signaling plays critical and collaborative roles in neuroprotection. This signaling of neuronal survival regulation could be explored as a viable therapeutic target for prion diseases and associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting Zhu
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongyong Cui
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
193
|
Donnio LM, Bidon B, Hashimoto S, May M, Epanchintsev A, Ryan C, Allen W, Hackett A, Gecz J, Skinner C, Stevenson RE, de Brouwer APM, Coutton C, Francannet C, Jouk PS, Schwartz CE, Egly JM. MED12-related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Hum Mol Genet 2017; 26:2062-2075. [PMID: 28369444 DOI: 10.1093/hmg/ddx099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mediator occupies a key role in protein coding genes expression in mediating the contacts between gene specific factors and the basal transcription machinery but little is known regarding the role of each Mediator subunits. Mutations in MED12 are linked with a broad spectrum of genetic disorders with X-linked intellectual disability that are difficult to range as Lujan, Opitz-Kaveggia or Ohdo syndromes. Here, we investigated several MED12 patients mutations (p.R206Q, p.N898D, p.R961W, p.N1007S, p.R1148H, p.S1165P and p.R1295H) and show that each MED12 mutations cause specific expression patterns of JUN, FOS and EGR1 immediate early genes (IEGs), reflected by the presence or absence of MED12 containing complex at their respective promoters. Moreover, the effect of MED12 mutations has cell-type specificity on IEG expression. As a consequence, the expression of late responsive genes such as the matrix metalloproteinase-3 and the RE1 silencing transcription factor implicated respectively in neural plasticity and the specific expression of neuronal genes is disturbed as documented for MED12/p.R1295H mutation. In such case, JUN and FOS failed to be properly recruited at their AP1-binding site. Our results suggest that the differences between MED12-related phenotypes are essentially the result of distinct IEGs expression patterns, the later ones depending on the accurate formation of the transcription initiation complex. This might challenge clinicians to rethink the traditional syndromes boundaries and to include genetic criterion in patients' diagnostic.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Baptiste Bidon
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Satoru Hashimoto
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France.,Department of Clinical Pharmacology and Therapeutics Oita University Faculty of Medicine, Yufu city, Oita 879-5593, Japan
| | - Melanie May
- Greenwood Genetic Center, Greenwood, SC 29649, USA
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Colm Ryan
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | | | | | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525?HP, The Netherlands
| | - Charles Coutton
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | - Christine Francannet
- Service de Génétique Médicale, Centre Hospitalier-Universitaire, 63003 Clermont-Ferrand, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Jean-Marc Egly
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| |
Collapse
|
194
|
Chen R, Li Y, Buttyan R, Dong X. Implications of PI3K/AKT inhibition on REST protein stability and neuroendocrine phenotype acquisition in prostate cancer cells. Oncotarget 2017; 8:84863-84876. [PMID: 29156689 PMCID: PMC5689579 DOI: 10.18632/oncotarget.19386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that arises as a consequence of rigorous androgen receptor (AR) pathway inhibition (ARPI) therapies. While the PI3K/AKT pathway has been investigated as a co-therapeutic target with ARPI for advanced PCa, whether this strategy can prevent tumor progression to t-NEPC remains unknown. Here, we report that PI3K/AKT inhibition alone reduces RE-1 silencing transcription factor (REST) protein expression and induces multiple NE markers in PCa cells. The loss of REST by PI3K/AKT inhibition is through protein degradation mediated by the E3-ubiquitin ligase β-TRCP and REST phosphorylations at the S1024, S1027, and S1030 sites. Since AR inhibition can also deplete REST, the combinational inhibition of PI3K/AKT and AR further aggravated REST protein reduction. We profiled the transcriptomes of AKT and AR inhibitions in the LNCaP cells. The Gene Set Enrichment Analysis (GSEA) showed that these transcriptomes are highly correlated with the REST-regulated gene signature. Co-targeting AKT and AR resulted in a higher correlation comparing to those of single treatment. Comparing these transcriptomes to the t-NEPC gene signature in patients by GSEA, we observed that adding AKT inhibition to AR blockade enhanced the expression of neurogenesis-related genes and resulted in a stronger and broader upregulation of REST-regulated genes specific to t-NEPC. These results indicate that AKT pathway inhibition can induce neuroendocrine differentiation of PCa cells via REST protein degradation. It delineates a potential risk for the AR and PI3K/AKT co-targeting strategy as it may further facilitate t-NEPC development.
Collapse
Affiliation(s)
- Ruiqui Chen
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Yinan Li
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Ralph Buttyan
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Xuesen Dong
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
195
|
Christopher MA, Kyle SM, Katz DJ. Neuroepigenetic mechanisms in disease. Epigenetics Chromatin 2017; 10:47. [PMID: 29037228 PMCID: PMC5644115 DOI: 10.1186/s13072-017-0150-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Epigenetics allows for the inheritance of information in cellular lineages during differentiation, independent of changes to the underlying genetic sequence. This raises the question of whether epigenetic mechanisms also function in post-mitotic neurons. During the long life of the neuron, fluctuations in gene expression allow the cell to pass through stages of differentiation, modulate synaptic activity in response to environmental cues, and fortify the cell through age-related neuroprotective pathways. Emerging evidence suggests that epigenetic mechanisms such as DNA methylation and histone modification permit these dynamic changes in gene expression throughout the life of a neuron. Accordingly, recent studies have revealed the vital importance of epigenetic players in the central nervous system and during neurodegeneration. Here, we provide a review of several of these recent findings, highlighting novel functions for epigenetics in the fields of Rett syndrome, Fragile X syndrome, and Alzheimer’s disease research. Together, these discoveries underscore the vital importance of epigenetics in human neurological disorders.
Collapse
Affiliation(s)
- Michael A Christopher
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095-7239, USA
| | - Stephanie M Kyle
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
196
|
LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun 2017; 8:805. [PMID: 28993646 PMCID: PMC5634471 DOI: 10.1038/s41467-017-00922-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
To investigate the mechanisms that maintain differentiated cells, here we inducibly delete the histone demethylase LSD1/KDM1A in adult mice. Loss of LSD1 leads to paralysis, along with widespread hippocampus and cortex neurodegeneration, and learning and memory defects. We focus on the hippocampus neuronal cell death, as well as the potential link between LSD1 and human neurodegenerative disease and find that loss of LSD1 induces transcription changes in common neurodegeneration pathways, along with the re-activation of stem cell genes, in the degenerating hippocampus. These data implicate LSD1 in the prevention of neurodegeneration via the inhibition of inappropriate transcription. Surprisingly, we also find that transcriptional changes in the hippocampus are similar to Alzheimer’s disease (AD) and frontotemporal dementia (FTD) cases, and LSD1 is specifically mislocalized to pathological protein aggregates in these cases. These data raise the possibility that pathological aggregation could compromise the function of LSD1 in AD and FTD. “LSD1 is a histone demethylase that plays many roles during development. Here, the authors provide evidence that loss of LSD1 in adult mice leads to paralysis and neurodegeneration in the hippocampus and cortex and suggest a potential link between LSD1 and human neurodegenerative disease.
Collapse
|
197
|
Ueda H, Kurita JI, Neyama H, Hirao Y, Kouji H, Mishina T, Kasai M, Nakano H, Yoshimori A, Nishimura Y. A mimetic of the mSin3-binding helix of NRSF/REST ameliorates abnormal pain behavior in chronic pain models. Bioorg Med Chem Lett 2017; 27:4705-4709. [PMID: 28927787 DOI: 10.1016/j.bmcl.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
The neuron-restrictive silencing factor NRSF/REST binds to neuron-restrictive silencing elements in neuronal genes and recruits corepressors such as mSin3 to inhibit epigenetically neuronal gene expression. Because dysregulation of NRSF/REST is related to neuropathic pain, here, we have designed compounds to target neuropathic pain based on the mSin3-binding helix structure of NRSF/REST and examined their ability to bind to mSin3 by NMR. One compound, mS-11, binds strongly to mSin3 with a binding mode similar to that of NRSF/REST. In a mouse model of neuropathic pain, mS-11 was found to ameliorate abnormal pain behavior and to reverse lost peripheral morphine analgesia. Furthermore, even in the less well epigenetically defined case of fibromyalgia, mS-11 ameliorated symptoms in a mouse model, suggesting that fibromyalgia is related to the dysfunction of NRSF/REST. Taken together, these findings show that the chemically optimized mimetic mS-11 can inhibit mSin3-NRSF/REST binding and successfully reverse lost peripheral and central morphine analgesia in mouse models of pain.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | - Yuuka Hirao
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hiroyuki Kouji
- PRISM BioLab Co., Ltd., 4259-3, Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan; Oita University, Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan
| | - Tadashi Mishina
- PRISM BioLab Co., Ltd., 4259-3, Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan
| | - Masaji Kasai
- PRISM BioLab Co., Ltd., 4259-3, Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan
| | - Hirofumi Nakano
- PRISM BioLab Co., Ltd., 4259-3, Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan; Kitasato University, Kitasato Life Science Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Atsushi Yoshimori
- Institute of Theoretical Medicine, Inc., 4259-3, Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
198
|
Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 2017; 133:3-20. [PMID: 28864354 DOI: 10.1016/j.ymeth.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Qiuge Zhao
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
199
|
Mozzi A, Guerini FR, Forni D, Costa AS, Nemni R, Baglio F, Cabinio M, Riva S, Pontremoli C, Clerici M, Sironi M, Cagliani R. REST, a master regulator of neurogenesis, evolved under strong positive selection in humans and in non human primates. Sci Rep 2017; 7:9530. [PMID: 28842657 PMCID: PMC5573535 DOI: 10.1038/s41598-017-10245-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/07/2017] [Indexed: 12/03/2022] Open
Abstract
The transcriptional repressor REST regulates many neuronal genes by binding RE1 motifs. About one third of human RE1s are recently evolved and specific to primates. As changes in the activity of a transcription factor reverberate on its downstream targets, we assessed whether REST displays fast evolutionary rates in primates. We show that REST was targeted by very strong positive selection during primate evolution. Positive selection was also evident in the human lineage, with six selected sites located in a region that surrounds a VNTR in exon 4. Analysis of expression data indicated that REST brain expression peaks during aging in humans but not in other primates. Because a REST coding variant (rs3796529) was previously associated with protection from hippocampal atrophy in elderly subjects with mild cognitive impairment (MCI), we analyzed a cohort of Alzheimer disease (AD) continuum patients. Genotyping of two coding variants (rs3796529 and rs2227902) located in the region surrounding the VNTR indicated a role for rs2227902 in modulation of hippocampal volume loss, indirectly confirming a role for REST in neuroprotection. Experimental studies will be instrumental to determine the functional effect of positively selected sites in REST and the role of REST variants in neuropreservation/neurodegeneration.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | | | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | | | | | | | - Monia Cabinio
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy.,Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.
| |
Collapse
|
200
|
Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b. J Neurosci 2017; 36:9407-19. [PMID: 27605615 DOI: 10.1523/jneurosci.1246-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED During embryonic development, regulation of gene expression is key to creating the many subtypes of cells that an organism needs throughout its lifetime. Recent work has shown that maternal genetics and environmental factors have lifelong consequences on diverse processes ranging from immune function to stress responses. The RE1-silencing transcription factor (Rest) is a transcriptional repressor that interacts with chromatin-modifying complexes to repress transcription of neural-specific genes during early development. Here we show that in zebrafish, maternally supplied rest regulates expression of target genes during larval development and has lifelong impacts on behavior. Larvae deprived of maternal rest are hyperactive and show atypical spatial preferences. Adult male fish deprived of maternal rest present with atypical spatial preferences in a novel environment assay. Transcriptome sequencing revealed 158 genes that are repressed by maternal rest in blastula stage embryos. Furthermore, we found that maternal rest is required for target gene repression until at least 6 dpf. Importantly, disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that recapitulate the hyperactivity phenotype caused by absence of maternal rest Both maternal rest mutants and snap25a RE1 site mutants have altered primary motor neuron architecture that may account for the enhanced locomotor activity. These results demonstrate that maternal rest represses snap25a/b to modulate larval behavior and that early Rest activity has lifelong behavioral impacts. SIGNIFICANCE STATEMENT Maternal factors deposited in the oocyte have well-established roles during embryonic development. We show that, in zebrafish, maternal rest (RE1-silencing transcription factor) regulates expression of target genes during larval development and has lifelong impacts on behavior. The Rest transcriptional repressor interacts with chromatin-modifying complexes to limit transcription of neural genes. We identify several synaptic genes that are repressed by maternal Rest and demonstrate that snap25a/b are key targets of maternal rest that modulate larval locomotor activity. These results reveal that zygotic rest is unable to compensate for deficits in maternally supplied rest and uncovers novel temporal requirements for Rest activity, which has implications for the broad roles of Rest-mediated repression during neural development and in disease states.
Collapse
|